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Abstract

The cervical spine is a highly flexible anatomy and therefore vulnerable to in-
juries. Unfortunately, a large number of injuries in lateral cervical X-ray images
remain undiagnosed due to human errors. Computer-aided injury detection has
the potential to reduce the risk of misdiagnosis. Towards building an auto-
matic injury detection system, in this paper, we propose a deep learning based
fully automatic framework for segmentation of cervical vertebrae in X-ray im-
ages. The framework first localizes the spinal region in the image using a deep
fully convolutional neural network. Then vertebrae centers are localized using a
novel deep probabilistic spatial regression network. Finally, a novel shape-aware
deep segmentation network is used to segment the vertebrae in the image. The
framework can take an X-ray image and produce a vertebrae segmentation result
without any manual intervention. Each block of the fully automatic framework
has been trained on a set of 124 X-ray images and tested on another 172 im-
ages, all collected from real-life hospital emergency rooms. A Dice similarity
coefficient of 0.84 and a shape error of 1.69 mm have been achieved.

Keywords: Segmentation, Deep Learning, FCN, UNet, Localization, Cervical

vertebrae, X-ray.

1. Introduction

The cervical spine consists of seven vertebrae, labelled C1 to C7. These

vertebrae support the head and protect the spinal column in the neck region.
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The cervical spine is a highly flexible anatomy, capable of flexion, extension,
lateral flexion, and rotation [I]. Due to this wide range of motion, the cervical
spine is particularly vulnerable to injury. According to [2], 43.9-61.5% of the
spinal cord injuries occur in the cervical region. Despite being a highly injurious
anatomy, unfortunately, about 20% of the injuries in radiological exams remain
unnoticed. And a significant proportion, 67%, of the of the patients with unno-
ticed cervical injuries suffer tragic extensions of their injuries later in life [3, [4].
Recent developments in the fields of computer vision and artificial intelligence
have the potential to reduce the number of missing injuries.

Towards building a fully automatic cervical spine injury detection system, in
this paper, we propose an automatic segmentation framework for cervical ver-
tebrae in X-ray images. Segmenting the vertebrae correctly is a crucial part for
further analysis in an injury detection system. Previous work in vertebrae seg-
mentation has largely been dominated by statistical shape model (SSM) based
approaches [5] 6] [, 8, @ [T0, 1T],T2]. These methods record statistical information
about the shape and/or the appearance of the vertebrae based on a training set.
Then the mean shape is initialized either manually or semi-automatically near
the actual vertebra and a search procedure is performed to converge the shape
on the actual vertebra boundary. Recent literature utilizes random forest based
machine learning models in order to achieve the shape convergence [9, 10, 111, 12].

However, to the best of our knowledge, a fully automatic method is absent
from the literature. To fill this gap, in this work, we propose a fully automatic
framework for vertebrae segmentation. Starting with a real-life emergency room
image, the framework first locates the spine, then localizes the vertebral centers
and finally, achieves segmentation. In other words, the fully automatic frame-
work can be divided into three subtasks: global localization, center localization
and vertebrae segmentation. Different specialized fully convolutional neural net-
works (FCN) are used to solve each of these tasks. The complete framework is
shown in Fig.

Previous work in spine localization includes generalized Hough transform

based approaches [I3] 6] and more recent random forest based approaches [14]
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Figure 1: Fully automatic cervical vertebrae segmentation framework.

[15], [16]. The state-of-the-art work on cervical vertebrae localization uses a slid-
ing window technique to extract patches from the images [16]. A random forest
classifier then decides which patches belong to the spinal area. Finally, a rect-
angular bounding box is generated to localize the spinal region. In contrast
to these approaches, we approach the localization problem as a segmentation
problem in a lower resolution. Given a set of high-resolution images and manu-
ally segmented vertebrae ground truth, at a lower resolution, the ground truth
becomes a single connected region. Then an FCN can be trained to predict
this region. The proposed framework can produce localization map of arbitrary
shape in a one-shot process and provides a localization result that models the
cervical spine much better than a rectangular box like [16].

Once the spinal region has been localized, the next task is to determine the
vertebrae centers. Previous work in vertebrae landmark localization involves
patch based regression techniques [10} 17, 18, 19]. Based on image patches, these
methods use different machine learning methods to predict vectors pointing
towards vertebrae landmarks. Random regression forest [10], Hough forest [I7]
[18] and deep fully connected neural network [I9] have been used to learn the
model. Contrary to these methods, we propose a novel FCN based probabilistic
spatial regressor to localize vertebrae centers. Given an image patch, our novel
network predicts a two-dimensional probability distribution for the localized
centers over the patch space. A novel loss function has been introduced to
adapt the FCN as a spatial probability predictor.

Finally, a novel shape-aware deep segmentation FCN is proposed for the ver-
tebrae segmentation phase. Shape is an important characteristic of the vertebra.

Previous work in vertebrae segmentation has largely been dominated by statisti-
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cal shape model (SSM) based approaches [5] 6], [7, 8, O 10, 1T, 12]. On the other
hand, deep segmentation networks have been outperforming the state-of-the-art
in different medical image modalities [20] 2I], 22]. However, combining shape
information in a deep segmentation network is not straightforward. In this pa-
per, we provide a solution to this problem by introducing a novel shape-aware

term in a segmentation loss function.

Achievements. The proposed global localization algorithm has been able to out-
perform the previous state-of-the-art [16] by 17.1% in terms of sensitivity. The
novel center localization framework has produced an average error of only 1.81
mm which is near human level. A patch level Dice similarity coefficient of 0.94
has been achieved by the proposed shape-aware segmentation framework. Fi-
nally, the fully automatic framework has been able to achieve a Dice similarity
coefficient of 0.84 and a shape error of 1.69 mm. All these metrics are computed

over a challenging dataset of 172 emergency room X-ray images.

Contributions. We make several contributions in this work. First, we propose
a deep segmentation network based spine localization algorithm which outper-
forms the previous state-of-the-art by a large margin. Second, we propose a
novel spatial probability prediction network which achieves human-level per-
formance in localizing vertebrae centers. Third, we introduce a shape-aware
segmentation loss function which augments the capability of a deep segmen-
tation network with shape information and achieves better performance than
simple FCN and other traditional shape model based approaches. The final
and the most important contribution is the fully automatic framework which
combines the global localization, center localization and vertebrae segmentation
in a single thread and provides a segmentation result for a real-life emergency

room X-ray images without any manual input.

2. Data

A total of 296 lateral cervical spine X-ray images were collected from Royal

Devon and Exeter Hospital in association with the University of Exeter. The age
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of the patients varied from 17 to 96. Different radiographic systems (Philips,
Agfa, Kodak, GE) were used to produce the scans. Image resolution varied
from 0.1 to 0.194 mm per pixel. Image size varied from 1000 to 5000 pixels with
different zoom, crop, spine position and patient position. The images include
examples of vertebrae with fractures, degenerative changes and bone implants.
The data is anonymized and standard research protocols have been followed.
The size, shape, orientation of spine, image intensity, contrast, noise level all
varied greatly in the dataset. For this work, 5 vertebrae C3-C7 are considered.
C1 and C2 have an ambiguous appearance due to their overlap in lateral cervical
radiographs, and our clinical experts were not able to provide ground truth
segmentations for these vertebral bodies. For this reason, they are excluded
in this study, similar to other cervical spine image analysis research [5] 23] [T,
[I6]. Each vertebra from the images was manually annotated for the vertebral
body boundaries and centers by expert radiographers. A few examples with the
corresponding manual annotations are shown in Fig.

The images were received in two sets. The first set contained 138 images.
A random 90% or 124 images from this set is used as training dataset in this
work. The remaining 10% or 14 images from this set was used for testing the
algorithms. The second set of 158 images were received later into the study and

added to the test dataset bringing the total number of test images to 172.

Figure 2: X-Ray images and manual annotations. Center: blue plus (+) Vertebrae boundary

curve (green).
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3. Global Localization

The first subtask for our fully automatic framework is to locate the spinal
region in an arbitrary X-ray image. We approached this problem as a seg-
mentation problem at a lower resolution. In the lower resolution, the cervical
vertebrae become a single connected spinal region. A deep fully convolutional

network (FCN) is trained to predict this region.

3.1. Data

Based on the manual annotation of the vertebrae boundaries, a binary
ground truth can be created for each image in our dataset. To create the
training and test dataset for the global localization algorithm, these images are
converted into square images by padding an appropriate number of zeros in the
smaller dimension and the square images are resized to a lower resolution using
bicubic interpolation. This resolution can vary based on the available memory
and size of the training networks. For our case, we chose this resolution to be
100 x 100 pixel. The binary vertebrae ground truth images forms a single con-
nected region in this resolution. However, our network predicts a segmentation
mask of even smaller resolution, 25 x 25 pixel. The 100 x 100 pixel localiza-
tion ground truths are converted to a 25 x 25 pixel mask using a max-pooling
operation with a mask size of 4 x 4 and stride 4. Max-pooling was used over
interpolation based methods to keep the localization mask sharp. Fig. |3 shows
some of the localization ground truth overlayed on the image after transforming

back to the original resolution.

Figure 3: Global localization ground truth: vertebrae are shown in green, blue overlay indi-

cates the extra area covered by the localization ground truth.
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3.2. Network

A fully convolutional network (FCN) is designed for the global localization
task which takes an input image of resolution 100 x 100 and predicts a localiza-
tion mask of the resolution 25 x25. Our network has six convolutional layers and
two max-pooling layers. Batch normalization and rectified linear unit (ReLU)
layers are used after each convolution layers. The network diagram is shown in

Fig. @] The total number of parameters in the network is 1,152,450.

100 100 50 50 50 25 25 25
100 100 D 50 50 50 D 25 25 25
256 256 256 512 512 512 1024 1024
(a)
Convolution
3x3 Pool
SoftMax

Input Data Output (b)

Figure 4: Fully convolutional network for localization of spinal region (a) Network architecture

(b) Legends.

3.3. Training

In order to train any network with a large number parameters, 124 images
are not enough. In order to increase the number of training data, we have
augmented the images by rotating each image from 5° to 355° with a step of
5°. This results in a training set of 8,928 images. It also made the frame-
work rotation invariant. Our choice for data augmentation was only limited
to rigid transformations since non-rigid transformation will affect the natural
appearance of the spine in the image.

Given a dataset of training image (z)-segmentation label (y) pairs, training a
deep segmentation network means finding a set of parameters W that minimizes
a loss function, L;. The simplest form of the loss function for segmentation

problem is the pixel-wise log loss or the cross-entropy loss.

N
W= argminZLt({x("),y(”)}; W) (1)
w

n=1
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where N is the number of training examples and {x("),y(")} represents n-th
example in the training set with corresponding manual segmentation. The pixel-

wise segmentation loss per image can be defined as:

Li({z,y}; W) Z ZyJ log P(y] = 1|z;; W) (2)

i€y j=1

Pyl =1z W) = xple; (1)) i
W= W) = ST (s ) ’

where a;(x;) is the output of the penultimate activation layer of the network
for the pixel x;, €1, represents the pixel space and P are the corresponding class
probabilities.

The network is trained on a system with a NVIDIA Quadro M4000 GPU
for 30 epochs with a batch-size of 10 images. The training took approximately
18 hours. The weight optimization is performed by the RMSprop version of the
stochastic gradient descent algorithm throughout this work [24].

3.4. Inference and Metrics

At test time, a test image is padded with zeros to form a square, resized to
100 x 100 pixels and fed forward through the network to produce the localization
map. The average time for the network to produce a localization map is less
than 0.1 sec. This map is compared with the corresponding localization ground
truth. Pixel level accuracy, Dice similarity coefficient (DSC), sensitivity and
specificity are computed. These metrics demonstrate the performance of the
trained networks at the lower resolution at which the network generates the
prediction. From a practical point of view, the performance of the localization
should also be computed at the original resolution with the manually segmented
vertebrae ground truth. In order to achieve this, the predicted localization map
is transformed (resized and unpadded) back to the original image resolution and
sensitivity and specificity are computed by comparing them with the manually

segmented vertebrae ground truth.
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3.5. Results

The median, mean and standard deviation of the metrics over 172 test images

are reported in Table [I| At the lower resolution, we have been able to achieve

an average pixel level accuracy of 99%. In the original resolution, the algorithm

has been able to produce an average sensitivity score of 0.96 when compared

with the vertebrae ground truth, which indicates 96% of the vertebrae area has

been covered by our predicted localization maps.

Table 1: Performance of global localization.

Resolution 25 x 25 Original
Pixel Accuracy | DSC | Sensitivity | Specificity | Sensitivity | Specificity
Median 0.99 0.91 0.89 1.00 1.00 0.96
Mean 0.99 0.89 0.86 1.00 0.96 0.96
Std 0.01 0.10 0.13 0.00 0.11 0.01

The box-plot of these metrics are shown in Fig.[5l It can be seen that only a
s few outliers perform poorly. Most of these images have clinical implants and/or

severe clinical conditions in the spinal region. A few of these hard cases are

Box-plot of Localization Metrics
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Figure 5: Box-plot of global localization metrics. ‘L’ indicates the metrics computed at the
lower resolution of 25 x 25. ‘S’ indicates the metrics computed at the original image resolution

by comparing the prediction with the vertebrae segmentation ground truth (green area in

Fig. [3).
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shown in Fig. [} Fig. [b,c show examples of images with clinical conditions
where the localization algorithm performed well. Two of the outlier results
are shown in Fig. [Gp,f. Compared with the previous state-of-the-art in cervical
vertebra localization, which uses a random forest based algorithm and provides
a rectangular bounding box [16], our algorithm produces a 17.1% improvement
in average sensitivity with a clear qualitative improvement on the same training
and test images. In terms of time required for the algorithm to produce a result,
our algorithm is more than 70 times faster than [I6]. Our algorithm is capable
of producing a localization result for any image under a second while the sliding
window based method of [I6] requires 70 to 180 seconds depending on the image

size.

()

Figure 6: Qualitative global localization results compared with vertebrae ground truths: true
positive (green), false positive (blue), false negative (red), true negative (no overlay) (a)
healthy subject (b) Osteophytes (c) Severe degeneration (d) Osteophytes (e) Implants (f)

Severe degeneration and osteophytes.

4. Center Localization

The next task for our fully automatic framework is to localize vertebrae
centers in the already localized spinal region. Instead of the common practice
of regressing vectors pointing towards the location of the center, we design

our center localization framework to produce a probability map. We will use

10
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a novel fully convolutional network (FCN) to learn the modelling. Given an
image patch, the network learns to predict a probability distribution over the
image space indicating where the centers are most probable. In contrary to
the vector regression techniques, our method can predict multiple centers for a

single patch.

4.1. Data

Our data comes with a large number of vertebrae with clinical conditions.
Thus, the geometrical center of the manually annotated shape is not robust for
each vertebra and varies based on the extent of vertebrae conditions. So, our
medical partners have provided us with manually clicked center points. Each
vertebra has one manually clicked center. However, because the vertebral center
is not attached to any visible landmark, human perception of the center also
varies to some extent. This motivated us to convert the manually clicked centers
into probabilistic distributions.

The probability distribution at a vertebra center (z.,y.) can be defined as

a 2D anisotropic Gaussian distribution [25].

1 — gt (a1 (e—20)? 202 (2—20) (y—ye) +as (y—ve)?)
F [ — 2vg v c c c c 4
(#.9) = gromme (@
where
a1 = vy cos> 0 + v, sin? 0 (5)
ag = (vy — vp) cosBsiné (6)
a3 = vy Sin? 0 + vy, cos> 0 (7)
and
0, +0,+0,+0;
g=—-"—— 8
! 0
wt+wbR
2
w = 5 9
T ©
hl+h7‘R
Vh = QT (10)

11
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where R is pixel spacing (in millimeter per pixel) of the image, k& = 60 is an
empirical constant chosen based on visual evaluation of the ground truth and 6;,
Oy, 0., 01, wy, wy, hy, h, are computed from the manually annotated vertebrae

corners and demonstrated in Fig. [h.

Figure 7: (a) Probabilistic ground truth creation: manually clicked vertebra center (x), man-
ually annotated vertebra boundary (o) and corner (4) points (b) Grid points (+) for training
patches.

The process is repeated for all the vertebrae centers and a single probabilistic
distribution defined over the image space is generated. A few images with
overlayed probabilistic center distributions are shown in Fig. .

To generate a training image patch and corresponding probability distribu-
tions, a grid of 9 uniformly spaced points were generated per vertebra and 3
points were generated in between two consecutive vertebrae. An example of
these grid points is shown in Fig. [fp. From each of these grid points, patches
were extracted with two scales (original vertebrae size + 2 mm and 4 mm) and
five orientations (-20° to 20° with a step of 5° where 0° is the mean vertebral
axis). All these extracted patches are then resized to 64 x 64 pixels, the res-
olution at which the network will be trained. A total of 66,600 patches were
generated from our 124 training images. Fig.[8b shows how these distributions

look at the patch level.

12
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Figure 8: (a) Probabilistic distribution for vertebrae centers defined over the image space.
The intensity of the green overlay represents the probability of the manually clicked centers.

(b) Patch level ground truth for center localization framework.

4.2. Network

Here, our intention is to predict a two-dimensional probabilistic distribution
for an input patch of 64 x 64 pixels. We want our predicted distribution to
have the same spatial resolution as the input patch. The FCN architecture used
for the global localization framework predicts an output with a lower spatial
resolution than the input. Thus, it can not be used here. DeConvNet [26] and
UNet [20] are two fully convolutional neural networks that have been used for
segmentation problems where the spatial resolution of the input image and out-
put predictions are similar. Among the two networks, our initial experiments
showed better performance with UNet architecture. Here, for the probabilis-
tic spatial regressor based center localization framework, we used a modified
version of the UNet [20] architecture. UNet has a downsampling path and an
upsampling path. Our downsampling path has nine convolutional layers. Each
convolutional layer is followed by a batch normalization and rectified linear unit

(ReLU). Three max-pooling layers in between the convolutional layers down-

13



240

245

250

sample the spatial dimension from 64 x 64 to 8 x 8. The upsampling path forms
a mirrored version of the downsampling path. Upsampling is done by deconvo-
lutional layers. The network shares information between the downsampling and
upsampling path using concatenation. The network diagram is shown in Fig. 0]
The number of filters in each layer can be tracked from the number of channels
in the data blocks. The total number of parameters for the center localization

UNet is 24,238,210.

fC-Softmax
64 64 64 _
e Input/Output
64 64 64 64 64 64
64 64 64 64 64 64+64 Data
Pl
32 32 64 32 32 128
Convolution 3x3 Pad 1 Stridel
32 32 128 32 32 128 Batch Normalization
[fear] [feza fett
2 2 _& 32 1284128
P2
05 03 5 T 16 5= Deconvolution 2x2 Crop 0 Upsample x2
_ Batch Normalization
16 16 256 16 16 256 RelU
16 16 256 16 16 256+256 ! .
P3 Convolution 3x3 Pad 1 Stridel
3 3 256 8 3 512 Softmax
8 8 512 8 8 512 .
_ _ Pool 2x2 Stride 2
8 8 512 _ 8 8 512+512
Concatenation
8 8 1024
(a) (b)
Figure 9: UNet architecture: (a) Network diagram (b) Legends.
4.3. Training

The softmax layer at the end of the network creates a probabilistic two-
channel output, just like a binary segmentation problem. However, the ground
truth here is a probabilistic map, not a binary segmentation map. Thus the
standard segmentation log loss of Sec. can not be used. We formulate a

novel loss function for training the network to predict a probabilistic map.

Loss function for probabilistic spatial regression. To match the two-channel out-
put of the final softmax layer, the ground truth probability (GT}) is also con-

verted to a softmax-like two channel distribution, Pgr.

GT,, — min(GT,)
Per, = Pe L 11
GT’L,Channel:l mal‘(GTp) _ mZn(GTp) ( )

14
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PGTi,channEl:Z =1- PGTi,channel:l (12)

where €€, is the pixel space. Notice that, Por, is no longer a normalized

hannel=1
probability distribution (i.e. doesn’t integrate to unity), rather a stretched
distribution where the maximum is unity and minimum is zero. This ensures
that the softmax layer is able to produce similar distribution, as it squashes the
input activations to the range from 0 to 1.

Training our UNet would then mean finding an optimized set of parameters

WO which minimizes a loss, L, between the predicted §(™) and updated ground

truth Pg;,z over the training dataset.

N

W, = argmin Z L({z™, ng}; W) (13)
w n=1

where N is the number of training examples and {x(”), Pé"T)} represents n-th

example in the training set with corresponding ground truth probability of the

regression target. Since the target probabilities are spatially distributed over

the pixel space, we can define a pixel-wise loss function per training sample as:

2
]_ .
W) = § :} : N 2
L({x7PGT}v ) = 2|Qp| | : wl(yi PGTi,channel:j) (14)
i€y j=1
where
19,1 ...
if 1€Q
w; = [, | Pg (15)

1 otherwise
where 2, is the pixel space, (2, is set of pixels where the ground truth proba-
bilities are not zero and €2, = €2, — €, .

The term (g)f — PGT; cpanner—; ) Measures the distance between the prediction
and the ground truth. This pixel-wise distance is weighted by w; to solve the
data imbalance problem. As most of the pixels in the output probability space
have zero probabilities, without this weighting term the solution becomes biased
towards the probability of the majority pixels. In our case < 5% pixels have
non-zero values, thus without the weighting term, the network converges to

predict a flat distribution of zeros.

15
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The network is trained on a system with a NVIDIA Pascal Titan X GPU
for 30 epochs with a batch-size of 25 image patches. The training took approx-

imately 72 hours.

4.4. Inference and Post-processing

At the test time, our localization algorithm provides an automatic region of
interest. Using this automatic localization result, we create a grid of uniformly
distributed points and from each point, multiple patches are generated with
different scales and rotations. These patches are passed through the center
localization network to generate patch level probability maps. The network
takes about 0.14 second to generate a patch level prediction. The patch size,
orientation and position of these probability maps on the original are known
from the patch creation process. These probability maps are then put back on
the original image (Fig. ) The process includes resizing the 64 x 64 pixel
patch to the original patch resolution and projecting it back on the original
image using the known patch orientation and position. The probabilities on the
original resolution are then thresholded to remove noise (Fig. ) The noise
is defined as predictions with less than 30% of the maximum probability. For
every remaining proposal for a possible vertebra center, the pixel location with
the maximum probability is considered as a potential center (Fig. ) Further
post-processing is performed by removing multiple centers in close proximity by
keeping the most confident center in a radius of 10 mm (Fig. ) The radius is
chosen based on the average size of the training vertebrae. Finally, we keep the
maximum number of possible centers to five (C3-C7) and delete less confident

center proposals if more than five centers are detected (Fig. )

4.5. Experiments and Metrics

The center localization framework is tested on our 172 test images. At
the patch level, the performance of the network is measured a comparing the
predicted probability maps and ground truth maps using the Bhattacharyya

coefficient [27]. After the post-processing step, the centers are localized on

16
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Figure 10: (a)-(d): Center localization post-processing (a) Probability map on the original
image (b) Thresholded map and potential centers (+) (c) Filtered centers by after proximity
analysis (d) Five most confident centers. (e)-(h): Bhattacharyya coefficients between the
ground truth (middle) and predicted (right) probability distributions with corresponding input
image patch (left): (e) 0.8285 (f) 0.7153 (g) 0.3304 (h) 0.3715.

the original image. The predicted vertebrae centers can be divided into three
sets: true positive (TP), false positive (FP) and false negative (FN). The TP
represents the set of vertebrae whose centers have been correctly detected. A
correct detection is considered if the predicted center falls inside a vertebral
body studied in this work i.e. C3-C7. The FP represents the set of predicted
centers which did not fall inside any of these vertebrae. Finally, the FN is the
set of the studied vertebrae whose centers have not been detected. Based on the
TP, FP and FN, we can report two metrics: true positive rate (TPR) and false
discovery rate (FDR) [28]. We also report the Euclidean distance between the

correctly detected centers and corresponding ground truth in mm as distance

error.
|TP|
TPR=—""1 1007
TP+ |[FN| © %
IFP| ,
FDR—= — 11 1009
\FP[+|TP] %

17
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4.6. Results

The performance of the center localization algorithm is measured indepen-
dent of the global localization results. For this independent study, the uniform
grid needed for the patch creation is generated using the localization ground
truth (Fig. [3) instead of the prediction of the spine localization framework as
mentioned in Sec. A Bhattacharyya coefficient (BC) of zero represents the
worst result and one represents a perfect match between ground truth and pre-
diction probability. Over all the test patches, an average BC of 0.58 has been
achieved at the patch level. Some of the graphical results with corresponding
BC are shown in Fig. —h. It can be seen that even with low BC (Fig. 7h),
the results are similar. The histogram of the BC over all the patches is plotted
in Fig. , a BC of > 0.5 was achieved for 71% of the test patches. A few qual-

itative results for center localization at the patch level are shown in Fig. [[Tp.
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Figure 11: (a) Histogram of Bhattacharyya coefficients (b) Patch level center localization
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results: Ground truth (left) and Prediction (right).

After the post-processing phase, the centers are localized on the full resolu-
tion test image. Table [2| reports the true positive rate (TPR), false discovery
rate (FDR) and distance error for the correctly detected centers in millimeters
(mm).

Among 797 vertebrae from our 172 test images, 747 centers were detected

18
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Table 2: Performance of the center localization framework. The ‘Manual’ patch creation
process uses localization ground truth and the results reported below are independent of the
accuracy of the global localization framework. Results from the fully automatic procedure
which uses the localized spine from the global localization framework are reported in the right

under the ‘Automatic’ patch creation process.

Test patch creation Manual Automatic
True positive rate (TPR) 93.73% 90.46%
False discovery rate (FDR) 4.72% 10.89%

Median | Mean | Std Median | Mean | Std

Distance error (mm) 1.63 1.81 | 0.95 1.54 1.69 | 0.92

with an average error of 1.81 mm. Number of false positive was 37, most of these
false positives belong to neighbouring vertebrae C2 and T1. To compare the
performance of the center localization algorithm with human performance, an
expert radiographer was asked to click on the vertebrae centers on ten random
test images three times. These manually predicted centers are compared with
the ground truth centers for those image. The average error was 1.92 mm which
is higher than the average error of correctly detected centers by our algorithm.
The performance curve is shown in Fig. [[2}

It can be seen that the distance error is < 3 mm for almost 90% of the
correctly detected vertebrae centers. The process is repeated by changing the
uniform grid creation process in the beginning. In this case, the uniform grid for
patch generation is done using the area predicted by our global localization algo-
rithm (instead of the global localization ground truth), as discussed in Sec.
The metrics are reported on the right side of Table 2| It can be seen the TPR
dropped from 93.73% to 90.46%, where the FDR is increased from 4.72% to
10.99%. This degradation is because of the incorrect global localization results,
as shown in Fig. [B,f. However, among the correctly detected centers, the dis-
tance error drops from 1.81 mm to 1.69 mm. The reason behind this is that
much of the bad quality image areas have already been cut off by the global

localization prediction. So the remaining image areas are of comparatively of
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Figure 12: Performance curve for center localization.

good quality thus center localization performs better on average on these image
areas. Some graphical center localization results in the original resolution are

shown in Fig.

5. Vertebrae Segmentation

The final and the most important task in our fully automatic segmentation
framework is to segment the vertebrae. We use the same UNet architecture with
a segmentation loss function for this task. We also introduce a novel shape-aware
term in segmentation loss function to predict the vertebrae shape with better

accuracy.

5.1. Data

To train and test our segmentation framework independent of the global and
center localization phase, the manually clicked center points are used to extract
the vertebrae image patch and corresponding segmentation masks. These can
be replaced by the predicted centers making the process fully automatic. From

our 124 training images, we have only 586 training vertebrae. To augment the
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training data different patch size and rotation angles are considered. After data
augmentation, there were 26,370 vertebrae training patches. All the patches
were then resized to 64 x 64 pixel patches. The corresponding binary segmen-
tation masks were created using the manually annotated vertebrae boundary
curves (green curves shown in Fig. . The pixels inside the boundary curves
are considered as the foreground class and outside are considered as the back-
ground class [29]. A few training vertebrae patches and corresponding overlayed
segmentation masks are shown in Fig. Note the differences in intensity, tex-
ture, and contrast, coupled with the possibility of surgical implants, making
for a challenging problem on real-world data. Similarly, vertebrae patches were
also collected from the test images, a total of 797 vertebrae were extracted. No

augmentation was performed for the test vertebrae.

L =L B
W NN Eﬂz

Figure 14: Training vertebrae patches and corresponding segmentation masks (blue overlay).
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5.2. Training

The same 24,238,210 parameter version of UNet is used for vertebrae segmen-
tation. The network takes a single channel vertebra patch of spatial dimension
64 x 64 and predicts a binary mask of the same size.

Since the global localization network addressed in Sec. also deals with
a binary segmentation problem, the same loss function described in Eqn. [I] 2]
and [3]can be used for training the segmentation network. However, this loss, L;,
doesn’t constrain the predicted masks to conform to possible vertebra shapes.
Since vertebrae shapes are known from the provided manual segmentation curves,
we add a novel shape-aware term in the loss function to force the network to

learn to penalize predicted areas outside the curve.
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5.8. Shape-aware Loss Term

For training the deep segmentation network, we introduce a novel shape
based loss term, Lg. This term encourages the network to produce a prediction

masks similar to the training vertebra shapes. This term can be defined as:

M
L{z,y} W) ==>_ Y y/Eilog P(y! = 1]zi; W)

iEQp j=1

E; = D(C,Cear) (16)

where C' is the curve surrounding the predicted regions and Cgr is ground
truth curve. The function, D(.), computes the average point to curve Euclidean
distance between the predicted shape, C and the ground truth shape, Cor. Cis
generated by locating the boundary pixels of the predicted mask. The redefined
pixel space, Qp, contains the set of pixels where the prediction mask doesn’t
match the ground truth mask. These terms can also be explained using the
toy example shown in Fig. Given a ground truth mask (Fig. ) and a
prediction mask (Fig. ), FE; is computed by measuring the average distance
between the ground truth (green) curve and prediction (red) curve (Fig. [15k).
Fig. shows the redefined pixel space, Qp. This term is an additional penalty
proportional to the Euclidean distance between predicted and ground truth
curve to the pixels that do not match the ground truth segmentation mask. In
the case when the predicted mask is a cluster of small regions, especially during
the first few epochs in training, F; becomes large because of the increase in the

boundary perimeters from the disjoint predictions.

(a) (b) (© d
Figure 15: Shape-aware loss: (a) Ground truth mask (b) Prediction mask (c¢) Ground truth
shape, Car (green) and predicted shape, C (red) (d) Refined pixel space, QP: False positive
(purple) and false negative (red).
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Finally, the loss function of Eqn. [l can be extended as:

N
V = argmin (™ gy J{z™ .
W = argmin 3 (L({z®) o) W) + Ly((2. ™ W) (17)

n=1
The contribution of each term in the total loss can be controlled by introducing
a weight parameter in Eqn. However, in our case, the best performance was

achieved when both terms contributed equally.

5.4. Experiments and Metrics

We have two versions of the deep segmentation network: UNet and UNet-S.
‘-S’ signifies the use of the updated shape-aware loss function of Eqn. [I7] Both
segmentation networks are trained on a system with a NVIDIA Pascal Titan X
GPU for 30 epochs with a batch-size of 25 image patches. Each network took ap-
proximately 28 hours to train. In order to compare with the deep segmentation
network based prediction results, three active shape model (ASM) based shape
prediction frameworks have been implemented. A simple maximum gradient
based image search based ASM (ASM-G) [30], a Mahalanobis distance based
ASM (ASM-M) [5] and a random forest based ASM (ASM-RF) [11]. The latter
two have been used in cervical vertebrae segmentation in different datasets.

At test time, 797 vertebrae from 172 test images are extracted based on
the manually clicked vertebral centers. These patches are sent through each
of the networks in a forward pass to get the prediction masks. It takes about
0.13 second to produce a patch level prediction. These prediction masks are
compared with the ground truth segmentation mask to compute pixel-wise ac-
curacy (pA) and Dice similarity coefficients (DSC). For the ASM based shape
predictors, the predicted shape is converted to a prediction map to measure
these metrics. These metrics are well suited to capture the number of correctly
segmented pixels, but they fail to capture the differences in shape. In order to
compare the shape of the predicted mask appropriately with the ground truth
vertebrae boundary, the predicted masks of the deep segmentation networks are
converted into shapes by locating the boundary pixels. These shapes are then

compared manually annotated vertebral boundary curves by measuring average
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point to curve Euclidean distance between them, similar to Eqn. A final
metric, called fit failure [I0], is also computed which measures the percentage of
vertebrae having an average point to ground truth curve error of greater than

1 mm.

5.5. Results

Table [3|reports the average median, mean and standard deviation (std) met-
rics over the test dataset of 797 vertebrae for all the methods. Deep segmenta-
tion network based methods clearly outperform the ASM based methods. Even
the worst performing version of our framework, UNet, achieves a 2.9% increase
in terms of pixel-wise accuracy and an increase of 5.5% for the Dice similarity
coefficient. Among the two versions of deep networks, the use of the novel loss
function improves the performance by 0.31% in terms of pixel-wise accuracy.
In terms of Dice similarity coefficient, the improvement is in the range of 0.6%.
The differences are small quantitatively, but the improvements are statistically
significant according to a paired t-test at a 5% significance level. Correspond-
ing p — values between the two versions of the network are reported in Table
Also, one would expect a larger pixel-wise accuracy and Dice similarity when
there are many true positive pixels in the center of the segmentation result.
Corresponding p — values between the two versions of the network are reported
in Table A bold font indicates the best performing metrics. Interestingly,
among the ASM based methods, the simplest version, ASM-G, performs better

than the alternatives. Recent methods [B, 1], have failed to perform robustly

Table 3: Average quantitative metrics for vertebrae segmentation.

Pixel-wise accuracy (%) Dice similarity coefficient

Median | Mean | Std | p-value | Median | Mean Std p-value
ASM-RF | 95.09 90.77 | 8.98 0.881 0.774 | 0.220
ASM-M 95.09 93.48 | 4.92 0.900 0.877 | 0.073
ASM-G 95.34 93.75 | 4.48 0.906 0.883 | 0.066
UNet 97.71 96.69 | 3.04 0.952 0.938 | 0.048

< 10712 < 10712
UNet-S 97.92 | 97.01 | 2.79 0.957 | 0.944 | 0.044
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on our challenging dataset of test vertebrae.

Although statistically significant, the stability of the small improvement be-
tween UNet and UNet-S may be subjected to the fixed set of data used for the
training and testing. In order to test the stability of the performance, two new
sets of UNet and UNet-S were trained with randomly scrambled datasets. In
both cases, UNet-S outperformed the UNet with statistical significance. The

Dice similarity coefficients for these re-scrambled datasets are reported in Ta-

ble [d

Table 4: Dice similarity coefficients for re-scrambled datasets.

Re-scrambled Dataset 1 Re-scrambled Dataset 2

Mean Std p-value | Mean Std p-value

UNet | 0.9371 | 0.0412 0.9433 | 0.0712

—03
UNet-s | 0.9411 | 0.0366 | <'° " | 0045 | 0.0602 | <013

The average point to curve error for the methods are reported in Table
This measure is important as it captures the differences in the segmentation
boundary which defines the shape. The deep segmentation framework, UNet,
produced a 35% improvement over the ASM based methods in terms of the
mean values. The introduction of the novel loss term in the training further
reduced the average error by 11% achieving the best error of 0.55 mm. The

most significant improvement can be seen in the fit failure which denotes the

Table 5: Average quantitative metric for shape prediction.

Average point to curve error in mm
Median | Mean | Std p-value Fit failure(%)
ASM-RF 1.51 1.74 | 0.95 74.40
ASM-M 0.87 1.02 | 0.56 39.52
ASM-G 0.77 0.95 | 0.54 31.49
UNet 0.43 0.62 | 0.81 9.41
UNet-S 0.44 0.55 | 0.40 0.0062 7.40
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percentage of the test vertebrae having an average error of higher than 1 mm.

The novel shape-aware network, UNet-S, has achieved a drop of around 76%

from the ASM-RF method. The cumulative distribution of the point to curve

error is also plotted in the performance curve of Fig. It can be seen that deep

segmentation networks provide a large improvement among the deep networks,

shape-aware UNet performs better.

Figure 16: Performance curve: Cumulative distribution of point to curve errors.
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The box plots of the quantitative metrics are shown in Fig. [I7] It can be

seen that even the worst outlier for the shape-aware network, UNet-S, has a

pixel-wise accuracy higher than 70%, signifying the regularizing capability of

the novel term. Most of the outliers are caused by bone implants, fractured

vertebrae or abnormal artefacts in the images. A few examples for qualitative
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Figure 17: Box plot of quantitative metrics: pixel-level accuracy (left), Dice similarity coeffi-

cients (middle) and point to manual segmentation curve error (right).
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Figure 18: Qualitative segmentation results: true positive (green), false positive (blue) and

false negative (red).
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assessment, are shown in Fig. Fig. shows an easy example where all
the methods perform well. Examples with surgical bone implants are shown in
Fig. [I8b and c. Fig. [I8d and e show vertebrae with abrupt contrast change.
Vertebrae with fracture and osteophytes are shown in Fig. and g. Fig.
also shows how UNet-S has been able to capture the vertebrae fractures pattern.
Fig. [I8h and i show vertebrae with image artefacts. A complete failure case is
shown in Fig. [18j. The shape-aware network, UNet-S, has produced better
segmentation results than its counterpart, UNet. Qualitatively we conclude the
novel shape-aware term provides equivalent or improved results in nearly all

cases.

Analysis on harder cases. Although the difference in performance between the
UNet and UNet-S is stable and statistically significant, the improvement is
subtle over the whole dataset of the test vertebrae. This is because the majority
of the vertebrae are healthy and easier to segment. Therefore adding the shape-
aware term does not improve the results by a large margin. However, on more
challenging vertebrae a larger difference is observed. To show the usefulness
of adding the shape-aware term in UNet-S, a selection of 52 vertebrae with
severe clinical conditions are chosen. The average metrics for this subset of test
vertebrae between UNet and UNet-S are reported in Table[f] An improvement
of 1.2% and 0.02 have been achieved in terms of pixel-wise accuracy and Dice
similarity coefficient, respectively. The difference over the whole dataset were
only 0.31% and 0.006. The metric, point to curve error produces the most
dramatic change. The novel shape-aware network, UNet-S, reduced the error
by 25% for this subset of vertebrae with severe clinical conditions. Fig. Shows

a few examples of these images.

Table 6: Comparison of UNet and UNet-S for vertebrae with clinical conditions.

Average quantitative metrics
Pixel-wise Dice Point t
accuracy (%) | coefficient Merror ¢
UNet 94.01 0.91 0.84
UNet-S 95.21 0.93 0.63

29



485

490

495

500

Original Original
image h image

Figure 19: Comparison of performance for vertebrae with severe clinical condition.

6. Fully Automatic Segmentation Framework

Now, having the three subtasks i.e. global localization, center localization
and vertebrae segmentation frameworks in place, a single fully automatic verte-
brae segmentation framework can be formulated. Given a high resolution test
image, the image can be zero-padded to form a square image and resized to
100 x 100 pixel. This image can be fed into the global localization FCN to
predict the spinal region. The global localization algorithm localizes the spinal
region at a lower resolution of 25 x 25 pixel, which can then be transformed back,
i.e. resizing and unpadding, to the original image. The process is summarized
in Fig. 20}1.

Based on the global localization result, a uniformly spaced grid of points can
be generated. From these points, image patches can be extracted with multiple
scales and orientations. All the patches are then resized to 64 x 64 pixel and
passed through the novel probabilistic spatial regressor network. Each patch
generates a probability map of localized centers. These patch level probabilities
are then put back on the original image space. And centers are localized using
the post-processing steps of Sec. [f.4 Fig. 20}2 depicts the center localization
process.

The localized spinal region map from the global localization step and the

localized centers from center localization step are used to determine the orien-
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tations and scales of each vertebra in the image. Based on this information, for
each center proposal, multiple patches are extracted and resized to 64 x 64 pixel.
These patches are then passed through the one of the vertebrae segmentation
networks, UNet or UNet-S. The patch level predictions are then put back on
the original image space to create the final segmentation results. The process
of the vertebrae segmentation is shown in Fig. 20}3.

Since none of the subtasks requires manual intervention and the input infor-
mation required by the latter subtasks is provided by the result of the previous
subtasks, a complete framework can be designed by cascading the subtasks se-
quentially. The complete framework is fully automatic and doesn’t require any
human input to generate vertebrae segmentation of an X-ray image. To our
knowledge, the proposed framework is the first in the literature that presents
a fully automatic cervical spine segmentation method. The flowchart for the
complete framework has been shown in Fig. Il The runtime for the framework
varies from 11 seconds to one minute with an average time of 24 seconds using
unoptimized Matlab implementation on a system without GPUs. Most of this
time is taken by the post-processing steps of the center localization and verte-
brae segmentation subtasks where the patch-level predictions are transformed

back to the original image space.

6.1. Results

The Dice similarity coefficient (DSC) and shape error for the final segmen-
tation results are summarized in Table [7] The predicted shape is computed
by locating the boundary pixels of the predicted final segmentation map. The
predicted shapes are compared with the manually annotated shapes, illustrated
by green curves in Fig. 2| The average error in millimeter (mm) is reported as
the shape error. Both UNet and UNet-S have been tested as the final segmen-
tation module. Both perform similarly in terms of the reported metrics. The
mean Dice similarity coefficient is exactly the same at 0.84. The performance is
lower than the Dice similarity coefficient of 0.944 reported in Table [ because

of the full automation and the accumulated errors from the global localization
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Table 7: Performance of fully automatic framework.

Dice similarity coefficients | Shape error in mm

Mean Std Mean Std
UNet 0.840 0.136 1.695 2.614
UNet-S | 0.840 0.135 1.689 2.555

and center localization phase. Since most of the difficult vertebrae samples do
get into the segmentation phase and difference in performance is not noticeable
in terms of DSC. However, as the major difference between the networks is a
shape-aware term, shape error have achieved a 0.35% relative improvement even
after full automation. The histogram plots of these two metrics are shown in
Fig. 21}

Histogram of Dice similarity coefficients Histogram of shape error
— T e e

— L e — — T
I U I et
s e gt | uners| |
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Figure 21: Histogram plot of Dice similarity coefficients (top) and shape error (bottom) for

the fully automatic framework with UNet and UNet-S.

Some qualitative results are shown in Fig. It can be seen that even
with severe clinical conditions (row 3, 4) and image artefacts (row 5) the fully
automatic algorithm has been able to produce accurate segmentation results.
However, the algorithm doesn’t guarantee acceptable segmentation everywhere.
Some less accurate results on difficult cases are shown in Fig. Row 1 of
Fig. 23] shows a case where the center localization framework failed to detect a
vertebrae center with osteophytes (C5) and detected a false center from verte-
brae C2. Thus the final segmentation results have a false positive in vertebrae
C2 and a false negative for C5. The second row shows a case where both global

localization and center localization failed due to surgical implants in the lower
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Figure 22: Fully automatic framework results. True positive (green), false positive (blue) and

false negative (red). Ground truth center (x) and predicted centers (+). (a) Original image

(b) Global localization (c) Center localization (d) Vertebrae segmentation.
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Figure 23: Fully automatic framework results for challenging cases. True positive (green), false

positive (blue) and false negative (red). Ground truth center (x) and predicted centers (+).

(a) Original image (b) Global localization (c) Center localization (d) Vertebrae segmentation.
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vertebrae (C6-C7). A test case with severe osteoporosis and bone loss is shown
in row 3. Even with such severe clinical condition the global localization and
center localization algorithm were able to produce correct results for C3 and C4,
however, the segmentation framework still suffered to segment those correctly.
Another severe condition with bone loss, osteoporosis and vertebrae fusion is
shown in row 4 of Fig. 23] Even with such severe condition, global localization
and center localization have been able to correctly detect four vertebrae centers,
but unfortunately, a false center has also been detected in the extended part of
the C2. Interestingly, the segmentation framework also segmented a vertebrae-
like structure in the extension where the top and bottom border followed the
bone structure. However, the segmentation results for the actual vertebrae are
incorrect because of the severity of the condition. Finally, in the last row, we
have shown a complete failure due to the presence of large surgical implants.
The global localization algorithm failed completely thus the following subtasks

were not able to perform either.

7. Conclusion

The cervical spine is one of the most important yet vulnerable anatomies
of the human body. Despite advances in imaging technologies, a large number
of cervical injuries remain unnoticed in the emergency room. Towards build-
ing a fully automatic injury detection system, in this paper, using the recent
advances in deep learning technologies, we have proposed a fully automatic
vertebrae segmentation framework for X-ray images. The complete process is
divided into three subtasks: localization of the spine, localization of the verte-
brae centers and segmentation of the vertebrae. We have proposed a solution
to each these subtasks using deep learning concepts. First, we have proposed a
novel approach of using fully convolutional segmentation network for solving a
localization problem. Our global localization algorithm produced a sensitivity
and specificity of 0.96 in localizing the vertebrae in the X-ray images. Second,

we have introduced a novel loss function for predicting probabilistic map using
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a fully convolutional network for localizing image landmarks. Our center local-
ization framework has been able to correctly detect 93.73% of vertebrae with
an average error of 1.81 mm. Third, we have proposed a novel shape-aware loss
term for vertebrae segmentation. The shape-aware segmentation has produced
an average Dice similarity coefficient of 0.944 and an average point to curve
error of 0.55 mm over a dataset full of real-life emergency room X-ray images,
containing surgical implants, clinical conditions and image artefacts. Last but
not the least, we have proposed a complete and fully automatic framework for
vertebrae segmentation in X-ray images which has been able to produce a final
Dice similarity coefficient of 0.84.

The current framework still has several limitations. The center localization
framework can be further improved by removing outlier centers away from the
vertebral curve. The current patch based center localization framework has
the limitation of not knowing which center belongs to which vertebra. We are
currently working on a vertebra detection framework, which will be able to
determine which vertebrae are visible in the image. The shape-aware segmenta-
tion framework can further be improved to determine if a segmented vertebrae
shape is regular or injurious/fractured. The next step in our research is to build
a complete injury detection system which will be able to help the emergency
room physicians by highlighting spinal areas with high possibility of injuries.
The proposed framework is general and can be extended to other views of the

cervical spine, including odontoid peg and anteroposterior (AP) views.
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