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Abstract. Shape has widely been used in medical image segmentation algo-
rithms to constrain a segmented region to a class of learned shapes. Recent meth-
ods for object segmentation mostly use deep learning algorithms. The state-of-
the-art deep segmentation networks are trained with loss functions defined in a
pixel-wise manner, which is not suitable for learning topological shape infor-
mation and constraining segmentation results. In this paper, we propose a novel
shape predictor network for object segmentation. The proposed deep fully con-
volutional neural network learns to predict shapes instead of learning pixel-wise
classification. We apply the novel shape predictor network to X-ray images of
cervical vertebra where shape is of utmost importance. The proposed network is
trained with a novel loss function that computes the error in the shape domain.
Experimental results demonstrate the effectiveness of the proposed method to
achieve state-of-the-art segmentation, with correct topology and accurate fitting
that matches expert segmentation.

1 Introduction

Shape is a fundamental topic in medical image computing and particularly important for
segmentation of known objects in images. Shape has been widely used in segmentation
methods, like the statistical shape model (SSM) [1] and level set methods [2], to con-
strain a segmentation result to a class of learned shapes. Recently proposed deep fully
convolutional neural networks show excellent performance in segmentation tasks [3,4].
However, the neural networks are trained with a pixel-wise loss function, which fails
to learn high-level topological shape information and often fails to constrain the object
segmentation results to possible shapes (see Fig. 1a, 1b and 1c). Incorporating shape
information in deep segmentation networks is a difficult challenge.

In [6], a deep Boltzmann machine (DBM) has been used to learn a shape prior from
a training set. The trained DBM is then used in a variational framework to perform
object segmentation. A multi-network approach for incorporating shape information
with the segmentation results was proposed in [7]. It uses a convolutional network to
localize the segmentation object, an autoencoder to infer the shape of the object, and
finally uses deformable models, a version of SSM, to achieve segmentation of the tar-
get object. Another method for localization of shapes using a deep network is proposed
in [8] where the final segmentation is performed using SSM. All these methods con-
sist of multiple components which are not trained in an end-to-end fashion and thus
cannot fully utilize the excellent representation learning capability of neural networks



Fig. 1: (a-c) Advantage of shape prediction over pixel-wise classification (a) a noisy
test image (b) segmentation result from a state-of-the-art deep network [5] (c) predicted
shape from the proposed shape predictor network, SPNet. The green curve (—) rep-
resents the manually annotated vertebral boundary and the blue curve (—) represents
the vertebral boundary of the predicted vertebra. The proposed SPNet can constrain the
predicted shape to resemble a vertebra-like structure where the pixel-wise classification
network failed in the presence of a strong image artifact. (d-f) Examples of a training
vertebra (d) original image with manually annotated vertebral boundaries (e) pixels at
the zero-level set (f) signed distance function. Darker tone represents negative values.

for shape prediction. Recently, two methods were proposed which utilize a single net-
work to achieve shape-aware segmentation. The method proposed in [9] uses a shallow
convolutional network which is trained in two-stages. First, the network is trained in a
supervised manner. Then the network is fine-tuned by using unlabelled data where the
ground truth are generated with the help of a level set-based method. In contrast, the
work presented in [5], proposed a shape-based loss term for training a deep segmen-
tation network. However, both of these methods still use a cross-entropy loss function
which is defined in a pixel-wise manner and thus not suitable to learn high-level topo-
logical shape information and constraints. In contrast to these methods, we propose a
novel deep fully convolutional neural network, that is able to predict shapes instead of
classifying each pixel separately. To the best of our knowledge, this is the first work that
uses a fully convolutional deep neural network for shape prediction. We apply the pro-
posed shape predictor network for segmentation of cervical vertebra in X-ray images
where shape is of utmost importance and has constrained variation limits.

Most of the work in vertebra segmentation involves shape prediction [10, | 1]. Given
the fact that a vertebra in an X-ray image mostly consists of homogeneous and noisy
image regions separated by edges, active shape model and level set-based methods can
be used to evolve a shape to achieve a segmentation [, 2, 12]. While these methods
work relatively well in many medical imaging modalities, inconsistent vertebral edges
and lack of a difference in image intensities inside and outside the vertebra limits the
performance of these methods in clinical X-ray image datasets.

Our proposed network is closely related to the state-of-the-art work on cervical ver-
tebrae [5,13]. As mentioned earlier, [5] proposed a shape-based term in the loss function
for training a segmentation network, UNet-S. The modified UNet [3] architecture pro-
duces a segmentation map for the input image patch which is defined over the same
pixel space as the input. The UNet was further modified in [ 3], to achieve probabilistic
spatial regression (PSR). Instead of classifying each pixel, the PSR network was trained
to predict a spatially distributed probability map localizing vertebral corners.

In this work, we modify this UNet architecture to generate a signed distance func-
tion (SDF) from the input image. The predicted SDF is converted to shape parameters
compactly represented in a shape space, in which the loss is computed. The contribu-



tions of this paper are two-fold: we propose 1) an innovative deep fully convolutional
neural network that predicts shapes instead of segmentation maps and 2) a novel loss
function that computes the error directly in the shape domain in contrast to the other
deep networks where errors are computed in a pixel-wise manner. We demonstrate that
the proposed approach outperforms the state-of-the-art method with topologically cor-
rect results, particularly on more challenging cases.

2 Dataset and Ground Truth Generation

This work utilizes the same dataset of lateral cervical X-ray images used in [5, 13]. The
dataset consists of 124 training images and 172 test images containing 586 and 797 cer-
vical vertebrae, respectively. The dataset is collected from hospital emergency rooms
and is full of challenging cases. The vertebra samples include low image intensity, high
noise, occlusion, artifacts, clinical conditions such as osteophytes, degenerative change,
and bone implants. The vertebral boundary of each vertebra in the dataset is manually
annotated by expert radiologists (blue curve in Fig. 1d). The training vertebra patches
were augmented using multiple scales and orientation angles. A total of 26,370 image
patches are used for training the proposed deep network. The manual annotation for
each of the training vertebrae is converted into a signed distance function (SDF). To
convert the vertebral shapes into an SDF (@), the pixels lying on the manually anno-
tated vertebral boundary curve have been assigned zero values. Then all other pixels
are assigned values based on the infimum of the Euclidean distances between the corre-
sponding pixel and the set of pixels with zero values. Mathematical details can be found
in the supplementary materials. An example of the training vertebra with correspond-
ing zero-level set pixels and SDF are illustrated in Fig. 1d, le and 1f. After converting
all the training vertebral shapes to corresponding signed distance functions, principal
component analysis (PCA) is applied. PCA allows each SDF (®) in the training data to
be represented by a mean SDF (&), matrix of eigenvectors (W) and a vector of shape
parameters, b:

¢ =+ Wb, ()
where ¢ and ¢ are the vectorized form of & and &, respectively. For each training
example, we can compute b as:

b=W"(¢p—¢)=WT¢,, (2)

where ¢, is the vectorized difference SDF, ¢; = & — . These parameters are used as
the ground truth (bT) for training the proposed network.

3 Methodology

To choose an appropriate network architecture for the application in hand, we follow
the state-of-the-art work on cervical vertebrae [5, 13]. We note that the choice can be
altered based on the application, the complexity of the model and the available memory
in the system for training. Our proposed shape predictor network, SPNet, takes a 64 x 64
vertebral image patch as input and produces its related difference SDF ($4) which is
also defined over the same pixel space. We use the same network architecture as [13].
However, the final normalization layer has been removed. Instead, the last convolution



cllst o Ml o
@ & 2 B W 2 n nll e oo WY

2l 22 202Nl 2
128 128 128 16 16 16 16 16 16 .256 128 128
6l 16 [ 16— 1 16 [ 16
256 256 256 8 8 8 8 s s W52 256 256
5 me— g s s
sizosiz sl s Wuoe si2osie
8
1024
(a)
#Rows -
#Columns  Convolution 3x3 Pad 1 Sridel ~ Concatenation  pooj 255 Siride 2 Deconvolution 2x2 Crop 0 Upsample X2 Convolution 3x3 Pad 1 Stridel
# Channels Batch Normalization Batch Normalization
Tnmnt/Ontont Data ReLU ReLU

Fig. 2: SPNet: shape predictor network (a) network architecture (b) legend.

layer outputs the difference signed distance function (d4) which is then sent to the final
layer where it is converted to shape parameter vector (l;) and compared with the ground
truth (bGT). The network is illustrated in Fig. 2.

The forward pass through the final layer can be summarized below. First, the output
of the last convolutional layer of the SPNet (éd) is vectorized as é&d. Then the final

prediction of network is computed as b:
k

b= WTqAbd or in the element-wise form: Bi = Zwiqudj a=1,2,---,k (3

j=1

where w;; is the value at the i-th row and j-th column of the transposed eigenvector
matrix (W7) and k is the number of shape parameters. Finally, the loss is defined as:

k

1 -
L= ZLZ- where L; = §(bi — bFTH2, 4)
=1

The predicted shape parameter vector, b, has the same length as éﬁd which is 64 x 64 =
4096. The initial version of the proposed network is designed to generate the full length
shape parameter vector. However, the final version of the network is trained to generate
fewer parameters which will be discussed in Sec. 5.

4 Experiments

The proposed network (SPNet) has been trained on a system with an NVIDIA Pascal
Titan X GPU! for 30 epochs with a batch-size of 50 images. The network took approx-
imately 22 hours to train. We have also implemented a traditional convolutional neural
network (CNN) where we predict the shape parameter vector b directly using a Eu-
clidean loss function. The network consists of the contracting path of the proposed SP-
Net architecture, followed by two fully connected (FC) layers which regress the 4096 b-
parameters at the output. This network will be mentioned as SP-FCNet in the following
discussions. The SPNet has only 24,237,633 parameters where the SP-FCNet network
has 110,123,968 trainable parameters. The FC layers cause a significant increase in the
number of parameters. For comparison, we also show results of vertebral shape predic-
tion based on the Chan-Vese level set segmentation method (LS-CV) [2, 14]. Apart from

! We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan
X Pascal GPU used for this research.



these, we also compare our results with the segmentation networks described in [5]. Fol-
lowing their conventions, the shape-aware network will be referred to as UNet-S and
the non-shape-aware version as UNet. The foreground predictions of these networks
have been converted into shapes by tracking the boundary pixels. For the shape pre-
dictor networks, SPNet and SP-FCNet, the predicted b-parameters are converted into
a signed distance function using Eqn. 1. The final shape is then found by locating the
zero-level set of this function. We compare the predicted shapes with the ground truth
shapes using two error metrics: the average point to ground truth curve error (E2.)
and the Hausdorff distance (dzr) between the prediction and ground truth shapes. Both
metrics are reported in pixels.

5 Results

We first compare the three shape prediction methods in Table 1. We report the mean and
standard deviation of the metrics over 797 test vertebrae. The Chan-Vese method (LS-
CV) achieves an average E,. of 3.11 pixels, whereas the fully connected version of the
shape predictor network (SP-FCNet) achieves 2.27 pixels and the proposed UNet-based
shape predictor network (SPNet) achieves only 1.16 pixels. Hausdorff distance (dg)
shows more difference between the LS-CV and the deep networks. The comparison also
illustrates how the proposed SPNet is superior to its traditional CNN-based counterpart,
SP-FCNet. Both of these networks predict the shape parameter vector (b) and the final
loss is computed using Euclidean distance. It is the proposed SPNet’s capabilities of
generating the difference SDF ($4) and backpropagating the Euclidean loss on the SDF
(Eqn. 4) that make it perform better.

Table 1: Comparison of shape prediction methods.
Metrics Average Ep2. (pixel)| Average dg (pixel)

Methods Mean Std Mean Std
LS-CV 3.11 1.13 10.94 3.68
SP-FCNet 2.27 0.83 6.74 3.25
SPNet (proposed)| 1.16 0.66 4.11 3.13

Both of the deep networks have been trained to regress all 4096 shape parameters
which are related to the corresponding eigenvectors. As the eigenvectors are ranked
based on their eigenvalues, eigenvectors with small eigenvalues often result from noise
and can be ignored. We evaluated the trained SPNet on a validation set at test time by
varying the number of predicted parameters. The best performance was observed when
only the first 18 b-parameters are kept which represents 98% of the total variation in the
training dataset.

Based on this insight, we modified both versions of our deep networks to regress
only 18 b-parameters and retrained the networks from randomly initialized weights. We
report the performance of the retrained networks in Table 2. We also report the metrics
for UNet and UNet-S networks from [5]. It can be seen that our proposed SPNet-18,
outperforms all other networks quantitatively. However, the improvement over UNet-S
in terms of the Epy. metric is small and not statistically significant according to the
paired t-test at a 5% significance level. Quantitative improvements for SPNet-18 over
all other cases pass the significance test.



Table 2: Quantitative comparison of different methods.

Metrics ~ |Average Epa. (pixel)| Average dg (pixel)
Methods Mean Std Mean Std  |nVmR|Fit failure (FF) %
LS-CV 3.107 1.13 10.94 3.68 0 85.45
SP-FCNet-18| 2.082 0.78 6.48 3.32 0 43.54
UNet 1.114 1.29 5.06 6.11 57 8.53
UNet-S 0.999 0.67 4.37 4.02 45 6.02
SPNet-18 0.996 0.55 4.17 3.06 0 4.14

Average point to curve error Hausdorff distance
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Unet
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Fig. 3: Cumulative error curves (a) average I/p. and (b) average dp.

The most important benefit of the proposed SPNet over the UNet and UNet-S is
that the loss is computed in the shape domain, not in a pixel-wise manner. In the fifth
column of the Table 2, we report the number of test vertebrae with multiple disjoint
predicted regions (nV'mR). The pixel-wise loss function-based networks learn the ver-
tebral shape implicitly, but this does not prevent multiple disjoint predictions for a single
vertebra. The UNet and UNet-S produce 57 and 45 vertebrae, respectively with multiple
predicted regions, whereas the proposed network does not have any such example indi-
cating that the topological shape information has been learned based on the seen shapes.
A few examples of these can be found in Fig. 4. We have also reported the fit failure
(FF) for all the compared methods. Similar to [5], the F'F' is defined as the percentage
of the test vertebrae having an E. of greater than 2 pixels. The proposed SPNet-18
achieves the lowest F'F'. The cumulative error curves of the metrics are shown in Fig. 3.
The performance of the proposed method is very close with the UNet and UNet-S in
terms of the Epy. metric. But in terms of the Hausdorff distance (dfr), the proposed
method achieves noticeable improvement.

Moreover, the qualitative results in Fig. 4 distinctively demonstrate the benefit of
using the proposed method. The UNet and UNet-S predict a binary mask and the pre-
dicted shape is located by tracking the boundary pixels. This is why the shapes are not
smooth. In contrast, the proposed SPNet predicts b-parameters which are then converted
to signed distance functions. The shape is then located based on the zero-level set of this
function, resulting in smooth vertebral boundaries defined to the sub-pixel level which
resembles the manually annotated vertebral boundary curves.

The worst performance is exhibited by the Chan-Vese method, LS-CV. The results
of SP-FCNet-18 are better than the traditional Chan-Vese model, but underperform
compared to the UNet-based methods. The reason can be attributed to the loss of spa-
tial information because of the pooling operations. The UNet-based methods recover
the spatial information in the expanding path by using concatenated data from the con-
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Fig. 4: Qualitative results: predicted shape (—) and ground truth (—).

tracting path, thus perform much better than the fully connected version of the deep
networks. Some relatively easy examples are shown in Fig. 4a and 4b. More challeng-
ing examples with bone implants (Fig. 4c), abrupt contrast change (Fig. 4d), clinical
condition (Fig. 4e) and low contrast (Fig. 4f) are also reported. It can be seen even in
these difficult situations, the SPNet-18 method predicts shapes which resembles a verte-
bra where the pixel-wise loss function-based UNet and UNet-S predict shapes with un-
natural variations. More qualitative examples and further results with a fully automatic
patch extraction process are illustrated in the supplementary material, demonstrating
our method’s capability of adjusting to variations in scale, orientation, and translation
of the vertebral patch.

6 Conclusion

In this paper, we have proposed a novel method which exploits the excellent representa-
tion learning capability of the deep networks and the pixel-to-pixel mapping capability
of the UNet-like encoder-decoder architectures to generate object shapes from the input
images. Unlike the pixel-wise loss function-based segmentation networks, the loss for
the shape predictor network is computed in the shape parameter space. This encourages
better learning of high-level topological shape information and restricts the predicted
shapes to a class of training shapes.

The proposed shape predictor network can also be adapted for segmentation of other
organs in medical images where preservation of the shape is important. The network
proposed in this paper is trained for segmentation of a single object in the input image.



However, the level set method used for ground truth generation is inherently capable
of representing object shapes that go through topological changes. Thus, given an ap-
propriate object dataset, the same network can be used for segmentation of multiple
and a variable number of objects in the input image. Similarly, the level set method can
also be used to represent 3D object shapes. By replacing the UNet-like 2D deep net-
work with a VNet-like [4] 3D network, our proposed method can be extended for 3D
shape predictions. In future work, we plan to investigate the performance of our shape
predictor network for segmentation of multiple and 3D objects.
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