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1 Level-set Method

In the level set method [1, 2], the shapes are represented implicitly by an auxiliary
function, &(.). The shape, .S, is denoted as the zero-level set of that function:

S = {p|¢(p) = 0}, (M

where p € (2, and (2, is pixel-space over which the function is defined. The function,
@(.), is a signed distance function (SDF) which is defined as:
d(p, S if p e 25
a(p) =P , %
—d(p,S) ifpe 2,

where (2, is the set of pixels inside the object, which is a vertebra in our case, ¢ repre-
sents the complement set, and d is defined as:

d(p,S) = q{ggD(p, x), (3)

where in f denotes infimum and D(a, b) denotes the Euclidean distance between pixel
position a and b.

2 Conversion of Manual Annotations to SDF's

As mentioned in the paper, the manually annotated vertebral boundaries are available
for all the 26,370 training vertebrae. Manual annotation for each of these vertebrae is
converted into a signed distance function (SDF). To convert the vertebral shapes into an
SDF, the pixels lying on the manually annotated vertebral boundary curve have been as-
signed zero values. Then all other pixels are assigned values according to Eqn. 2, where
S represents the set of pixels with zero values. A few examples of training vertebrae
with corresponding zero-level set pixels and SDFs are illustrated in Fig. 1.
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Fig. 1: Examples of training vertebrae: original image (left) with manually annotated
vertebral boundaries (—), pixels at the zero-level set of the SDF (center) and the SDF
(right). Darker tone represents negative values.

3 Conversion of SDFs to Shape Parameters

Once all the training vertebral shapes are converted to corresponding signed distance
functions, we can apply principal component analysis on the SDFs. First, we compute
the mean SDF, @, as:

1 N
==Y &, 4
N; : )

where N is the number of training samples. We then extract the difference SDF (®g,,)
by subtracting the mean (@) from each SDF (®,,):

by =&, — . 5)

The vectorized ¢4, are then arranged in a matrix, M:

¢dn = vec(@dn)a (6)
M = [bg,|Pa, || Day]- )
The covariance matrix, C'y; can then be computed as:
1
Cy = NMMT. ®

The principal components of the variations of the training data can be extracted by
singular value decomposition (SVD) of the matrix C;:

W, 2, W] = svd(Chr), )

where Y is a diagonal matrix containing eigenvalues corresponding to the eigenvectors,
which are arranged in a column-wise manner in W. The eigenvectors are sequentially
arranged based on their corresponding eigenvalues. Now, each shape in the training data
can be represented by the mean shape (¢), matrix of eigenvectors (W) and a vector of
shape parameters, b,,:

¢n =G+ Wb, (10)

For each training example we can compute b,, as:

by =W'($, —§) =W, . (11)



Table 1: Dimensionality of different matrices and vectors.
Dimension | Matrix/Vector
64x 64 | &, Dy,

4096 x N M
4096 X I |, b, by, bn
4096 x 4096| Cnr, W, V, U

These parameters are used as the ground truth (bf Ty for training the proposed network.
For simplicity, the mathematics in the original article is described for a single input
image patch and the subscript ,, has been dropped. For SDFs defined over a pixel space
of size 64 x 64 and a training dataset with N samples, the dimensionality of the matrices
and vectors discussed in this section are summarized in Table 1.

4096 x 4096 Network
prediction
b, 2 b
64 x 64 4096 x 1

Multiplication
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Fig. 2: Final layer.

4 Differentiability of the Proposed Loss Layer

The forward pass through the final layer (Fig. 2) can be summarized below. First, the
output of the last convolutional layer of the SPNet (®,) is vectorized:

by = vec(y). (12)
Then the final prediction of network is computed as b:
b=w"¢,, (13)
or in element-wise form: i
bi =Y wijda,, (14)
j=1

where w;; is the value at the i-th row and j-th column of the transposed eigenvector
matrix (W7) and k is the number of eigenvectors. Finally, the loss is defined as:

L= ZL (15)



where .
L= 5(1)} —bET)2. (16)
For back-propagation, the partial derivative of Eqn. 16 with respect to the input
variable b; can be expressed as:
oL; -
= = — bFT. (17)
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Similarly, the partial derivative of Eqn. 14 with respect to the input, g?)d]. , can be ex-
pressed as:
0b;
= Wy (18)
a¢d.j

5 Metrics

Two metrics are used to compare the predicted shapes with the ground truth shapes: the
average point to ground truth curve error (£,2.) and the Hausdorff distance (dg) [3]
between the prediction and ground truth shapes. These metrics are defined in Eqn. 19
and 20. The E,. represents on average how far the predicted shape points are from
the ground truth, the second metric (dz) denotes the maximum difference between the
shapes. Both metrics are reported in pixels.

EPQC(S, Sgt) = mean{min{D(x,y) : y € St} : @ € S’}, 19)
dH(S,Sgt) = maz{sup inf D(x,y), sup inf D(x,y)}, (20)
el YSOat YESgs wES

where S is the set points in the predicted shape, Sy, is the set of points in the manually
annotated vertebral boundary curve, sup represents the supremum, ¢n f represents the
infimum and D(x, y) is the Euclidean distance between the point « and y.

6 Parameters for the Chan-Vese Method

The Chan-Vese level set segmentation method (LS-CV) [2, 4] is a parametric method
and finding a common set of parameters for the challenging X-ray dataset was dif-
ficult. A grid search method was followed to find a common set of parameters on a
separate validation set of 40 images with 177 vertebrae. We also had to constrain the
b-parameters to 1.2 times the standard deviation to produce acceptable results for this
method.

7 Additional Results

7.1 Selection of the Number of Shape Parameters

Both of the initial shape predictor deep networks, SPNet and SP-FCNet, have been
trained to regress all 4096 shape parameters. These parameters are related to the 4096



eigenvectors or modes of variations. The eigenvalues represent the variance in the train-
ing data along the corresponding eigenvectors. As the eigenvectors are ranked based on
their eigenvalues, eigenvectors with small eigenvalues often result from noise and can
be ignored. In Table 2, we report performance of our proposed SPNet on the valida-
tion set of 177 vertebrae when we consider a certain percentage of total variation at test
time. The second row of the table indicates how many parameters are left when a certain
percentage of variation is considered. Other parameters are replaced with zeros when
converting back to the signed distance function. It can be seen that the lowest errors are
found when 98% of the total variation is considered and only 18 b-parameters are kept.
Based on this insight, both versions of our deep networks were modified and retrained
to regress only 18 b-parameters.

7.2 Statistical Significance Test for SPNet-18

Table 3 reports the results of the statistical significance test between our proposed
SPNet-18 and all other methods reported in Table 2 of the original article. It can be
seen that the quantitative improvement of SPNet-18 over UNet-S in terms of the Ep».
metric is not statistically significant according to the paired t-test at a 5% significance
level. However, the improvement in terms of the Hausdorff distance (dg) passes the
significance test.

7.3 Results with Fully Automatic Framework

Recently, the authors of the UNet-S paper [5] have proposed a fully automatic method
for vertebral patch extraction [6]. This method has been able to extract 80% of our test
vertebrae correctly. We then applied our proposed method on these extracted vertebra
patches. The results are reported in Table 4 and shown in Fig. 3b. It should be noted that
these errors are lower, because the fully automatic method fails to extract about 20% of
the test vertebra in challenging situations.

These results also demonstrate our method’s capability of adapting to minor varia-
tion in the scale and orientation of the extracted vertebral patches.

7.4 Additional Qualitative Results

Additional to qualitative results reported in the original article, here in Fig. 4, we show
more examples from the test dataset.

Table 2: Effect of eigenvectors on errors for SPNet.
Variation (%) | 90 | 95 | 98 | 99 |99.5(99.8| 100
No. of parameters| 6 | 9 | 18 | 30 | 51 | 117 |4096
Average Epa. |1.34/1.23|1.16|1.19|1.21|1.23| 1.25
Average dy  |4.83]4.62(3.98(4.15(4.31(4.49|4.68




Table 3: Statistical significance test (t-test).

SPNet-18 Average Epac Average di
compared with: h p-value h p-value
LS-CV 1 < 107%% 1 0
UNet 1 0.003 1 <107%
UNet-S 0 0.827 1 0.035
SP-FCNet-18 1 < 107%% 1 <107 °1

Table 4: Results with fully automatic patch extraction process.
Metrics |Average Fpoc|Average dpg
Methods [Mean| Std |Mean| Std |?V MR\ FEF%
UNet-S [0.931] 0.492 |4.328]4.281| 14 |3.388
SPNet-18(0.923| 0.345 |4.232(2.933| 0 1.882

Fig. 3: (a) Results from the original test dataset (b) results for the same vertebra using
fully automatic framework: Ground truth shape (—), predicted shape (—) and vertebra
position in the original test dataset (- ).
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