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Abstract. The cervical spine is a flexible anatomy and vulnerable to
injury, which may go unnoticed during a radiological exam. Towards
building an automatic injury detection system, we propose a localization
framework for the cervical spine in X-ray images. The proposed frame-
work employs a segmentation approach to solve the localization problem.
As the cervical spine is a single connected component, we introduce a
novel region-aware loss function for training a deep segmentation network
that penalises disjoint predictions. Using data augmentation, the frame-
work has been trained on a dataset of 124 images and tested on another
124 images, all collected from real life medical emergency rooms. The
results show a significant improvement in performance over the previous
state-of-the-art cervical vertebrae localization framework.
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1 Introduction

The cervical spine is a critical part of human body and is vulnerable to high-
impact collisions, sports injuries and falls. Roughly 20% of the injuries remain
unnoticed in X-ray images and 67% of these missed injuries end in tragic conse-
quences [1,2]. Computer-aided-detection has the potential to reduce the number
of undetected injuries on radiological images. Towards this goal, we propose a
robust spine localization framework for lateral cervical X-ray radiographs. We
reformulated the localization problem as a segmentation problem at a lower
resolution. Given a set of high-resolution images and manually segmented ver-
tebrae ground truth, at a lower resolution, the ground truth becomes a single
connected region. We train a deep segmentation network to predict this region.
To force the network to predict a single connected region, we introduce a novel
term in the loss function which penalizes small disjoint areas and encourages sin-
gle region prediction. This novel loss has produced significant improvement in
localization performance. Previous work in vertebrae localization includes gen-
eralized Hough transform based approaches [3,4] and more recent random forest
based approaches [5-7]. The state-of-the-art (SOTA) work on cervical vertebrae
localization [7], uses a sliding window technique to extract patches from the im-
ages. A random forest classifier decides which patches belong to the spinal area.
Then, a rectangular bounding box is generated to localize the spinal region.
In contrast, the proposed framework can produce localization map of arbitrary



shape in a one-shot process and provides a localisation result that models the
cervical spine better than a rectangular box. We have trained our framework on
a dataset of 124 images using data augmentation and tested on a separate 124
images having different shapes, sizes, ages and medical conditions. An average
pixel level accuracy of 99.1% and sensitivity of 93.6% was achieved. There are
two key contributions of this paper. First, a novel loss function which constrains
the segmentation to form a single connected region and second, the adaptation
and application of deep segmentation networks to cervical spine localization in
real-life emergency room X-ray images. The networks learn from a small dataset
and robustly outperform the SOTA both quantitatively and qualitatively.

2 Data

Our dataset contains 248 lateral view emergency room X-ray images collected
from Royal Devon and Exeter Hospital. Image size, orientation, resolution, pa-
tient position, age, medical conditions and scanning systems all vary greatly in
the dataset. Some images can be seen in Fig. 1. Along with the images, our
medical partners have provided us with the manual segmentation of the cervical
vertebrae, C3-C7. The top two vertebrae, C1-C2, were excluded from the study
as ground truth was only available for C3 to C7. The segmentation (green) and
localization (blue) ground truth (GT) for the images are highlighted in Fig. 1.

Fig. 1: Examples of X-ray images and corresponding ground truth.

3 Methodology

We have approached the localization problem as a segmentation problem at a
lower resolution. The X-ray images are converted into square images by padding
an appropriate number zeros in the smaller dimension and the square images
are resized to a lower resolution using bicubic interpolation. This resolution can
vary based on the available memory and size of the training networks. For our
case, we chose this resolution to be 100 x 100 pixel. The corresponding binary
segmentations of the vertebrae are also resized to the same resolution. At this
resolution, the provided vertebrae segmentation becomes a single localized area
encompassing the spine (blue region in Fig. 1). For this work, we have experi-
mented with three different deep segmentation architectures: fully convolutional
network (FCN) [8], deconvolutional network (DeConvNet) [9] and UNet [10]. In
this work, we train the networks from scratch. The networks take an input X-ray
image of 100 x 100 pixels and produce a probabilistic binary segmentation map
of the same resolution.



3.1 Localization Ground Truth

As stated earlier, our target is to localize the spinal area in a cervical X-ray
image. For this purpose, we convert our manual vertebra segmentations to a
localization ground truth. As our networks are designed to produce an output
localization map of 100 x 100 pixels, we create our localization ground truth
in these dimensions. Since our original image sizes are approximately in the
range of 1000 to 5000 pixels, a simple bicubic interpolation based resize of the
vertebra segmentation produces a connected localization ground truth in the
smaller dimension. To visualize the ground truth, it can be transformed back to
the original dimensions. The blue overlay in Fig. 1 shows how much area the
localization ground truth covers apart from the actual vertebrae (green).
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Fig.2: (a) Legends (b) FCN (c) DeConvNet (d) UNet.
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3.2 Network Architectures

The original FCN [8] and DeConvNet [9] were designed to tackle a semantic
segmentation problem having multiple classes on natural images. Since our task
here is to localize the spinal region, we essentially have a binary segmentation
problem. Thus, we use a shallower version having fewer parameters. In our im-
plementation, the FCN network has six convolutional layers and two pooling
layers (size 2 x 2, stride 2). The two stages of pooling reduce the dimension
from 100 x 100 to 25 x 25 thus creating an activation map of smaller size. The
final deconvolutional layer upsamples the 25 x 25 activations to 100 x 100 pix-
els, producing an output map of the input size. Instead of upsampling from the
lower resolution to the input resolution in a single step, DeConvNet uses a de-
convolutional network which expands the activations step by step using a series
of deconvolutional and unpooling layers. The expanding path forms a mirrored
version of the contracting convolutional path. The UNet follows a similar struc-
ture but instead of an unpooling layer, it uses deconvolution to upsample the
input. Both UNet and DeConvNet use information from the contracting path
in the expanding path. DeConvNet does this through switch variables from the
pooling layers and UNet uses concatenation of data. Fig. 2 shows the network
diagrams that include data sizes after each layer for a single input image. The
number of filters in each layer can be tracked from the number of channels in the
data blocks. In total, our FCN has 1,199,042 parameters whereas DeConvNet
and UNet have 4,104,194 and 6,003,842 parameters, respectively.



3.3 Training

We have a small dataset of only 248 manually segmented images. We divide
our data randomly into 124 training and 124 test images. In order to train
any network with a large number of parameters, 124 images are not enough. In
order to increase the number of training data, we have augmented the images by
rotating each image from 5° to 355° with a step of 5°. This results in a training
set of 8928 images. It also made the framework rotation invariant. Our choice
for data augmentation was only limited to rigid transformations since non-rigid
transformation will affect the natural appearance of the spine in the image. All
the networks were trained from randomly initialized parameters using a mini-
batch gradient descent optimization algorithm from this augmented training
dataset.

Given a dataset of training image (x)-segmentation label (y) pairs, training a
deep segmentation network means finding a set of parameters W that minimizes
a loss function, L;. The simplest form of the loss function for segmentation
problem is the pixel-wise log loss.

N
W = argminZLt({x(”),y(")};W) (1)
w n=1

where N is the number of training examples and {x(”)7y(”)} represents n-th
example in the training set with corresponding manual segmentation. The pixel-
wise segmentation loss per image can be defined as:
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where a;(x;) is the output of the penultimate activation layer of the network for
the pixel z;, {2, represents the pixel space, M is the number of class labels and P
are the corresponding class probabilities. However, this term doesn’t constrain
the predicted maps to be connected. Since the objective of the localization prob-
lem is to find a single connected region encompassing the spine area, we add
a novel region-aware term in the loss function to force the network to learn to
penalize small and disconnected regions.

3.4 Region-aware Term

We translate our domain knowledge into the training by adding a region based
term, L,.. This term forces the network to produce a single region by penalizing
small disjoint regions. This term can be defined as:
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where N, is the number of regions predicted as spine regions, N; is the number
of target regions we are looking for, A, is the area of the g-th region, A4z,
is area of the t-th largest region, R, is the set of pixels in the region ¢, and ¢
represents the regions having area less than Ay, . In our case, Ny = 1. Notice
that, if N, is equal to or less than Ny and/or Anez, = Ag, no region based error
will be added with the loss function of Eqn. 1.

3.5 Updated Loss Function

Finally, the loss function of Eqn. 1 can be extended as:

N
W = arg min Z Li({z™,y ™y, W) + L, ({2™, ™M}, W) (6)
w

n=1

The contribution of each term in the total loss can be controlled by introducing
a weight parameter in Eqn. 6. However, in our case, the best performance was
achieved when both terms contributed equally.

3.6 Experiments and Inference

The networks are trained on a server with two NVidia Quadro M4000 GPUs.
Training each network for 30 epochs took 22 to 30 hours. Batch size during
training was selected as 10 images and RMSprop [11] version of mini-batch
gradient descent algorithm was used to update the parameters in every epoch.
We have three different networks and two versions of the loss function, with and
without the region-aware term. In total six networks have been trained: FCN,
DeConvNet, UNet and FCN-R, DeConvNet-R, UNet-R, -R’ signifying if the
region-aware term of Eqn. 6 has been used.

When testing, a test image is padded with zeros to form a square, resized to
100 x 100 pixels and fed forward through the network to produce probabilistic
localization map. This map is converted into a single binary map and compared
with the corresponding localization ground truth. Pixel level accuracy, object
level Dice, sensitivity and specificity are computed. These metrics demonstrate
the performance of the trained networks at the lower resolution at which the
network generates the prediction. From a practical point of view, the perfor-
mance of the localization should also be computed at the original resolution
with the manually segmented vertebrae ground truth. In order to achieve this,
the predicted localization map is transformed (resized and unpadded) back to
the original image dimension and sensitivity and specificity are computed by
comparing them with vertebrae segmentation.

4 Results and Discussions

The mean and standard deviation of the metrics over 124 test images at lower
and original resolutions are reported in Table 1. In all cases and all metrics (other



than specificity), inclusion of the region-aware term in the loss function improves
the performance. The improvements are statistically significant for most of the
metrics according to a paired t-test at a 5% significance level (bold numbers
signify statistical significance for that metric over the other version of the same
network architecture in the table). It can be noted that as the sensitivity in-
creases, the specificity may decrease. This is because when the predicted region
increases in size to cover more spinal regions, it may also start to encompass some
other regions. This effect can also be seen in the qualitative results in Fig. 4.
However, the specificity is always in the high range of 97.2% to 97.7%. Quantita-
tively, FCN performs better than UNet and DeConvNet. But qualitatively UNet
and DeConvNet produce finer localization maps (Fig. 4b, d). The coarser map
for FCN can be attributed to the single stage upsampling strategy of the net-
work. Fig. 4 shows some of the difficult images in the test dataset: osteoporosis
(a), image artefacts (b) and severe degenerative change (c, e). In most of these
images, our region-aware term has been able to produce better results. It also
decreases the standard deviation of the metrics (Table 1 and Fig. 3) proving its
usefulness in regularizing the localized maps. However, outliers in the box plot
of Fig. 3 show that there are images where all methods fail. Most of these images
have severe clinical issues. One example of a complete failure of our algorithm
for an image with bone implants is shown in Fig. 4f.

Table 1: Quantitative results (%).

o7

Lower resolution Original resolution

Networks |Pixel Accuracy{ Dice L Sensitivity LSpeciﬁcity Sensitivity | Specificity
SOTA [7] Not available 79.9+16.7 | 98.1+1.1
FCN 98.9+1.0 83.8+15.6 | 80.2 £ 18.1 (99.7 £ 0.3|| 91.5 +18.4 |97.5 + 0.7
FCN-R 99.1 £ 1.0 [85.8 +14.7(85.0 £ 17.6| 99.6 +0.3 |[93.6 &= 17.6| 97.2+0.8
DeConvNet 98.6 £1.1 79.7+£16.4 | 77.2+£19.1 | 99.54+0.5 || 88.24+204 | 97.3£0.8
DeConvNet-R| 99.1 +1.0 (85.7 £ 15.6/81.0 + 18.1({99.8 &+ 0.2{|91.5 £ 18.3|97.7 £ 0.7
UNet 989+1.1 84.14+18.5 | 79.9+21.9 | 99.8 +0.3 || 87.5+23.3 |97.6 = 0.8
UNet-R 99.0+ 1.0 85.1 +17.0 (82.5 £ 20.8| 99.7 + 0.2 |[89.6 + 21.1| 97.4 +£ 0.8
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Fig. 3: Box plot of quantitative metrics.

To compare with the previous state-of-the-art (SOTA) in cervical vertebra
localization [7], we have implemented and trained the random forest based frame-
work on our dataset. Our algorithm produces a 17.1% relative improvement in
average sensitivity with a drop of only 0.9% in specificity. In terms of time re-
quired for the algorithm to produce a result, our slowest framework (UNet) is
approximately 60 times faster than [7]. To prove the robustness, we have tested



Original FCN FCN-R DeConvNet  DeConvNet-R UNet UNet-R

Fig. 4: Qualitative results: true positive (green), false positive (blue) and false negative
(red) based on manual vertebrae segmentation.

the proposed framework on 275 cervical X-ray images of NHANES-II dataset [12]
and even without any adaptation or transfer learning on the networks, it showed
promising capability of generalization in localizing the cervical spine. However,
due to insufficient ground truth information, quantitative results are not avail-
able. A few qualitative localization results on this dataset are shown in Fig. 5.

5 Conclusion

In this paper, we have proposed a framework for spine localization in cervi-
cal X-ray images. The localization problem has been reformulated as a binary

Fig. 5: Localization results (blue overlay) on NHANES-II dataset.



segmentation problem in a lower resolution. Based on the domain knowledge,
a novel region-aware term was added to the loss function to produce a single
region as localized output. Three segmentation networks were investigated and
the novel loss function improved the performance of all these networks signif-
icantly. A maximum average sensitivity of 93.6% and specificity of 97.7% was
achieved. Currently, we are adapting the proposed method for precise vertebrae
segmentation. In future work, we plan to build a fully automatic computer-aided
detection system for cervical spine injuries.

References

1.

10.

11.

12.

P. Platzer, N. Hauswirth, M. Jaindl, S. Chatwani, V. Vecsei, and C. Gaebler,
“Delayed or missed diagnosis of cervical spine injuries,” Journal of Trauma and
Acute Care Surgery, vol. 61, no. 1, pp. 150-155, 2006.

C. Morris and E. McCoy, “Clearing the cervical spine in unconscious polytrauma
victims, balancing risks and effective screening,” Anaesthesia, vol. 59, no. 5,
pp. 464-482, 2004.

A. Tezmol, H. Sari-Sarraf, S. Mitra, R. Long, and A. Gururajan, “Customized
Hough transform for robust segmentation of cervical vertebrae from X-ray images,”
in Image Analysis and Interpretation, 2002. Proceedings. Fifth IEEE Southwest
Symposium on, pp. 224-228, IEEE, 2002.

M. A. Larhmam, S. Mahmoudi, and M. Benjelloun, “Semi-automatic detection of
cervical vertebrae in X-ray images using generalized hough transform,” in Image
Processing Theory, Tools and Applications (IPTA), 2012 3rd International Con-
ference on, pp. 396401, IEEE, 2012.

B. Glocker, J. Feulner, A. Criminisi, D. R. Haynor, and E. Konukoglu, “Automatic
localization and identification of vertebrae in arbitrary field-of-view CT scans,”
in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012,
pp- 590-598, Springer, 2012.

B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi, “Vertebrae
localization in pathological spine CT via dense classification from sparse annota-
tions,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 262-270, Springer, 2013.

S. M. M. R. Al-Arif, M. Gundry, K. Knapp, and G. Slabaugh, “Global localization
and orientation of the cervical spine in x-ray images,” in Computational Methods
and Clinical Applications for Spine Imaging (CSI), The Fourth MICCAI Workshop
on, Springer, 2016.

. E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” IEFEFE transactions on pattern analysis and machine intelligence,
2016.

H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-
mentation,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 1520-1528, 2015.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234-241, Springer, 2015.

S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiw:1609.04747, 2016.

“NHANES-II Dataset.” https://ceb.nlm.nih.gov/proj/ftp/ftp.php. Accessed:
2017-02-19.



