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Abstract

The cervical spine is a highly flexible anatomy and therefore vulnerable to in-

juries. Unfortunately, a large number of injuries in lateral cervical X-ray images

remain undiagnosed due to human errors. Computer-aided injury detection has

the potential to reduce the risk of misdiagnosis. Towards building an auto-

matic injury detection system, in this paper, we propose a deep learning based

fully automatic framework for segmentation of cervical vertebrae in X-ray im-

ages. The framework first localizes the spinal region in the image using a deep

fully convolutional neural network. Then vertebrae centers are localized using a

novel deep probabilistic spatial regression network. Finally, a novel shape-aware

deep segmentation network is used to segment the vertebrae in the image. The

framework can take an X-ray image and produce a vertebrae segmentation result

without any manual intervention. Each block of the fully automatic framework

has been trained on a set of 124 X-ray images and tested on another 172 im-

ages, all collected from real-life hospital emergency rooms. A Dice similarity

coefficient of 0.84 and a shape error of 1.69 mm have been achieved.

Keywords: Segmentation, Deep Learning, FCN, UNet, Localization, Cervical

vertebrae, X-ray.

1. Introduction

The cervical spine consists of seven vertebrae, labelled C1 to C7. These

vertebrae support the head and protect the spinal column in the neck region.
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The cervical spine is a highly flexible anatomy, capable of flexion, extension,

lateral flexion, and rotation [1]. Due to this wide range of motion, the cervical5

spine is particularly vulnerable to injury. According to [2], 43.9-61.5% of the

spinal cord injuries occur in the cervical region. Despite being a highly injurious

anatomy, unfortunately, about 20% of the injuries in radiological exams remain

unnoticed. And a significant proportion, 67%, of the of the patients with unno-

ticed cervical injuries suffer tragic extensions of their injuries later in life [3, 4].10

Recent developments in the fields of computer vision and artificial intelligence

have the potential to reduce the number of missing injuries.

Towards building a fully automatic cervical spine injury detection system, in

this paper, we propose an automatic segmentation framework for cervical ver-

tebrae in X-ray images. Segmenting the vertebrae correctly is a crucial part for15

further analysis in an injury detection system. Previous work in vertebrae seg-

mentation has largely been dominated by statistical shape model (SSM) based

approaches [5, 6, 7, 8, 9, 10, 11, 12]. These methods record statistical information

about the shape and/or the appearance of the vertebrae based on a training set.

Then the mean shape is initialized either manually or semi-automatically near20

the actual vertebra and a search procedure is performed to converge the shape

on the actual vertebra boundary. Recent literature utilizes random forest based

machine learning models in order to achieve the shape convergence [9, 10, 11, 12].

However, to the best of our knowledge, a fully automatic method is absent

from the literature. To fill this gap, in this work, we propose a fully automatic25

framework for vertebrae segmentation. Starting with a real-life emergency room

image, the framework first locates the spine, then localizes the vertebral centers

and finally, achieves segmentation. In other words, the fully automatic frame-

work can be divided into three subtasks: global localization, center localization

and vertebrae segmentation. Different specialized fully convolutional neural net-30

works (FCN) are used to solve each of these tasks. The complete framework is

shown in Fig. 1.

Previous work in spine localization includes generalized Hough transform

based approaches [13, 6] and more recent random forest based approaches [14,
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Figure 1: Fully automatic cervical vertebrae segmentation framework.

15, 16]. The state-of-the-art work on cervical vertebrae localization uses a slid-35

ing window technique to extract patches from the images [16]. A random forest

classifier then decides which patches belong to the spinal area. Finally, a rect-

angular bounding box is generated to localize the spinal region. In contrast

to these approaches, we approach the localization problem as a segmentation

problem in a lower resolution. Given a set of high-resolution images and manu-40

ally segmented vertebrae ground truth, at a lower resolution, the ground truth

becomes a single connected region. Then an FCN can be trained to predict

this region. The proposed framework can produce localization map of arbitrary

shape in a one-shot process and provides a localization result that models the

cervical spine much better than a rectangular box like [16].45

Once the spinal region has been localized, the next task is to determine the

vertebrae centers. Previous work in vertebrae landmark localization involves

patch based regression techniques [10, 17, 18, 19]. Based on image patches, these

methods use different machine learning methods to predict vectors pointing

towards vertebrae landmarks. Random regression forest [10], Hough forest [17,50

18] and deep fully connected neural network [19] have been used to learn the

model. Contrary to these methods, we propose a novel FCN based probabilistic

spatial regressor to localize vertebrae centers. Given an image patch, our novel

network predicts a two-dimensional probability distribution for the localized

centers over the patch space. A novel loss function has been introduced to55

adapt the FCN as a spatial probability predictor.

Finally, a novel shape-aware deep segmentation FCN is proposed for the ver-

tebrae segmentation phase. Shape is an important characteristic of the vertebra.

Previous work in vertebrae segmentation has largely been dominated by statisti-
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cal shape model (SSM) based approaches [5, 6, 7, 8, 9, 10, 11, 12]. On the other60

hand, deep segmentation networks have been outperforming the state-of-the-art

in different medical image modalities [20, 21, 22]. However, combining shape

information in a deep segmentation network is not straightforward. In this pa-

per, we provide a solution to this problem by introducing a novel shape-aware

term in a segmentation loss function.65

Achievements. The proposed global localization algorithm has been able to out-

perform the previous state-of-the-art [16] by 17.1% in terms of sensitivity. The

novel center localization framework has produced an average error of only 1.81

mm which is near human level. A patch level Dice similarity coefficient of 0.94

has been achieved by the proposed shape-aware segmentation framework. Fi-70

nally, the fully automatic framework has been able to achieve a Dice similarity

coefficient of 0.84 and a shape error of 1.69 mm. All these metrics are computed

over a challenging dataset of 172 emergency room X-ray images.

Contributions. We make several contributions in this work. First, we propose

a deep segmentation network based spine localization algorithm which outper-75

forms the previous state-of-the-art by a large margin. Second, we propose a

novel spatial probability prediction network which achieves human-level per-

formance in localizing vertebrae centers. Third, we introduce a shape-aware

segmentation loss function which augments the capability of a deep segmen-

tation network with shape information and achieves better performance than80

simple FCN and other traditional shape model based approaches. The final

and the most important contribution is the fully automatic framework which

combines the global localization, center localization and vertebrae segmentation

in a single thread and provides a segmentation result for a real-life emergency

room X-ray images without any manual input.85

2. Data

A total of 296 lateral cervical spine X-ray images were collected from Royal

Devon and Exeter Hospital in association with the University of Exeter. The age
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of the patients varied from 17 to 96. Different radiographic systems (Philips,

Agfa, Kodak, GE) were used to produce the scans. Image resolution varied90

from 0.1 to 0.194 mm per pixel. Image size varied from 1000 to 5000 pixels with

different zoom, crop, spine position and patient position. The images include

examples of vertebrae with fractures, degenerative changes and bone implants.

The data is anonymized and standard research protocols have been followed.

The size, shape, orientation of spine, image intensity, contrast, noise level all95

varied greatly in the dataset. For this work, 5 vertebrae C3-C7 are considered.

C1 and C2 have an ambiguous appearance due to their overlap in lateral cervical

radiographs, and our clinical experts were not able to provide ground truth

segmentations for these vertebral bodies. For this reason, they are excluded

in this study, similar to other cervical spine image analysis research [5, 23, 11,100

16]. Each vertebra from the images was manually annotated for the vertebral

body boundaries and centers by expert radiographers. A few examples with the

corresponding manual annotations are shown in Fig. 2.

The images were received in two sets. The first set contained 138 images.

A random 90% or 124 images from this set is used as training dataset in this105

work. The remaining 10% or 14 images from this set was used for testing the

algorithms. The second set of 158 images were received later into the study and

added to the test dataset bringing the total number of test images to 172.

Figure 2: X-Ray images and manual annotations. Center: blue plus (+) Vertebrae boundary

curve (green).
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3. Global Localization

The first subtask for our fully automatic framework is to locate the spinal110

region in an arbitrary X-ray image. We approached this problem as a seg-

mentation problem at a lower resolution. In the lower resolution, the cervical

vertebrae become a single connected spinal region. A deep fully convolutional

network (FCN) is trained to predict this region.

3.1. Data115

Based on the manual annotation of the vertebrae boundaries, a binary

ground truth can be created for each image in our dataset. To create the

training and test dataset for the global localization algorithm, these images are

converted into square images by padding an appropriate number of zeros in the

smaller dimension and the square images are resized to a lower resolution using120

bicubic interpolation. This resolution can vary based on the available memory

and size of the training networks. For our case, we chose this resolution to be

100× 100 pixel. The binary vertebrae ground truth images forms a single con-

nected region in this resolution. However, our network predicts a segmentation

mask of even smaller resolution, 25 × 25 pixel. The 100 × 100 pixel localiza-125

tion ground truths are converted to a 25 × 25 pixel mask using a max-pooling

operation with a mask size of 4 × 4 and stride 4. Max-pooling was used over

interpolation based methods to keep the localization mask sharp. Fig. 3 shows

some of the localization ground truth overlayed on the image after transforming

back to the original resolution.130

Figure 3: Global localization ground truth: vertebrae are shown in green, blue overlay indi-

cates the extra area covered by the localization ground truth.
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3.2. Network

A fully convolutional network (FCN) is designed for the global localization

task which takes an input image of resolution 100× 100 and predicts a localiza-

tion mask of the resolution 25×25. Our network has six convolutional layers and

two max-pooling layers. Batch normalization and rectified linear unit (ReLU)135

layers are used after each convolution layers. The network diagram is shown in

Fig. 4. The total number of parameters in the network is 1,152,450.
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Figure 4: Fully convolutional network for localization of spinal region (a) Network architecture

(b) Legends.

3.3. Training

In order to train any network with a large number parameters, 124 images

are not enough. In order to increase the number of training data, we have140

augmented the images by rotating each image from 5◦ to 355◦ with a step of

5◦. This results in a training set of 8,928 images. It also made the frame-

work rotation invariant. Our choice for data augmentation was only limited

to rigid transformations since non-rigid transformation will affect the natural

appearance of the spine in the image.145

Given a dataset of training image (x)-segmentation label (y) pairs, training a

deep segmentation network means finding a set of parameters Ŵ that minimizes

a loss function, Lt. The simplest form of the loss function for segmentation

problem is the pixel-wise log loss or the cross-entropy loss.

Ŵ = arg min
W

N∑
n=1

Lt({x(n), y(n)};W ) (1)
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where N is the number of training examples and {x(n), y(n)} represents n-th

example in the training set with corresponding manual segmentation. The pixel-

wise segmentation loss per image can be defined as:

Lt({x, y};W ) = −
∑
iεΩp

L∑
j=1

yji logP (yji = 1|xi;W ) (2)

P (yji = 1|xi;W ) =
exp(aj(xi))∑L
k=1 exp(ak(xi))

(3)

where aj(xi) is the output of the penultimate activation layer of the network

for the pixel xi, Ωp represents the pixel space and P are the corresponding class

probabilities.

The network is trained on a system with a NVIDIA Quadro M4000 GPU

for 30 epochs with a batch-size of 10 images. The training took approximately150

18 hours. The weight optimization is performed by the RMSprop version of the

stochastic gradient descent algorithm throughout this work [24].

3.4. Inference and Metrics

At test time, a test image is padded with zeros to form a square, resized to

100×100 pixels and fed forward through the network to produce the localization155

map. The average time for the network to produce a localization map is less

than 0.1 sec. This map is compared with the corresponding localization ground

truth. Pixel level accuracy, Dice similarity coefficient (DSC), sensitivity and

specificity are computed. These metrics demonstrate the performance of the

trained networks at the lower resolution at which the network generates the160

prediction. From a practical point of view, the performance of the localization

should also be computed at the original resolution with the manually segmented

vertebrae ground truth. In order to achieve this, the predicted localization map

is transformed (resized and unpadded) back to the original image resolution and

sensitivity and specificity are computed by comparing them with the manually165

segmented vertebrae ground truth.
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3.5. Results

The median, mean and standard deviation of the metrics over 172 test images

are reported in Table 1. At the lower resolution, we have been able to achieve

an average pixel level accuracy of 99%. In the original resolution, the algorithm170

has been able to produce an average sensitivity score of 0.96 when compared

with the vertebrae ground truth, which indicates 96% of the vertebrae area has

been covered by our predicted localization maps.

Table 1: Performance of global localization.

Resolution 25× 25 Original

Pixel Accuracy DSC Sensitivity Specificity Sensitivity Specificity

Median 0.99 0.91 0.89 1.00 1.00 0.96

Mean 0.99 0.89 0.86 1.00 0.96 0.96

Std 0.01 0.10 0.13 0.00 0.11 0.01

The box-plot of these metrics are shown in Fig. 5. It can be seen that only a

few outliers perform poorly. Most of these images have clinical implants and/or175

severe clinical conditions in the spinal region. A few of these hard cases are

Accuracy (L) DSC (L) Sensitivity (L) Specificity (L) Sensitivity (S) Specificity (S)

Metrics
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Figure 5: Box-plot of global localization metrics. ‘L’ indicates the metrics computed at the

lower resolution of 25×25. ‘S’ indicates the metrics computed at the original image resolution

by comparing the prediction with the vertebrae segmentation ground truth (green area in

Fig. 3).
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shown in Fig. 6. Fig. 6b,c show examples of images with clinical conditions

where the localization algorithm performed well. Two of the outlier results

are shown in Fig. 6e,f. Compared with the previous state-of-the-art in cervical

vertebra localization, which uses a random forest based algorithm and provides180

a rectangular bounding box [16], our algorithm produces a 17.1% improvement

in average sensitivity with a clear qualitative improvement on the same training

and test images. In terms of time required for the algorithm to produce a result,

our algorithm is more than 70 times faster than [16]. Our algorithm is capable

of producing a localization result for any image under a second while the sliding185

window based method of [16] requires 70 to 180 seconds depending on the image

size.

(a)                                                    (b)                                                (c)

(d)                                              (e)                                                (f)

Figure 6: Qualitative global localization results compared with vertebrae ground truths: true

positive (green), false positive (blue), false negative (red), true negative (no overlay) (a)

healthy subject (b) Osteophytes (c) Severe degeneration (d) Osteophytes (e) Implants (f)

Severe degeneration and osteophytes.

4. Center Localization

The next task for our fully automatic framework is to localize vertebrae

centers in the already localized spinal region. Instead of the common practice190

of regressing vectors pointing towards the location of the center, we design

our center localization framework to produce a probability map. We will use
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a novel fully convolutional network (FCN) to learn the modelling. Given an

image patch, the network learns to predict a probability distribution over the

image space indicating where the centers are most probable. In contrary to195

the vector regression techniques, our method can predict multiple centers for a

single patch.

4.1. Data

Our data comes with a large number of vertebrae with clinical conditions.

Thus, the geometrical center of the manually annotated shape is not robust for200

each vertebra and varies based on the extent of vertebrae conditions. So, our

medical partners have provided us with manually clicked center points. Each

vertebra has one manually clicked center. However, because the vertebral center

is not attached to any visible landmark, human perception of the center also

varies to some extent. This motivated us to convert the manually clicked centers205

into probabilistic distributions.

The probability distribution at a vertebra center (xc, yc) can be defined as

a 2D anisotropic Gaussian distribution [25].

F (x, y) =
1

2π
√
vwvh

e
− 1

2vxvy

(
a1(x−xc)2−2a2(x−xc)(y−yc)+a3(y−yc)2

)
(4)

where

a1 = vw cos2 θ + vh sin2 θ (5)

a2 = (vw − vh) cos θ sin θ (6)

a3 = vw sin2 θ + vh cos2 θ (7)

and

θ =
θl + θb + θr + θt

4
(8)

vw =
wt+wb

2 R

k
(9)

vh =
hl+hr

2 R

k
(10)
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where R is pixel spacing (in millimeter per pixel) of the image, k = 60 is an

empirical constant chosen based on visual evaluation of the ground truth and θl,

θb, θr, θt, wt, wb, hl, hr are computed from the manually annotated vertebrae

corners and demonstrated in Fig. 7a.

r b
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h
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w

(a)                                          (b)

Figure 7: (a) Probabilistic ground truth creation: manually clicked vertebra center (x), man-

ually annotated vertebra boundary (o) and corner (+) points (b) Grid points (+) for training

patches.

210

The process is repeated for all the vertebrae centers and a single probabilistic

distribution defined over the image space is generated. A few images with

overlayed probabilistic center distributions are shown in Fig. 8a.

To generate a training image patch and corresponding probability distribu-

tions, a grid of 9 uniformly spaced points were generated per vertebra and 3215

points were generated in between two consecutive vertebrae. An example of

these grid points is shown in Fig. 7b. From each of these grid points, patches

were extracted with two scales (original vertebrae size + 2 mm and 4 mm) and

five orientations (-20◦ to 20◦ with a step of 5◦ where 0◦ is the mean vertebral

axis). All these extracted patches are then resized to 64 × 64 pixels, the res-220

olution at which the network will be trained. A total of 66,600 patches were

generated from our 124 training images. Fig. 8b shows how these distributions

look at the patch level.
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(a)

(b)

Figure 8: (a) Probabilistic distribution for vertebrae centers defined over the image space.

The intensity of the green overlay represents the probability of the manually clicked centers.

(b) Patch level ground truth for center localization framework.

4.2. Network

Here, our intention is to predict a two-dimensional probabilistic distribution225

for an input patch of 64 × 64 pixels. We want our predicted distribution to

have the same spatial resolution as the input patch. The FCN architecture used

for the global localization framework predicts an output with a lower spatial

resolution than the input. Thus, it can not be used here. DeConvNet [26] and

UNet [20] are two fully convolutional neural networks that have been used for230

segmentation problems where the spatial resolution of the input image and out-

put predictions are similar. Among the two networks, our initial experiments

showed better performance with UNet architecture. Here, for the probabilis-

tic spatial regressor based center localization framework, we used a modified

version of the UNet [20] architecture. UNet has a downsampling path and an235

upsampling path. Our downsampling path has nine convolutional layers. Each

convolutional layer is followed by a batch normalization and rectified linear unit

(ReLU). Three max-pooling layers in between the convolutional layers down-
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sample the spatial dimension from 64×64 to 8×8. The upsampling path forms

a mirrored version of the downsampling path. Upsampling is done by deconvo-240

lutional layers. The network shares information between the downsampling and

upsampling path using concatenation. The network diagram is shown in Fig. 9.

The number of filters in each layer can be tracked from the number of channels

in the data blocks. The total number of parameters for the center localization

UNet is 24,238,210.
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Figure 9: UNet architecture: (a) Network diagram (b) Legends.

245

4.3. Training

The softmax layer at the end of the network creates a probabilistic two-

channel output, just like a binary segmentation problem. However, the ground

truth here is a probabilistic map, not a binary segmentation map. Thus the

standard segmentation log loss of Sec. 3.3 can not be used. We formulate a250

novel loss function for training the network to predict a probabilistic map.

Loss function for probabilistic spatial regression. To match the two-channel out-

put of the final softmax layer, the ground truth probability (GTp) is also con-

verted to a softmax-like two channel distribution, PGT .

PGTi,channel=1
=

GTpi −min(GTp)

max(GTp)−min(GTp)
(11)
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PGTi,channel=2
= 1− PGTi,channel=1

(12)

where iεΩp is the pixel space. Notice that, PGTchannel=1
is no longer a normalized

probability distribution (i.e. doesn’t integrate to unity), rather a stretched

distribution where the maximum is unity and minimum is zero. This ensures

that the softmax layer is able to produce similar distribution, as it squashes the255

input activations to the range from 0 to 1.

Training our UNet would then mean finding an optimized set of parameters

Ŵ o which minimizes a loss, L, between the predicted ŷ(n) and updated ground

truth P
(n)
GT over the training dataset.

Ŵ o = arg min
W

N∑
n=1

L({x(n), P
(n)
GT };W ) (13)

where N is the number of training examples and {x(n), P
(n)
GT } represents n-th

example in the training set with corresponding ground truth probability of the

regression target. Since the target probabilities are spatially distributed over

the pixel space, we can define a pixel-wise loss function per training sample as:

L({x, PGT };W ) =
1

2|Ωp|
∑
iεΩp

2∑
j=1

wi(ŷ
j
i − PGTi,channel=j )

2 (14)

where

wi =


|Ωpφ |
|Ωpo |

if iεΩpφ

1 otherwise

(15)

where Ωp is the pixel space, Ωpφ is set of pixels where the ground truth proba-

bilities are not zero and Ωpo = Ωp − Ωpφ .

The term (ŷji −PGTi,channel=j ) measures the distance between the prediction

and the ground truth. This pixel-wise distance is weighted by wi to solve the260

data imbalance problem. As most of the pixels in the output probability space

have zero probabilities, without this weighting term the solution becomes biased

towards the probability of the majority pixels. In our case < 5% pixels have

non-zero values, thus without the weighting term, the network converges to

predict a flat distribution of zeros.265
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The network is trained on a system with a NVIDIA Pascal Titan X GPU

for 30 epochs with a batch-size of 25 image patches. The training took approx-

imately 72 hours.

4.4. Inference and Post-processing

At the test time, our localization algorithm provides an automatic region of270

interest. Using this automatic localization result, we create a grid of uniformly

distributed points and from each point, multiple patches are generated with

different scales and rotations. These patches are passed through the center

localization network to generate patch level probability maps. The network

takes about 0.14 second to generate a patch level prediction. The patch size,275

orientation and position of these probability maps on the original are known

from the patch creation process. These probability maps are then put back on

the original image (Fig. 10a). The process includes resizing the 64 × 64 pixel

patch to the original patch resolution and projecting it back on the original

image using the known patch orientation and position. The probabilities on the280

original resolution are then thresholded to remove noise (Fig. 10b). The noise

is defined as predictions with less than 30% of the maximum probability. For

every remaining proposal for a possible vertebra center, the pixel location with

the maximum probability is considered as a potential center (Fig. 10b). Further

post-processing is performed by removing multiple centers in close proximity by285

keeping the most confident center in a radius of 10 mm (Fig. 10c). The radius is

chosen based on the average size of the training vertebrae. Finally, we keep the

maximum number of possible centers to five (C3-C7) and delete less confident

center proposals if more than five centers are detected (Fig. 10d).

4.5. Experiments and Metrics290

The center localization framework is tested on our 172 test images. At

the patch level, the performance of the network is measured a comparing the

predicted probability maps and ground truth maps using the Bhattacharyya

coefficient [27]. After the post-processing step, the centers are localized on
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(a)                                    (b)                                    (c)                                   (d)

 (e)                                    (f)                                    (g)                                   (h)

 
Figure 10: (a)-(d): Center localization post-processing (a) Probability map on the original

image (b) Thresholded map and potential centers (+) (c) Filtered centers by after proximity

analysis (d) Five most confident centers. (e)-(h): Bhattacharyya coefficients between the

ground truth (middle) and predicted (right) probability distributions with corresponding input

image patch (left): (e) 0.8285 (f) 0.7153 (g) 0.3304 (h) 0.3715.

the original image. The predicted vertebrae centers can be divided into three

sets: true positive (TP), false positive (FP) and false negative (FN). The TP

represents the set of vertebrae whose centers have been correctly detected. A

correct detection is considered if the predicted center falls inside a vertebral

body studied in this work i.e. C3-C7. The FP represents the set of predicted

centers which did not fall inside any of these vertebrae. Finally, the FN is the

set of the studied vertebrae whose centers have not been detected. Based on the

TP, FP and FN, we can report two metrics: true positive rate (TPR) and false

discovery rate (FDR) [28]. We also report the Euclidean distance between the

correctly detected centers and corresponding ground truth in mm as distance

error.

TPR =
|TP |

|TP |+ |FN |
× 100%

FDR =
|FP |

|FP |+ |TP |
× 100%
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4.6. Results

The performance of the center localization algorithm is measured indepen-

dent of the global localization results. For this independent study, the uniform

grid needed for the patch creation is generated using the localization ground

truth (Fig. 3) instead of the prediction of the spine localization framework as295

mentioned in Sec. 4.4. A Bhattacharyya coefficient (BC) of zero represents the

worst result and one represents a perfect match between ground truth and pre-

diction probability. Over all the test patches, an average BC of 0.58 has been

achieved at the patch level. Some of the graphical results with corresponding

BC are shown in Fig. 10e-h. It can be seen that even with low BC (Fig. 10g,h),300

the results are similar. The histogram of the BC over all the patches is plotted

in Fig. 11a, a BC of > 0.5 was achieved for 71% of the test patches. A few qual-

itative results for center localization at the patch level are shown in Fig. 11b.
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Figure 11: (a) Histogram of Bhattacharyya coefficients (b) Patch level center localization

results: Ground truth (left) and Prediction (right).

After the post-processing phase, the centers are localized on the full resolu-305

tion test image. Table 2 reports the true positive rate (TPR), false discovery

rate (FDR) and distance error for the correctly detected centers in millimeters

(mm).

Among 797 vertebrae from our 172 test images, 747 centers were detected
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Table 2: Performance of the center localization framework. The ‘Manual’ patch creation

process uses localization ground truth and the results reported below are independent of the

accuracy of the global localization framework. Results from the fully automatic procedure

which uses the localized spine from the global localization framework are reported in the right

under the ‘Automatic’ patch creation process.

Test patch creation Manual Automatic

True positive rate (TPR) 93.73% 90.46%

False discovery rate (FDR) 4.72% 10.89%

Median Mean Std Median Mean Std

Distance error (mm) 1.63 1.81 0.95 1.54 1.69 0.92

with an average error of 1.81 mm. Number of false positive was 37, most of these310

false positives belong to neighbouring vertebrae C2 and T1. To compare the

performance of the center localization algorithm with human performance, an

expert radiographer was asked to click on the vertebrae centers on ten random

test images three times. These manually predicted centers are compared with

the ground truth centers for those image. The average error was 1.92 mm which315

is higher than the average error of correctly detected centers by our algorithm.

The performance curve is shown in Fig. 12.

It can be seen that the distance error is < 3 mm for almost 90% of the

correctly detected vertebrae centers. The process is repeated by changing the

uniform grid creation process in the beginning. In this case, the uniform grid for320

patch generation is done using the area predicted by our global localization algo-

rithm (instead of the global localization ground truth), as discussed in Sec. 4.4.

The metrics are reported on the right side of Table 2. It can be seen the TPR

dropped from 93.73% to 90.46%, where the FDR is increased from 4.72% to

10.99%. This degradation is because of the incorrect global localization results,325

as shown in Fig. 6e,f. However, among the correctly detected centers, the dis-

tance error drops from 1.81 mm to 1.69 mm. The reason behind this is that

much of the bad quality image areas have already been cut off by the global

localization prediction. So the remaining image areas are of comparatively of
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Figure 12: Performance curve for center localization.

good quality thus center localization performs better on average on these image330

areas. Some graphical center localization results in the original resolution are

shown in Fig. 13.

5. Vertebrae Segmentation

The final and the most important task in our fully automatic segmentation

framework is to segment the vertebrae. We use the same UNet architecture with335

a segmentation loss function for this task. We also introduce a novel shape-aware

term in segmentation loss function to predict the vertebrae shape with better

accuracy.

5.1. Data

To train and test our segmentation framework independent of the global and340

center localization phase, the manually clicked center points are used to extract

the vertebrae image patch and corresponding segmentation masks. These can

be replaced by the predicted centers making the process fully automatic. From

our 124 training images, we have only 586 training vertebrae. To augment the
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training data different patch size and rotation angles are considered. After data345

augmentation, there were 26,370 vertebrae training patches. All the patches

were then resized to 64 × 64 pixel patches. The corresponding binary segmen-

tation masks were created using the manually annotated vertebrae boundary

curves (green curves shown in Fig. 2). The pixels inside the boundary curves

are considered as the foreground class and outside are considered as the back-350

ground class [29]. A few training vertebrae patches and corresponding overlayed

segmentation masks are shown in Fig. 14. Note the differences in intensity, tex-

ture, and contrast, coupled with the possibility of surgical implants, making

for a challenging problem on real-world data. Similarly, vertebrae patches were

also collected from the test images, a total of 797 vertebrae were extracted. No355

augmentation was performed for the test vertebrae.

Figure 14: Training vertebrae patches and corresponding segmentation masks (blue overlay).

5.2. Training

The same 24,238,210 parameter version of UNet is used for vertebrae segmen-

tation. The network takes a single channel vertebra patch of spatial dimension

64× 64 and predicts a binary mask of the same size.360

Since the global localization network addressed in Sec. 3.3 also deals with

a binary segmentation problem, the same loss function described in Eqn. 1, 2

and 3 can be used for training the segmentation network. However, this loss, Lt,

doesn’t constrain the predicted masks to conform to possible vertebra shapes.

Since vertebrae shapes are known from the provided manual segmentation curves,365

we add a novel shape-aware term in the loss function to force the network to

learn to penalize predicted areas outside the curve.
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5.3. Shape-aware Loss Term

For training the deep segmentation network, we introduce a novel shape

based loss term, Ls. This term encourages the network to produce a prediction

masks similar to the training vertebra shapes. This term can be defined as:

Ls({x, y};W ) = −
∑
iεΩ̂p

M∑
j=1

yjiEi logP (yji = 1|xi;W )

Ei = D(Ĉ, CGT ) (16)

where Ĉ is the curve surrounding the predicted regions and CGT is ground

truth curve. The function, D(.), computes the average point to curve Euclidean370

distance between the predicted shape, Ĉ and the ground truth shape, CGT . Ĉ is

generated by locating the boundary pixels of the predicted mask. The redefined

pixel space, Ω̂p, contains the set of pixels where the prediction mask doesn’t

match the ground truth mask. These terms can also be explained using the

toy example shown in Fig. 15. Given a ground truth mask (Fig. 15a) and a375

prediction mask (Fig. 15b), Ei is computed by measuring the average distance

between the ground truth (green) curve and prediction (red) curve (Fig. 15c).

Fig. 15d shows the redefined pixel space, Ω̂p. This term is an additional penalty

proportional to the Euclidean distance between predicted and ground truth

curve to the pixels that do not match the ground truth segmentation mask. In380

the case when the predicted mask is a cluster of small regions, especially during

the first few epochs in training, Ei becomes large because of the increase in the

boundary perimeters from the disjoint predictions.

(d)(a)  (b)  (c)

Figure 15: Shape-aware loss: (a) Ground truth mask (b) Prediction mask (c) Ground truth

shape, CGT (green) and predicted shape, Ĉ (red) (d) Refined pixel space, Ω̂p: False positive

(purple) and false negative (red).
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Finally, the loss function of Eqn. 1 can be extended as:

Ŵ = arg min
W

N∑
n=1

(
Lt({x(n), y(n)};W ) + Ls({x(n), y(n)};W )

)
(17)

The contribution of each term in the total loss can be controlled by introducing

a weight parameter in Eqn. 17. However, in our case, the best performance was385

achieved when both terms contributed equally.

5.4. Experiments and Metrics

We have two versions of the deep segmentation network: UNet and UNet-S.

‘-S’ signifies the use of the updated shape-aware loss function of Eqn. 17. Both

segmentation networks are trained on a system with a NVIDIA Pascal Titan X390

GPU for 30 epochs with a batch-size of 25 image patches. Each network took ap-

proximately 28 hours to train. In order to compare with the deep segmentation

network based prediction results, three active shape model (ASM) based shape

prediction frameworks have been implemented. A simple maximum gradient

based image search based ASM (ASM-G) [30], a Mahalanobis distance based395

ASM (ASM-M) [5] and a random forest based ASM (ASM-RF) [11]. The latter

two have been used in cervical vertebrae segmentation in different datasets.

At test time, 797 vertebrae from 172 test images are extracted based on

the manually clicked vertebral centers. These patches are sent through each

of the networks in a forward pass to get the prediction masks. It takes about400

0.13 second to produce a patch level prediction. These prediction masks are

compared with the ground truth segmentation mask to compute pixel-wise ac-

curacy (pA) and Dice similarity coefficients (DSC). For the ASM based shape

predictors, the predicted shape is converted to a prediction map to measure

these metrics. These metrics are well suited to capture the number of correctly405

segmented pixels, but they fail to capture the differences in shape. In order to

compare the shape of the predicted mask appropriately with the ground truth

vertebrae boundary, the predicted masks of the deep segmentation networks are

converted into shapes by locating the boundary pixels. These shapes are then

compared manually annotated vertebral boundary curves by measuring average410
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point to curve Euclidean distance between them, similar to Eqn. 16. A final

metric, called fit failure [10], is also computed which measures the percentage of

vertebrae having an average point to ground truth curve error of greater than

1 mm.

5.5. Results415

Table 3 reports the average median, mean and standard deviation (std) met-

rics over the test dataset of 797 vertebrae for all the methods. Deep segmenta-

tion network based methods clearly outperform the ASM based methods. Even

the worst performing version of our framework, UNet, achieves a 2.9% increase

in terms of pixel-wise accuracy and an increase of 5.5% for the Dice similarity420

coefficient. Among the two versions of deep networks, the use of the novel loss

function improves the performance by 0.31% in terms of pixel-wise accuracy.

In terms of Dice similarity coefficient, the improvement is in the range of 0.6%.

The differences are small quantitatively, but the improvements are statistically

significant according to a paired t-test at a 5% significance level. Correspond-425

ing p− values between the two versions of the network are reported in Table 3.

Also, one would expect a larger pixel-wise accuracy and Dice similarity when

there are many true positive pixels in the center of the segmentation result.

Corresponding p− values between the two versions of the network are reported

in Table 3. A bold font indicates the best performing metrics. Interestingly,430

among the ASM based methods, the simplest version, ASM-G, performs better

than the alternatives. Recent methods [5, 11], have failed to perform robustly

Table 3: Average quantitative metrics for vertebrae segmentation.

Pixel-wise accuracy (%) Dice similarity coefficient

Median Mean Std p-value Median Mean Std p-value

ASM-RF 95.09 90.77 8.98 0.881 0.774 0.220

ASM-M 95.09 93.48 4.92 0.900 0.877 0.073

ASM-G 95.34 93.75 4.48 0.906 0.883 0.066

UNet 97.71 96.69 3.04
< 10−12

0.952 0.938 0.048
< 10−12

UNet-S 97.92 97.01 2.79 0.957 0.944 0.044
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on our challenging dataset of test vertebrae.

Although statistically significant, the stability of the small improvement be-

tween UNet and UNet-S may be subjected to the fixed set of data used for the435

training and testing. In order to test the stability of the performance, two new

sets of UNet and UNet-S were trained with randomly scrambled datasets. In

both cases, UNet-S outperformed the UNet with statistical significance. The

Dice similarity coefficients for these re-scrambled datasets are reported in Ta-

ble 4.

Table 4: Dice similarity coefficients for re-scrambled datasets.

Re-scrambled Dataset 1 Re-scrambled Dataset 2

Mean Std p-value Mean Std p-value

UNet 0.9371 0.0412
< 10−03

0.9433 0.0712
< 0.013

UNet-S 0.9411 0.0366 0.945 0.0692

440

The average point to curve error for the methods are reported in Table 5.

This measure is important as it captures the differences in the segmentation

boundary which defines the shape. The deep segmentation framework, UNet,

produced a 35% improvement over the ASM based methods in terms of the

mean values. The introduction of the novel loss term in the training further445

reduced the average error by 11% achieving the best error of 0.55 mm. The

most significant improvement can be seen in the fit failure which denotes the

Table 5: Average quantitative metric for shape prediction.

Average point to curve error in mm
Fit failure(%)

Median Mean Std p-value

ASM-RF 1.51 1.74 0.95 74.40

ASM-M 0.87 1.02 0.56 39.52

ASM-G 0.77 0.95 0.54 31.49

UNet 0.43 0.62 0.81
0.0062

9.41

UNet-S 0.44 0.55 0.40 7.40
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percentage of the test vertebrae having an average error of higher than 1 mm.

The novel shape-aware network, UNet-S, has achieved a drop of around 76%

from the ASM-RF method. The cumulative distribution of the point to curve450

error is also plotted in the performance curve of Fig. 16. It can be seen that deep

segmentation networks provide a large improvement among the deep networks,

shape-aware UNet performs better.
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Figure 16: Performance curve: Cumulative distribution of point to curve errors.

The box plots of the quantitative metrics are shown in Fig. 17. It can be

seen that even the worst outlier for the shape-aware network, UNet-S, has a455

pixel-wise accuracy higher than 70%, signifying the regularizing capability of

the novel term. Most of the outliers are caused by bone implants, fractured

vertebrae or abnormal artefacts in the images. A few examples for qualitative
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Figure 18: Qualitative segmentation results: true positive (green), false positive (blue) and

false negative (red).
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assessment are shown in Fig. 18. Fig. 18a shows an easy example where all

the methods perform well. Examples with surgical bone implants are shown in460

Fig. 18b and c. Fig. 18d and e show vertebrae with abrupt contrast change.

Vertebrae with fracture and osteophytes are shown in Fig. 18f and g. Fig. 18g

also shows how UNet-S has been able to capture the vertebrae fractures pattern.

Fig. 18h and i show vertebrae with image artefacts. A complete failure case is

shown in Fig. 18j. The shape-aware network, UNet-S, has produced better465

segmentation results than its counterpart, UNet. Qualitatively we conclude the

novel shape-aware term provides equivalent or improved results in nearly all

cases.

Analysis on harder cases. Although the difference in performance between the

UNet and UNet-S is stable and statistically significant, the improvement is470

subtle over the whole dataset of the test vertebrae. This is because the majority

of the vertebrae are healthy and easier to segment. Therefore adding the shape-

aware term does not improve the results by a large margin. However, on more

challenging vertebrae a larger difference is observed. To show the usefulness

of adding the shape-aware term in UNet-S, a selection of 52 vertebrae with475

severe clinical conditions are chosen. The average metrics for this subset of test

vertebrae between UNet and UNet-S are reported in Table 6. An improvement

of 1.2% and 0.02 have been achieved in terms of pixel-wise accuracy and Dice

similarity coefficient, respectively. The difference over the whole dataset were

only 0.31% and 0.006. The metric, point to curve error produces the most480

dramatic change. The novel shape-aware network, UNet-S, reduced the error

by 25% for this subset of vertebrae with severe clinical conditions. Fig. 19 shows

a few examples of these images.

Table 6: Comparison of UNet and UNet-S for vertebrae with clinical conditions.

Average quantitative metrics

Pixel-wise
accuracy (%)

Dice
coefficient

Point to curve
error

UNet 94.01 0.91 0.84

UNet-S 95.21 0.93 0.63
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Original Ground 
truth

ASM-RF ASM-M ASM-G UNet UNet-S

  Original         Ground           UNet             UNet-S
       image            truth

  Original         Ground           UNet             UNet-S
       image            truth

Figure 19: Comparison of performance for vertebrae with severe clinical condition.

6. Fully Automatic Segmentation Framework

Now, having the three subtasks i.e. global localization, center localization485

and vertebrae segmentation frameworks in place, a single fully automatic verte-

brae segmentation framework can be formulated. Given a high resolution test

image, the image can be zero-padded to form a square image and resized to

100 × 100 pixel. This image can be fed into the global localization FCN to

predict the spinal region. The global localization algorithm localizes the spinal490

region at a lower resolution of 25×25 pixel, which can then be transformed back,

i.e. resizing and unpadding, to the original image. The process is summarized

in Fig. 20-1.

Based on the global localization result, a uniformly spaced grid of points can

be generated. From these points, image patches can be extracted with multiple495

scales and orientations. All the patches are then resized to 64 × 64 pixel and

passed through the novel probabilistic spatial regressor network. Each patch

generates a probability map of localized centers. These patch level probabilities

are then put back on the original image space. And centers are localized using

the post-processing steps of Sec. 4.4. Fig. 20-2 depicts the center localization500

process.

The localized spinal region map from the global localization step and the

localized centers from center localization step are used to determine the orien-
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tations and scales of each vertebra in the image. Based on this information, for

each center proposal, multiple patches are extracted and resized to 64×64 pixel.505

These patches are then passed through the one of the vertebrae segmentation

networks, UNet or UNet-S. The patch level predictions are then put back on

the original image space to create the final segmentation results. The process

of the vertebrae segmentation is shown in Fig. 20-3.

Since none of the subtasks requires manual intervention and the input infor-510

mation required by the latter subtasks is provided by the result of the previous

subtasks, a complete framework can be designed by cascading the subtasks se-

quentially. The complete framework is fully automatic and doesn’t require any

human input to generate vertebrae segmentation of an X-ray image. To our

knowledge, the proposed framework is the first in the literature that presents515

a fully automatic cervical spine segmentation method. The flowchart for the

complete framework has been shown in Fig. 1. The runtime for the framework

varies from 11 seconds to one minute with an average time of 24 seconds using

unoptimized Matlab implementation on a system without GPUs. Most of this

time is taken by the post-processing steps of the center localization and verte-520

brae segmentation subtasks where the patch-level predictions are transformed

back to the original image space.

6.1. Results

The Dice similarity coefficient (DSC) and shape error for the final segmen-

tation results are summarized in Table 7. The predicted shape is computed525

by locating the boundary pixels of the predicted final segmentation map. The

predicted shapes are compared with the manually annotated shapes, illustrated

by green curves in Fig. 2. The average error in millimeter (mm) is reported as

the shape error. Both UNet and UNet-S have been tested as the final segmen-

tation module. Both perform similarly in terms of the reported metrics. The530

mean Dice similarity coefficient is exactly the same at 0.84. The performance is

lower than the Dice similarity coefficient of 0.944 reported in Table 3 because

of the full automation and the accumulated errors from the global localization
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Table 7: Performance of fully automatic framework.

Dice similarity coefficients Shape error in mm

Mean Std Mean Std

UNet 0.840 0.136 1.695 2.614

UNet-S 0.840 0.135 1.689 2.555

and center localization phase. Since most of the difficult vertebrae samples do

get into the segmentation phase and difference in performance is not noticeable535

in terms of DSC. However, as the major difference between the networks is a

shape-aware term, shape error have achieved a 0.35% relative improvement even

after full automation. The histogram plots of these two metrics are shown in

Fig. 21.
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Figure 21: Histogram plot of Dice similarity coefficients (top) and shape error (bottom) for

the fully automatic framework with UNet and UNet-S.

Some qualitative results are shown in Fig. 22. It can be seen that even540

with severe clinical conditions (row 3, 4) and image artefacts (row 5) the fully

automatic algorithm has been able to produce accurate segmentation results.

However, the algorithm doesn’t guarantee acceptable segmentation everywhere.

Some less accurate results on difficult cases are shown in Fig. 23. Row 1 of

Fig. 23 shows a case where the center localization framework failed to detect a545

vertebrae center with osteophytes (C5) and detected a false center from verte-

brae C2. Thus the final segmentation results have a false positive in vertebrae

C2 and a false negative for C5. The second row shows a case where both global

localization and center localization failed due to surgical implants in the lower
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(a)                          (b)                          (c)                         (d)

(1)

(2)

(5)

(3)

(4)

Figure 22: Fully automatic framework results. True positive (green), false positive (blue) and

false negative (red). Ground truth center (x) and predicted centers (+). (a) Original image

(b) Global localization (c) Center localization (d) Vertebrae segmentation.
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(a)                          (b)                          (c)                         (d)

(1)

(2)

(3)

(4)

(5)

Figure 23: Fully automatic framework results for challenging cases. True positive (green), false

positive (blue) and false negative (red). Ground truth center (x) and predicted centers (+).

(a) Original image (b) Global localization (c) Center localization (d) Vertebrae segmentation.
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vertebrae (C6-C7). A test case with severe osteoporosis and bone loss is shown550

in row 3. Even with such severe clinical condition the global localization and

center localization algorithm were able to produce correct results for C3 and C4,

however, the segmentation framework still suffered to segment those correctly.

Another severe condition with bone loss, osteoporosis and vertebrae fusion is

shown in row 4 of Fig. 23. Even with such severe condition, global localization555

and center localization have been able to correctly detect four vertebrae centers,

but unfortunately, a false center has also been detected in the extended part of

the C2. Interestingly, the segmentation framework also segmented a vertebrae-

like structure in the extension where the top and bottom border followed the

bone structure. However, the segmentation results for the actual vertebrae are560

incorrect because of the severity of the condition. Finally, in the last row, we

have shown a complete failure due to the presence of large surgical implants.

The global localization algorithm failed completely thus the following subtasks

were not able to perform either.

7. Conclusion565

The cervical spine is one of the most important yet vulnerable anatomies

of the human body. Despite advances in imaging technologies, a large number

of cervical injuries remain unnoticed in the emergency room. Towards build-

ing a fully automatic injury detection system, in this paper, using the recent

advances in deep learning technologies, we have proposed a fully automatic570

vertebrae segmentation framework for X-ray images. The complete process is

divided into three subtasks: localization of the spine, localization of the verte-

brae centers and segmentation of the vertebrae. We have proposed a solution

to each these subtasks using deep learning concepts. First, we have proposed a

novel approach of using fully convolutional segmentation network for solving a575

localization problem. Our global localization algorithm produced a sensitivity

and specificity of 0.96 in localizing the vertebrae in the X-ray images. Second,

we have introduced a novel loss function for predicting probabilistic map using

36



a fully convolutional network for localizing image landmarks. Our center local-

ization framework has been able to correctly detect 93.73% of vertebrae with580

an average error of 1.81 mm. Third, we have proposed a novel shape-aware loss

term for vertebrae segmentation. The shape-aware segmentation has produced

an average Dice similarity coefficient of 0.944 and an average point to curve

error of 0.55 mm over a dataset full of real-life emergency room X-ray images,

containing surgical implants, clinical conditions and image artefacts. Last but585

not the least, we have proposed a complete and fully automatic framework for

vertebrae segmentation in X-ray images which has been able to produce a final

Dice similarity coefficient of 0.84.

The current framework still has several limitations. The center localization

framework can be further improved by removing outlier centers away from the590

vertebral curve. The current patch based center localization framework has

the limitation of not knowing which center belongs to which vertebra. We are

currently working on a vertebra detection framework, which will be able to

determine which vertebrae are visible in the image. The shape-aware segmenta-

tion framework can further be improved to determine if a segmented vertebrae595

shape is regular or injurious/fractured. The next step in our research is to build

a complete injury detection system which will be able to help the emergency

room physicians by highlighting spinal areas with high possibility of injuries.

The proposed framework is general and can be extended to other views of the

cervical spine, including odontoid peg and anteroposterior (AP) views.600
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