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Abstract - Attention Deficit Hyperactive Disorder (ADHD) is one of the most
common disorders affecting young children, and its underlying mechanism is
not completely understood. This paper proposes a phenotypic integrated ma-
chine learning framework to investigate functional connectivity alterations be-
tween ADHD and control subjects not diagnosed with ADHD, employing fMRI
data. Our aim is to apply computational techniques to (1) automatically classify
a person’s fMRI signal as ADHD or control, (2) identify differences in func-
tional connectivity of these two groups and (3) evaluate the importance of phe-
notypic information for classification. In the first stage of our framework, we
determine the functional connectivity of brain regions by grouping brain activi-
ty using clustering algorithms. Next, we employ Elastic Net based feature se-
lection to select the most discriminant features from the dense functional brain
network and integrate phenotypic information. Finally, a support vector ma-
chine classifier is trained to classify ADHD subjects vs. control. The proposed
framework was evaluated on a public dataset ADHD-200, and our classification
results outperform the state-of-the-art on some subsets of the data.
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1 Introduction

The brain can be envisioned as a large and complicated network controlling the
complex systems of the body. While coordinating bodily function, the brain regions
continuously share information, and regions exhibiting temporal correlation are said
to be functionally connected. Research studies have shown that brain disorders such
as Alzheimer’s disease, epilepsy, ADHD can alter the functional connectivity of the
brain network [1] . Accurate identification of altered functional connectivity induced
by a particular disorder is thus an important task and may highlight the underlying
mechanism of the disorder. Recently, resting state functional MRI (fMRI) has
emerged as a promising neuroimaging tool to investigate functional activity of brain
regions. In particular, fMRI has been employed to identify the connectivity alterations
induced by disorders such as epilepsy, schizophrenia, and ADHD.

ADHD is one of the most common neurodevelopmental and mental disorders
found in young children, affecting 5-10% of children[2]. Like many other brain disor-
ders, the mechanism underlying ADHD is still unknown [2]. ADHD has received



significant research focus, including studies employing fMRI to investigate functional
connectivity alterations in ADHD: [3] proposed a functional-anatomical discrimina-
tive region model for the identification of discriminant features and pattern classifica-
tion of ADHD, and evaluated Elastic Net [4] based feature selection. Dey et al. [2]
employed attributed graph distance measures for classification of ADHD, and similar-
ly [1] investigated different graph based measures to assess their discriminative pow-
er. Tabas et al. [5] proposed a variant of Independent Component Analysis (ICA) to
characterize the differences between control and patients, employing fMRI data. In
[6] authors have applied a Bag of Words approach for classification of ADHD and
achieved highest accuracy of 65% on the Kennedy Krieger Institute (KKI) dataset.
The studies show encouraging results, and demonstrate that machine learning tech-
niques hold promise for the analysis of neuroimaging data.

In this paper, our motivation is to study functional connectivity alterations induced
by ADHD. However, unlike previous work that relies on the image data alone, we
integrate phenotypic data (such as age, gender, and 1Q scores) in our machine learning
framework to identify discriminant features to classify individuals as ADHD or non-
ADHD (control). Our framework has several stages. In the first stage, the functional
connectivity between brain regions is determined using the Affinity Propagation (AP)
clustering algorithm [7]. Instead of requiring number of clusters in advance, AP takes
a measure of similarity between data points and initial preference for each point for
being cluster centroid. We propose a novel method to find these cluster centroids
through a matrix derived from the Density Peaks (DP) algorithm by Rodriguez and
Laio [8]. To our knowledge, this is the first paper to apply DP for classification of
fMRI. Next, we select discriminant features through Elastic Net (EN), which com-
bines shrinkage with grouped selection of variables. Finally we employ a support
vector machine classifier to classify between control and ADHD. We demonstrate
that the integrated phenotypic information in our framework improves performance.

This work makes several contributions. First, we propose a novel method to ini-
tialize the AP clustering algorithm by employing the Density Peaks approach. Sec-
ond, we demonstrate the importance of phenotypic information for classification of
control vs. ADHD based on functional connectivity between brain regions. In addi-
tion, our experimental results outperform the previous state-of-the-art for three test
datasets of the publically available ADHD 200 data.

2 Data

The resting state fMRI data used in this study is from the NeuroBureau ADHD-200
competition [9]. The data consists of resting state functional MRI data as well as dif-
ferent phenotypic information for each subject. There was a global competition held
for classification of ADHD subjects, and the consortium has provided training and an
independent test dataset for each imaging site. For this study we employed datasets
from four sites: Kennedy Krieger Institute (KKI), Neurolmage (NI), New York Uni-
versity Medical Center (NYU) and Peking University (Peking). All sites have a dif-
ferent number of subjects. Also, imaging sites have different scan parameters and
equipment, which makes the dataset complex as well as diverse. This data has been



pre-processed as part of the connectome project [10] and brain is parcellated into 90
regions using the Automated Anatomical Labelling[11] atlas. A more detailed de-
scription of the data and pre-processing steps appears in [9]. We have integrated phe-
notypic information of age, gender, verbal 1Q, performance 1Q and Full4 1Q, for all
sites except from Neurolmage, for which phenotypic information is not available.

3 Methods

Our framework consists of the following modules: functional connectivity calcula-
tion, feature selection, phenotypic integration and classification. A block diagram of
the methodological framework is presented in Figure 1 and described below.

3.1 Dataset balancing: In our study, datasets from two imaging sites are imbal-
anced, e.g. for Peking (61 Control vs. 24 ADHD) and for KKI (61 Control vs. 22
ADHD). This imbalance may hamper the performance of a classifier, which may
overly focus on the majority class. One approach might be to apply random over-
sampling of the minority class or under sampling the majority class to balance the
training dataset, but these strategies have been shown to have suboptimal performance
[12]. Instead, we employ Synthetic Minority Over-sampling Technique (SMOTE)
[13] to create synthetic minority samples. Consider I, € I, where [ is the total set of
individual subjects, and I, is the set of minority ADHD subjects, and we denote an
individual sample in I, as x;. We can synthesize additional minority subjects as

Xg = x+ (% —x) X7 @

where X, is a randomly chosen subject from K-nearest neighbours of x; € I, x, is a
synthetic subject and r is random number such that » € [0,1].

3.2 Functional connectivity: Functional connectivity can be estimated by corre-
lation of time-domain signals [1], [2], as well as clustering [14]. We propose a hybrid
framework which employs Affinity Propagation (AP) clustering [7] and the Density
Peaks (DP) algorithm [8] for functional connectivity estimation.

One of the most appealing properties of AP clustering is that it does not require an
initial number of clusters. Instead, it takes a measure of similarity between data
points. AP clustering is a message-passing algorithm where each data point is simul-
taneously considered as potential centroid and as being part of any cluster. Messages
are passed between all data points until robust clusters and their centroids emerge.
There are two kinds of messages passed between data points, namely responsibility
and availability messages. The responsibility message 7 (i, j) is sent from region i to
a potential centroid candidate j, reflects the accumulated strength for how well suited
region j is to serve as cluster centroid for region i, taking into consideration all other
potential cluster centroids for the region. The availability message a(i, j) is sent from
a potential centroid candidate j to region i, and reflects the accumulated strength for
how well suited it would be for region i to select region j as its centroid. Availability
messages for all regions are initialized as



a(i,j) =0 )
and the responsibility is calculated as
r(0,j) =S - Joax {a(,j) + S0} @)
with the availability message as
a(i,j) = min{0,7(, /) + Zor, ¢,y max{0, (', H}} )

where S in Equation 3 is the similarity measure between brain regions which is ini-

tialized as
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where g;, is the standard deviation of k" dimension and ¢ is the time points of re-
gions. Instead of requiring an initial guess for number of clusters, the AP clustering
algorithm requires a preference value p assigned for each region as the initial proba-
bility of being a cluster centroid. Selection of the preference value impacts the num-
ber of clusters produced [7], [14]. The value may be assigned to be median or mini-
mum of similarities [7]. However, in this study we propose a novel method to initial-
ize the preference value. We propose to estimate this initial strength for each region as
being cluster centroid through the Density Peaks algorithm [8]. The density peak al-
gorithm proposes that the cluster center can be identified as the points that have high-
er local density and are at larger distance from points with higher density. We initial-
ize the preference for each region as

N pi 6;—min(p; 6;) _
p(l) - max(pi 5i)—min(pi 51:) X (N 1) +c (6)

where N is the number of brain regions (N = 90), c = N/6 , p; is the density of
region i calculated as

pi = X f(dy —d.) (7
where d.. is a cut-off distance controlling the number of neighbors of i, and f is
(1, if x<0
fe) = {0, otherwise 8)
and ¢; is calculated as
6= jin, d;j ©)

After initializing p, the availability and responsibility messages are updated, until
robust clusters and their centroids emerge. From the AP clustering algorithm results,
we construct a matrix M as

.. 1, if iand j are in same cluster
M) = {; (10)

i otherwise
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Fig. 1. Flowchart of proposed framework.

The cut-off distance d, in Equation 7 impacts clustering by varying the preference
value computed in Equation 6, yielding different clustering results. To address this
issue, the AP clustering algorithm is run multiple times to yield multiple M matrices,
with varying d. so that the average number of neighbors is around 2% to 8% of the
total number of points. Through these multiple runs of clustering, we produce K num-
ber of M matrices and calculate a functional connectivity matrix,

FCGj) = 25 My(i,)) (11)

This matrix represents the functional connectivity of a subject, such that each entry in
FC(i,j) represents an estimate of probability that the i*" and j** regions belong to the
same functional connectivity. The constructed functional connectivity matrix of Equa-
tion 11 has a dimensionality of 4005 (90 x 90/2) unique features. The high dimen-
sion of the matrix may degrade the performance of classifier (the well known “curse
of dimensionality” problem). Therefore, there is a need to select discriminant features.

3.3 Discriminant feature selection: The functional connectivity matrix may
contain highly correlated features. We therefore investigate Elastic Net (EN) based
feature selection [4] for extracting discriminant features. EN is an embedded based
feature selection algorithm that encourages grouped selection of features and takes
advantage of both lasso and ridge regression by combining their penalties in one sin-
gle solution. Similar to lasso, the L; penalty is employed to enable variable selection
and continuous shrinkage, and the L, penalty is combined to encourage selection of
correlated features. If y is the label vector for subjects, y; € (I4,13, ... ), and X =
{FCy,FC,, ... FC,}, the cost function to be minimized by Elastic Net is

L4, 22,8) = lly =X BII* + Ml Blls + 2211 BII? (12)



where 1, and 4, are weights of the terms forming the penalty function and f coef-
ficients are estimated by model fitting. By minimizing L in Equation 12, we extract
the features that have non-zero coefficients with minimum error during cross valida-
tion using a training set. In order to evaluate phenotypic information for classification,
we integrate phenotypic information with the selected features to formulate a com-
bined feature set that can be evaluated for classification, as described in the next sub-
section.

3.4 Classification: The next step in our study is classification where we employ
a Support Vector Machines (SVM) classifier to evaluate the discriminative ability of
the selected features. SVM is a popular machine learning classifier and has been suc-
cessfully evaluated in a number of neuroimaging studies (e.g., [14]). It seeks an opti-
mal margin between the two classes (control and ADHD) during training, using la-
beled training data (1 for control, 2 for ADHD). The learned model is then employed
for testing by presenting unseen testing data. The SVM classifier then predicts the
label (control or ADHD) for each test subject.

4 Experimentation and results

The proposed framework was evaluated on a dataset provided by the ADHD-200
consortium, and contains four categories of subjects: controls, ADHD-Combined,
ADHD-Hyperactive/Impulsive, and ADHD-inattentive. Here we propose a binary
classification problem: controls vs. ADHD, by combining all ADHD subtypes in one
category, since we want to investigate differences and classification between control
and ADHD.

We train the SVM classifier on training data employing selected features and phe-
notypic information as mentioned above. SMOTE was applied on Peking and KKI
datasets to address the data imbalance issue described earlier. The trained SVM clas-
sifier was tested with independent test data provided for each individual site, and
results are presented in Table 1, which also provides results with the results of compe-
tition teams (reported from NITRC [9]) and highest accuracy achieved by teams in
individual imaging sites (data from [3]). It should be noted that parameters of our
framework are held constant for all the datasets.

The results show that our framework outperforms the state-of-the-art in three (Pe-
king, KKI and NYU) out of four imaging sites. Our framework performs well in dif-
ferent datasets despite of their diversity. Lower performance on the NI dataset might
be due to the fewer number of training subjects and the lack of phenotyping infor-
mation (unavailable for NI). In order to evaluate the importance of phenotyping in-
formation in our framework, we computed the results without integrating the pheno-
typing information. These results are presented in Table 2, which shows that pheno-
typing information provides better classification results for Peking and NYU.

For evaluation of our proposed novel methodology to initialize the AP clusters as
discussed in Section 3.1, we compared our results with standard AP clustering results
presented in Table 3.



Table 1. : Comparison of our results with average results of competition teams [9] and
highest accuracy achieved for individual site [3].

Name Average accuracy [9] Highest accuracy [3] | Our accuracy

Peking 51.0% 58% 64.7%
KKI 43.1% 81% 81.8%
NYU 32.3% 56% 60.9%
NI 56.9% - 44.0%

Table 2. : Accuracy results with and without integrating phenotyping information.

Name Accuracy with phenotyping | Accuracy without phenotyping

Peking 64.7% 58.8%
KKI 81.8% 81.8%
NYU 60.9% 24.3%

Table 3 shows that our proposed methodology is able to achieve better accuracy
than AP clustering in all imaging sites.

Table 3. Comparison of our proposed methodology with AP results. Results show that our
proposed methodology achieves better accuracy than AP clustering.

Name Proposed Methodology AP Clustering
Specificity [Sensitivity |Accuracy [Specificity [Sensitivity |Accuracy
Peking 92.5% 33.3% 64.7% 81.4% 33.3% 58.8%
KKI 75.0% 100.0% 81.8% 87.5% 33.3% 72.7%
NYU 41.6% 68.9% 60.9% 41.6% 62.0% 56.1%
NI 42.8% 45.4% 44.0% 7.1% 63.6% 32.0%

5 Conclusions

In this paper we have addressed the problem of identification of discriminant features
between control and ADHD subjects for classification based upon fMRI data. Classi-
fication of neuroimaging data is considered a difficult task due to the high dimension-
ality of data. We have proposed a machine learning based framework for this problem
and evaluated our method on four training and test datasets provided by NITRC. Our
framework introduces a novel method for estimation of functional connectivity be-
tween brain regions. The brain is a complex network where a number of brain regions
show coherent activity. Therefore, discriminant features might be highly correlated
with other. Here, we employed Elastic Net for feature selection that encourages un-
correlated feature selection. In this work, we have evaluated importance of phenotypic
information by integrating with selected features. Our results show that Elastic Net
based feature selection integrated with phenotypic information may provide an im-
portant feature selection strategy. Our selected features and SVM classifier was able
to outperform the state-of-the-art in classification accuracy on data from three institu-
tions. In future work we will explore the clinical interpretation of the functional con-



nectivity alterations produced in our framework, particularly in light of the phenotyp-
ic information.
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