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Abstract

Learning the global hand orientation from 2D monocular images is a challeng-
ing task, as the projected hand shape is affected by a number of variations.
These include inter-person hand shape and size variations, intra-person pose
and style variations and self-occlusion due to varying hand orientation. Given
a hand orientation dataset containing these variations, a single regressor proves
to be limited for learning the mapping of hand silhouette images onto the ori-
entation angles. We address this by proposing a staged probabilistic regressor
(SPORE) which consists of multiple expert regressors, each one learning a sub-
set of variations from the dataset. Inspired by Boosting, the novelty of our
method comes from the staged probabilistic learning, where each stage con-
sists of training and adding an expert regressor to the intermediate ensemble
of expert regressors. Unlike Boosting, we marginalize the posterior prediction
probabilities from each expert regressor by learning a marginalization weights
regressor, where the weights are extracted during training using a Kullback-
Leibler divergence-based optimization. We extend and evaluate our proposed
framework for inferring hand orientation and pose simultaneously. In compari-
son to the state-of-the-art of hand orientation inference, multi-layered Random
Forest marginalization and Boosting, our proposed method proves to be more
accurate. Moreover, experimental results reveal that simultaneously learning
hand orientation and pose from 2D monocular images significantly improves
the pose classification performance.
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1. Introduction

Over recent years, real-time depth cameras have facilitated the introduction
of a range of novel natural interaction methods [I, 2]. Depth maps from such
cameras have been widely used in research that solves hand pose estimation
under challenging settings [3, 4, [5l 6]. While depth cameras are proving to
be of great significance for addressing the hand pose inference problem, these
cameras are not widely available on mobile devices due to the considerations of
power consumption, cost and form-factor [7]. Technologies like Google’s Project
Tango E| and Pelican Imagingﬂ show the recent focus on miniaturizing the depth
sensors for mobile devices. However, the need for a custom sensor with complex
electronics, high-power illumination and physical constraints, such as baseline
between illumination and sensor, limit the use of such devices, especially when
compared to 2D monocular cameras [7]. In contrast, 2D monocular cameras are
readily available in the majority of the mobile devices. Therefore, methods that
utilize 2D monocular images to infer characteristics of the hand, such as hand
orientation and pose, in new ways can significantly contribute towards novel
interaction on these devices.

The human hand is an effective interaction tool due to its dexterous function-
ality in communication and manipulation [§]. For this reason, the problem of
estimating hand pose has attracted a lot of research interest [3 4 [0} [I0]. Despite
the recent progress in this field, limited attention has been given to study the
effects of hand orientation variations on hand pose inference [I]. In this paper,
we propose a method for inferring hand orientation for planar hand poses using
2D monocular images of the hand. Furthermore, we show that simultaneously
learning from hand orientation and pose significantly improves the pose clas-

sification performance. We note that the proposed hand orientation inference

Thttps://get.google.com/tango/
2http://www.pelicanimaging.com/
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method can benefit the existing model-based hand pose estimation methods
that optimize against global hand orientation and pose [11} 12]. Furthermore,
when used in Augmented Reality applications, the inferred hand orientation can
provide the user direct control of the orientation of augmented objects [13].

We observe that the changing orientation of the hand induces changes in the
projected hand shape in 2D monocular images. We therefore utilize contour-
based features in our work as these features encode the geometric hand shape
variations that directly correspond to changes in orientation of the hand [I3].
Similar features have been previously used for hand shape-based gesture recog-
nition [I4] and person recognition [I5]. As we will show in this paper, these
features also prove sufficient for jointly learning hand orientation and pose.
Moreover, we note that the hand contour is more robust to scene illumination
than intensity and compactly encodes (as a 1D signal) the hand’s global orienta-
tion unlike local feature descriptors like texture, shape context, or SIFT [16]. In
such cases, a model that learns the relationship between contour-based features
and the orientation angles would contribute towards understanding and using
different hand postures. Furthermore, the projected hand shape is affected by
a number of variations, which include inter-person hand shape and size varia-
tions, intra-person pose and style variations and self-occlusion due to varying
hand orientation.

In this paper, we present a staged probabilistic regressor (SPORE) which
consists of an ensemble of expert regressors, each one learning a subset of vari-
ations from the dataset. We use SPORE to address the inference of hand
orientation angles, resulting from flexion/extension of the wrist and prona-
tion/supination of the forearm measured along the azimuth and elevation axes
(as shown in Fig. . SPORE learns the mapping of contour-based features,
extracted from 2D monocular images, onto the corresponding hand orienta-
tion angles. The expert regressors in SPORE are trained, using contour-based
features extracted from 2D monocular images of the hand, and added to the
ensemble in stages forming an intermediate model. Evaluation of the inter-

mediate model, using training samples, reveals a latent variable space. This
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Figure 1: Movements in the wrist and forearm used to define hand orientation shows flexion

and extension of the wrist and supination and pronation of the forearm.

latent variable space defines a subset of training data that the existing regres-
sors have difficulty in learning from. This subset is used to train and add the
next expert regressor. Each expert regressor gives a posterior probability for
assigning a given latent variable to the training samples. These posterior proba-
bilities are used along with the ground truth (GT) prior probability to estimate
marginalization weights, which are used in the intermediate model to combine
the ensemble of expert regressors. After training all stages, a marginalization
weights regressor is trained that learns the mapping of hand contour-based fea-
tures onto marginalization weights. Given an input silhouette image, we first
extract a hand contour-based feature vector. This is followed by online predic-
tion which involves using the feature vector to infer the marginalization weights
for marginalizing the predicted posterior probabilities from each expert regres-

Sor.

1.1. Contributions

Our main contribution comes from the staged probabilistic learning, where
we let the intermediate model define the subsets of data used for training the
next stage. This has a two-fold contribution to the existing work in [I7] where
pre-defined latent variables were used for defining the subsets of the data. First,

it uses the relationship of difficult to understand latent variables for defining
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the subset, enabling its application to potentially any machine learning prob-
lem where easily defined subsets of the training data do not exist. Secondly,
in cases where datasets are small and dividing them into subsets can result in
shallow under fitting regressors, our proposed staged learning method is capa-
ble of defining latent variables with overlapping boundaries ensuring complete
training of expert regressors. We further extend and demonstrate the applica-
bility of the proposed method for simultaneously inferring hand orientation and
pose. Furthermore, we are the first to show that a method which simultane-
ously learns hand orientation and pose from 2D images outperforms a pose only
classifier as it is able to better reason the variations in pose induced due to the
viewpoint changes.

The outline of this paper is as follows. Section [2| presents the related work,
while Section [3]details the problem definition and Section 4] outlines the assump-
tions undertaken. Our proposed staged probabilistic regressor is presented in
Section [p| and the experimental results with discussion are presented in Section

[l Finally, Section [7] concludes the paper.

2. Related Work

This section presents a review of the previous methods involving hand ori-
entation and pose estimation. We include the review of hand pose estimation
methods as these could be related to single-shot hand orientation estimation,
where some of these methods also exploit the quantized orientation of the hand
[4]. However, accurate hand orientation estimation is addressed only by a few
methods [I3] I8, 19]. To achieve their goals, researchers have employed differ-
ent modes of input data, including colored gloves, color and depth images [8].
Our proposed SPORE method falls in the category of RGB images as we uti-
lize colored images of hands along with the corresponding orientation angles for
both training and prediction. The following sections present a brief overview of
generative, discriminative and hybrid hand pose estimation methods. This is

followed by the presentation of existing work on hand orientation inference. We
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then present the related methods that utilize marginalization of multi-layered

Random Forest (ML-RF).

2.1. Generative Methods

Generative methods use a model-based approach to address the problem of
hand pose estimation. By optimizing the parameters of a hand model to the
input hand image, these methods can simultaneously estimate the articulated
hand orientation and pose. A major limitation of 2D monocular cameras is that
the projected 2D image loses vital depth information, which gives rise to an
ambiguity where it becomes difficult to differentiate multiple postures with sim-
ilar 2D image projections. Generative methods are capable of addressing this
ambiguity in a 2D image by utilizing a fully articulated 3D hand model [T11 [12].
de La Gorce et al. [12] optimized the texture, illumination and articulations of
a 3D hand model to estimate hand orientation and pose from an input 2D hand
image. A similar method was proposed in [I1], where generative models for both
the hand and the background pixels were jointly used for image segmentation
and hand pose estimation. Some of the recent generative methods also utilized
depth images and advanced optimization techniques such as particle swarm op-
timization (PSO) [B, 20, 21I]. The multi-camera based generative method in
[20] recovered hand postures in the presence of occlusion from interaction with
physical objects. Although these generative techniques are capable of estimat-
ing the underlying articulations corresponding to each hand posture, they are
affected by the drifting problem [5l [11, 12} 20]. As the performance depends on
pose estimation from previous frames, predicted poses may drift away from GT
when error accumulates over time [4]. Furthermore, such methods rely on ini-
tialization, where an initial static hand orientation and pose is used. Moreover,
optimizing the parameters with up to 27 degrees of freedom (DOF) for 3D hand
models is computationally expensive because of the vast search space [§], and
in some cases requires implementation on a GPU to achieve close to real-time
execution [5]. These methods can benefit from a single-shot hand orientation

and pose estimation method that can be used for initialization as well as to cor-



140

145

150

155

160

165

rect the drift in error. We note that some recent hybrid approaches described in
Section address the drifting error by re-initializing the generative approach

using single-shot hand orientation and pose estimation.

2.2. Discriminative Methods

These methods are based on learning techniques and are able to learn the
mapping from the feature space to target parameter space. Their ability to infer
a given parameter from a single input image [22] has been a major factor in their
recent popularity. Furthermore, these methods are computationally lightweight
as compared to generative approaches [23].

A number of discriminative methods have been previously proposed to esti-
mate hand pose [3, [, 24] 25]. Wang et al. [24] used nearest neighbor search to
infer hand pose from 2D monocular images. The approach relied on a colored
glove and a large synthetic dataset of hand poses. In [25], a Random Forest clas-
sifier was trained on a large dataset of labeled synthetic depth images to estimate
the hand pose. Keskin et al. [3] showed that the performance of the method in
[25] can be improved by dividing the dataset into clusters and using the ML-RF
classification. Tang et al. [26] exploited the hierarchical relationship of different
hand joints by using a divide-and-conquer strategy. This method built a topo-
logical model of the hand where the global kinematic constraints were implicitly
learned. They also collected a dataset of 10 users performing various random
hand postures, which they used to train and test their topological model. Sun
et al. [I0] also exploited the hierarchical relationship between different parts
of the hand to train a cascaded regressor. They argued that the hand shape
undergoes large variations due to changes in the viewpoint and finger articula-
tions. They addressed this issue by presenting a 3D pixel parameterization that
achieved better invariance to 3D viewpoint changes. A major challenge faced by
methods relying on synthetic datasets are their lack of generalization for unseen
data. Tang et al. [4] addressed this issue by proposing a semi-supervised trans-
ductive Regression Forest for articulated hand pose estimation. This approach

learned hand pose from a combination of the synthetic and realistic datasets of
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depth images. In [22], generalization for human body pose was addressed by
incorporating real scenario-based variations into the synthetic data generation
method.

Recent interest in Convolutional Neural Networks (CNN) has also been
expressed in some discriminative hand pose estimation methods [27] 28] 29].
Tompson et al. [27] localized joints using CNN. They generated single-view
heatmaps for joints localization using depth images as input. Ge et al. [28]
extended [27] to utilize multi-view CNN. A query depth image of the hand was
first projected onto three orthogonal planes to produce multi-view projections.
Three CNNs were then trained to infer the heatmaps of different joint loca-
tions in each projection. The inferred multi-view heatmaps were fused together
to produce the final 3D hand pose. Oberweger et al. [29] explored different
CNN architectures for articulated hand pose inference. They achieved this by
learning the mapping of depth images onto the 3D joint locations. A regression-
based joint-specific refinement stage was introduced to improve the localization
accuracy.

Apart from [4], most existing discriminative hand pose estimation methods
do not utilize hand orientation information. As we will show in this paper,
hand orientations provide important information about variations induced in
the projected 2D hand pose image due to viewpoint changes and can contribute

towards improving the performance of hand pose classification.

2.3. Hybrid Methods

Recent literature has seen interest in utilizing a hybrid approach, that com-
bines generative and discriminative methods [6l @, 21} 27, 30]. These methods
utilize the one-shot pose estimation capability of discriminative models to make
generative models robust to tracking failures and drifting error. Moreover, the
generative method imposes kinematic constraints resulting in realistically accu-
rate descriptions of an articulated hand pose.

Xu et al. [3T] took a three-step approach where they learned from a synthetic

dataset of depth images. This method first estimated the in-plane orientation
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and 3D location of the bottom of the hand. The orientation information was
then used to correct for in-plane rotation of the input data, where depth-based
difference features were utilized to infer a number of candidate postures of hand.
These candidate postures were used in a generative model to infer the final
detailed hand pose. The resulting method turned out to be computationally
expensive and was only able to generalize under in-plane rotations for a single
user. Tompson et al. [27] used a CNN for feature extraction and to infer
heatmaps for localizing joints. The heatmaps were used along with inverse
kinematics to estimate the hand pose. This approach, however, was limited by
prediction of 2D joint locations, and its reliance on depth maps for determining
the third coordinate, which is unavailable for occluded joints. Oberweger et
al. [9] proposed a data-driven approach to estimate 3D hand poses from depth
images. This method utilized a CNN for estimating the initial joint locations
from a depth image of the hand. They replaced the generative model with a
feedback loop implemented using CNN and trained to synthesize depth images
from inferred joint locations. Sharp et al. [2I] utilized a discriminative re-
initializer for optimizing PSO. A similar approach was proposed in [6] for hand
tracking using non-linear optimization methods.

All of the emerging hybrid methods require a large dataset for learning the
discriminative part, while still relying on computational resources to perform
generative optimization. Owing to the complexity, such methods have not been

deployed or tested on mobile devices.

2.4. Orientation Estimation

A limited number of methods exist in the literature that estimate hand
orientation [I3] [18, 19]. Most of these methods use camera calibration and
hand features to build a relationship between camera pose and hand orientation.
These methods do not address the generalization problem and hence require a
calibration step for every new user and camera setup.

To the best of our knowledge, image-based hand orientation regression has

only been applied in our previous work in [13}[17], which does not require camera
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calibration. Our method in [I3] utilized two single-variate Random Forest (RF)
regressors based on an assumption that the orientation angles vary indepen-
dently. This method, evaluated on a subset of hand orientation angles, showed
the significance of inferring hand orientation from 2D uncalibrated monocular
images. We extended the hand orientation inference framework further, in [17],
by utilizing an ML-RF regression method that used multi-variate regressors to
regress the orientation angles together. Additionally, we used a hand orientation
dataset that covered a more detailed orientation space. Similar to our previous
work, the method proposed in this paper also does not require camera calibra-
tion which renders it suitable for a wider array of applications across different
devices. The dataset used for training the proposed method comes from multiple
people, which enables it to naturally handle person-to-person hand variations.
The proposed staged probabilistic regression method learns different variations
in stages, where it relies on intermediate model evaluations to reveal harder to
learn samples.

Independent work proposed in [21] utilized global hand orientations from
depth images to improve hand pose optimization. This method first generated
a dataset of synthetic depth images and the corresponding global hand orien-
tations. An ML-RF model was then utilized, where the first layer inferred a
quantized hand orientation and the second layer estimated refined orientation
along with additional pose information. The prediction probabilities, however,
were utilized to sample candidate solutions for use with PSO-based optimiza-
tion. The synthetic depth images provided detailed visible shape information,
which introduced fewer ambiguities in the data as compared to 2D images, thus

resulting in a simpler orientation estimation problem in [21].

2.5. Marginalization of multi-layered Random Forest

Previous work on hand pose estimation have utilized ML-RF, where complex
problems have been divided and solved by a number of expert regressors trained
on simpler subsets of the data [3] [7, [[7]. Keskin et al. [3] proposed an ML-RF

classification for hand pose estimation, which was divided into two classification
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layers, namely, shape classification and pose estimation layer. Three most sig-
nificant posterior probabilities from the first layer were used to marginalize the
posterior probabilities in the second layer. A similar ML-RF regression method
was proposed in [7], where the first layer performed coarse classification and
the second layer achieved fine regression. Marginalization in this method was
done using posterior probabilities from coarse classification layers as weights for
predictions at the fine regression layer. Dantone et al. [32] proposed Condi-
tional Random Forest for detecting facial features. This method also used all
posterior probabilities from both layers for marginalization. Sun et al. [33] uti-
lized Conditional Random Forest for inferring joint locations for human body
pose estimation. They argued that a multi-layered model that is conditioned on
a global latent variable, such as torso orientation or human height, can signifi-
cantly contribute to improved joint location prediction. All these methods relied
on posterior probabilities from the first layer which tends to underestimate the
true posteriors, making these methods prone to errors [34]. Furthermore, as the
first layer is trained independently to the second layer, these methods cannot
recover from inaccuracies arising from the posterior probabilities of the second
layer. Our previous work in [17] proposed a method for learning marginaliza-
tion through regression by extracting marginalization weights using posterior
probabilities of the expert regressors. In this paper, we extend this work by
introducing a staged probabilistic regression method for learning hand orienta-
tion.

Boosting algorithms, such as Adaboost [35] and Gradient Boosting [36],
sequentially learn and combine weak learners, such as Decision Stumps, to build
an expressive model. The key idea in these methods is to highlight the training
samples with large errors and let the next weak learner minimize such errors.
Adaboost achieves this by having an additional weight for each training sample
whereas Gradient Boosting utilizes the gradient representing the global loss.
Similar to Gradient Boosting, Alternating Regression Forest [37] incorporates a
global loss function for improving the Regression Forest optimization algorithm.

Our proposed staged learning method is inspired by Boosting, however, it differs

11



290

295

300

305

310

from Boosting as it follows a probabilistic approach. Moreover, our method
utilizes only harder samples to train the subsequent stages, in contrast to all data
used in non-cascaded Adaboost or Gradient Boosting. This enables our method
to learn an ensemble of expert regressors, where each regressor learns well from
only a subset of variations in the dataset. Furthermore, we mathematically
formulate a probabilistic method for combining such ensembles, facilitating them
to work collectively for better accuracy. Another appealing property of our
method is that, unlike Adaboost, it does not require the underlying regressors
to incorporate training weights representing the evaluation of the previously
learned stages. In this paper we utilize the Random Forest as the probabilistic
regressor, however, we note that our method can be easily generalized to work

with any probabilistic regressor or classifier.

3. Problem Formulation

Let U = {(dy, 0x)}, be a dataset with K Contour Distance Feature (CDF)
vectors d; and the corresponding target orientation vectors o containing the
continuous variables for azimuth (¢y) and the elevation (1) angles. The CDF
vectors are extracted from hand silhouette images captured from an uncalibrated
2D monocular camera such that it contains variations in hand orientation, shape
and size [13]. We further describe the method for extracting the CDF in Section
In this work, we address the problem of learning the mapping of the CDF
in di onto the target orientation og, i.e. the orientation angle pair (¢, ¥x).
This is an ill-posed problem, as there may be multiple hand orientations that
produce the same contour. We propose a staged learning algorithm for an ML-
RF regressor. This method utilizes an ensemble of expert regressors that learns
the complex mapping of CDF dj onto the target hand orientation oy, despite

the presence of a number of variations in orientation, shape and size of the hand.

12
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Figure 2: Variations in style, shape and size of hand from 15 participants in our datasets.

The hand images are shown for the same orientation.

4. Assumptions

Most mobile devices are equipped with 2D monocular cameras. 3D depth
cameras are not widely available on such devices due to their high power con-
sumption, cost and relatively larger form-factor [7]. Our proposed SPORE
method is targeted for mobile devices, and for this reason, we only use 2D
monocular images. Most existing state-of-the-art methods utilize depth data,
where the focus is to infer detailed articulated hand pose [3, 4] [5]. These meth-
ods are not suitable for a mobile scenario where, in addition to the absence
of depth sensors, limited computational resources are available. The proposed
method for hand orientation and pose estimation assumes the use of 2D monoc-
ular cameras, where limited computational resources are available and real-time
performance is required. Moreover, to enable a method that works across differ-
ent devices without the need for camera calibration, we assume that the utilized
cameras are uncalibrated.

We assume that the hand orientation can be represented with a single 3D

normal vector for a planar hand pose. This enables us to reliably extract hand

13



330

335

340

345

350

355

orientation angles encoded by the 3D normal vector, which is satisfied by a
limited set of articulated hand postures. Nevertheless, such assumption facili-
tates our research to focus on the effects of hand orientation variations with a
predefined set of planar hand shapes. This paper refers to planar hand shapes
as hand poses, where our aim is to study the effects of orientation variations
on such hand poses. While the problem seems similar to pose estimation for
rigid objects, it is quite different from it as our data contains multiple sources
of variations. These include inter-person hand shape and size variations and
intra-person pose and style variations. In Fig.[2] we show the inter-person hand
variations in style, shape and size of 15 different hands from our dataset with
the same hand orientation. We note that these variations further make the hand
orientation and pose estimation a challenging task.

Given the 3D normal vector, we extract the orientation encoded by azimuth
(¢) and elevation () angles [13]. Our aim is to model variations in orientations
for fronto-parallel hand, therefore we limit the orientation angles to \/W <
45°. On the contrary, hand orientations with \/m > 45° are affected by
self-occlusion where the visible shape of the hand is significantly occluded. Fig.[3]
shows some example hand images for these orientations.

Skin and hand segmentation have a long history in computer vision, where
many segmentation techniques have been devised [38, [39, [40]. We therefore ex-
tract hand silhouette images by utilizing the skin detection method proposed in
[39]. We assume that the background is uncluttered and the illumination con-
ditions are fixed for reliable silhouette extraction. This is a potential limitation
of the proposed method, however, it enables us to focus on the hand orientation
estimation problem given a segmented silhouette image of planar hand shape.

To robustly extract hand shape features, we assume that the in-plane ori-
entation 6 of the hand will always be within a predefined range of an upright
hand pose, where 8 = 90°. Our assumption is satisfied by setting the operating

range on the in-plane orientation to be 0° < 6 < 180°.
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Figure 3: Hand images with orientation angles in the range \/¢? 4+ %2 > 45°. The large
orientations result in self-occlusion where the visible shape of the hand is significantly occluded.

Such orientations are not addressed in this paper.

5. Staged Probabilistic Regression

In our proposed method, we utilize a multi-layered Random Forest composed
of two layers, where the first layer consists of a single marginalization weights
regressor and the second layer is composed of an ensemble of expert regres-
sors trained on subsets of the hand orientation dataset. We introduce a staged
learning method that trains and adds the expert regressors to the model incre-
mentally. The flowchart of the training and prediction framework for SPORE
is presented in Fig. Algorithm [I] and [2] detail the training and prediction
algorithm for SPORE. In the proposed framework each expert regressor that
is added to the model is trained on samples that the existing expert regressors
have difficulty in learning. We achieve this by combining the existing models
using marginalization weights and evaluating the accuracy of the model after
each training stage. Based on a threshold error, we identify the harder regres-
sion problems after each stage and use these samples to train the next expert
regressor. This approach enables us to use our regression-based marginalization
framework without defining subsets using latent variable boundaries as in [17].

When all expert regressors have been trained, the posterior probabilities corre-

15
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Figure 4: Flowchart shows the staged probabilistic regression (SPORE) training and predic-

tion framework.

sponding to each sample in the training set are acquired from each of the trained
expert regressors. We derive and apply a Kullback-Leibler divergence-based op-
timization technique that estimates the marginalization weights for estimating
marginal probability distribution from the given ensemble of expert regressors.
We use these marginalization weights to train a marginalization weights regres-
sor which enables us to combine the ensemble of expert regressor. As demon-
strated in Section [0} this staged learning approach allows us to achieve higher
accuracy as compared to previously proposed marginalization methods as well
as a single regressor-based approach. We now describe the SPORE approach in
detail.
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Algorithm 1: Training algorithm for SPORE.
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Input: Uy = {(d1,01),---,(dk,0k),- - ,(dK,0K)}, N, «

% N is t

he number of stages

% « is the error threshold

Output:

(ER,, MR)

% ER.,, are N Expert Regressors

% MR is the Marginalization Weights Regressor

n <+ 1 % Starting stage
{rn(B)}YE_ | 1 % Latent variable selecting all samples
User <+ selectSubset(Uagir, n) % Select initial subset of Uy

% Training ER,,

for n +

if n

else

end

else

end

User

end

% Define latent variable for next stage described in Section
if |op(k) — ox| > « then

1 to N do

ER, + Train(Use;) % Train stage n using selected subset

= 1 then
p (Ok|Tn,dy) < Predict(dg, ER,) % Get posterior probabilities

op (k) « arg max,, p(ok|rn,dr)

for m < 1 to n do
p (0 |rm,dr) < Predict(dy, ER,,)
end

wnk  getMarginalizationWeights(p (og |7n, dr)) % Described in Section

p(or|dr) < > r 1 p(0Ok|rm,dr) wmr % Marginalize probabilities described in

Section [5.3]

o, (k) « arg max, p (o |dy)

rn(k) < 1

(k) < 0

<+ selectSubset( Uqiz, )

% Training MR

for n «+

1 to N do

p (0 |rn,dr) < Predict(dix, ER,,) % Get posterior probabilities

Wnk

+ getMarginalizationWeights(p (o |7y, dk))

Wan + {(d1,wn1), - (dr,wnKk)} % Define training set for MR
MR «+ Train(Wa”)

end

return ER,, MR
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Algorithm 2: Prediction algorithm for SPORE.
Input: d, ER,,, MR, N

% d is the input Contour Distance Feature vector
% ER.,, are N Expert Regressors
% MR is the Marginalization Weights Regressor

Output: o

% o = (¢, ) is a vector of predicted orientation angles

10+ 0

2 wy ¢ Predict(d, MR) % Predict Marginalization Weights

3 forn < 1 to N do

a p (o|rn,d) « Predict(d, ER,) % Get posterior probabilities

5 end

6 p(o|d) + ij:l p (0|rn,d)w, % Marginalize posterior probabilities
7 0 < argmax, p (o|d)

8 return o

5.1. Contour Distance Features

Our proposed framework utilizes the Contour Distance Features (CDFs)
which are extracted from hand silhouette images. CDFs have been previously
used for hand shape-based gesture recognition [I5]. The changes in the CDF
relate to variations in both hand orientation and pose. Moreover, we also employ
a method for aligning and normalizing the extracted features. We now describe
the method for extracting CDF vectors.

Given a dataset {sk}ff:l of input silhouette images, we compute a corre-
sponding CDF set {dj}/_; [13]. The contour extracted from each silhouette
image in {sy }%_, consists of points px = {Pk1,** , Pki»"** PkI, }, Where k spec-
ifies the sample index, 7 is the index for each point in the contour and Ij is

kth sample. Let a contour distance for

the total number of contour points in
a single silhouette image be denoted by &k = {Jm, cee ,Jm‘, - -~c?k1k}. CT;“- is
computed by calculating the Euclidean distance of each of the contour points

Pri = {p}; p};} to a prevalent point on the wrist qr = {¢f,¢{} and is given by:

dy; = \/(q,‘? — )"+ () —pl)’, (1)

where q; is extracted, for each sample in {sk}szl, by emanating a ray from
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Figure 5: Contour Distance Feature (CDF) vector extraction from a hand contour showing
(a) the method for extraction of a prevalent point qi on the wrist using a fitted ellipse with

in-plane orientation 6, centroid ci and a ray vi and (b) the corresponding CDF vector.

centroid in the direction of the wrist [I3]. We further discuss the approach
for extracting qi in the next section. The extracted features have a different
number of samples I and magnitude depending on the scale changes and inter-
person hand shape variations. We normalize the magnitude using Equation
_ d,

d; =

max (dg;) @
_ V<i<l,

d; is then resampled to a specified number of samples T to produce dj €
{di},. In our experimental evaluation, we found that the value of Ij is
related to the scale of the hand, which we found to be in the range 800 — 1400
samples. We empirically choose T = 1000 to preserve the variations in the

feature vector.

5.1.1. Eaxtraction of a Prevalent Point on the Wrist

We now describe the method for extracting a prevalent point qj on the wrist
in a silhouette image sj. This point is used as a reference point in Equation [I] to
extract the CDF vector. Furthermore, the point q; also aligns the corresponding
CDF vector. Fig. [5| shows the method for extracting such prevalent point, for
a given hand contour, along with its corresponding CDF vector. We use the

in-plane orientation @ of the hand, which can be defined by the angle between
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the x-axis and the major axis of an ellipse that fits the hand contour. Given
# and the contour centroid cg, an equation of a ray emanating from cj can be
defined by:

Vi, = {rVy + Cg, (3)

where Vv, is the unit vector encoding the direction,

1
tan 6
V= 4 4
* V12 4+ tan? 0 4)

¢ is a scalar for correcting the direction of vy,

+1 it 4 <90°
{= (5)
-1 if 8 > 90°,
and k is a parameter that changes the length of the ray.

The direction scalar £ is calculated using Equation[f]based on the assumption
that the in-plane orientation 6 of the hand will always be in the range 0° < 6 <
180°. ¢ is used in Equation [3| to correct the direction of the ray vj so that
it is always propagating towards the wrist. Our proposed method increases
k until the ray intersects with the contour at a point qx € pg; on the wrist.
This point is also used as a starting point for the distance feature calculation.
The construction of CDF in this way makes the proposed method invariant to

in-plane rotations in the range 0° < 6 < 180°.

5.2. Random Forest Construction

Building on the reported superior performance in the existing work for hand
pose estimation [3] [4, [7], our proposed staged probabilistic regression method
utilizes a Random Forest training algorithm for both regression layers. In this
section, we present details of the training algorithm specific to our proposed
method, a further in-depth literature on Random Forest can be found in [41].

The forest is a collection of T" trees which are trained using a training dataset

U = {(dg,0r)},. Each tree consists of split nodes, responsible for performing
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a binary split on the input dataset, and terminal leaf nodes that store the
probability distribution of the data propagated down the branches of the tree.
The learned parameters © = (w, 7) are stored at each split node, where w is the
index of the test feature and 7 is its corresponding learned threshold defining
the split. The data arriving at the j** node is split using a splitting function
f(U;,0©) defined as:

f U, ©) = Left ifU; (w) <, ©)

Right otherwise.

Driven by maximizing the information gain @ (i;,©), this splitting function
splits the data into two sets {Z/{-Left7umght} € U, for the child nodes. The

j J
information gain Q (U, ©) is defined as:

b
QU;,0)=HU)— > |%GW% (7)

be{Left,Right} ¢4

where H (U;) is the Shannon entropy of U;.

The branches in the tree terminate with leaf nodes that contain the proba-
bility distributions of the data arriving as a result of the above splitting process.
During the online prediction, a given input feature vector d propagates down the
branches of each tree, where a leaf node gives a posterior probability p: (¢, 1|d).

The predictions from all trees are aggregated as:

T
p(6,01d) = 2 > pi (6, 01d) 0

where (¢,1) is the orientation vector o whose final value is determined by

maximum-a-posteriori (MAP) estimation as:

(¢,9)" = ar%maxp(¢, Pld). (9)

)

5.8. Marginalization of Multiple Expert Regressors

In our proposed method, the ensemble of expert regressors consists of a set

of multi-variate Random Forest regressors that are trained on the subset of our
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hand orientation dataset U. This ensemble of expert regressors enables better
generalization in the presence of a number of variations in the dataset. The
subsets of our dataset are defined based on latent variable representations that
are generated using the intermediate model evaluations. Given an input CDF
vector d each expert regressor infers the posterior probability p (¢, ¥ |r,,d) for
a given latent variable r,,.

Our proposed expert regression layer contains an ensemble of trained ex-
pert regressors, where the task of marginalization is to estimate their combined
marginal probability that is used to infer orientation angles o = (¢,1) for a
given input feature vector d. This marginal probability is defined as:

N

p(6,0ld) = p(e,lrn,d)wn, (10)

n=1
where w,, are marginalization weights corresponding to each latent variable such
that Efy:l wy = 1 and N is the total number of expert regressors. In the subse-
quent sections, we present a method to estimate the marginalization weights w,,
from trained expert models and propose to use a marginalization weights regres-
sor that learns the mapping of CDF d onto the corresponding marginalization

weights w,,.

5.4. Latent Variable Generation using Intermediate Models

In our proposed work we do not explicitly define the latent variable space,
as in [I7]. We, however, rely on intermediate model evaluations for defining
a latent variable 1, and, as a result, define the subsets used for training the

th stage. We start training the first expert regressor

expert regressor in the n
using all samples in the dataset /. Following this, we train and add additional
expert regressors to the ensemble using subsets of the dataset defined by the
corresponding latent variable r,,. For each training sample in U, we determine
if it belongs to the latent variable r,, by:

1 if loy(k) — o] >«

rn(k) = (11)
0 otherwise,
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a0 where o,(k) are the orientation angles predicted by marginalizing intermediate
model probabilities using Equation and oy are the GT orientation angles,
respectively. « is an adjustable threshold and r, (k) € {0,1} determines if the
given sample belongs to the latent variable 7, for the n* stage.
This method has two advantages over the previously proposed latent variable
w5 based training [I7]. Firstly, the proposed method relies on the model to define
and use subsets, which might be useful in cases where optimal latent variable-
based subset definitions are difficult or not well defined. Secondly, in cases
where datasets are small and dividing them into subsets can result in shallow
under fitting models, our proposed incremental learning method is capable of
w0 defining latent variables with overlapping boundaries ensuring complete training

of expert regressors.

5.5. Marginalization through Regression

We marginalize the posterior probabilities from multiple expert regressors
using a single Random Forest regressor. This regressor is trained using marginal-
ization weights that are extracted using training data. Marginalization through
regression is able to generalize better by learning a complex mapping of the CDF
vectors onto weights that marginalize the posterior probabilities from expert re-
gressors [I7]. For estimating the marginalization weights, we first formulate
the prior probability for the training samples using the GT orientation angles

(Pgts Yge) in a multi-variate normal distribution as:

p(%t,%t) :N(<¢gt7"/}gt)72>v (12)

where X is the covariance that can be adjusted to control the spread of p (¢4, gt ).

Given the prior probability p (¢4, 14:) and the corresponding posterior prob-
abilities p (¢, ¥|ry, d), we propose a novel optimization method, where the marginal-
ization error is based on the Kullback-Leibler divergence [42]. Fig. |§| shows the
marginalization weights estimation framework. The error is optimized to esti-

mate the GT marginalization weights w,, for all latent variables r,, € {r1, 72,73 -rn}.
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Figure 6: Marginalization weights estimation using training data. A training sample is used
to get posterior probabilities from each expert regressor. These probabilities are then used
along with the prior probability in Equation to estimate marginalization weights and the
corresponding marginalized probability. Probabilities shown are only for demonstrating the

concept and are not actual probabilities from multiple stages of SPORE.

We define this error as:

B~ [ [ pomvmion B8 doay. (13)

Derivation We optimize the weights using gradient descent, which relies on
derivatives of E with respect to the weights w,. Here we present the derivation
of partial derivatives from Equation that can be used to obtain optimal

weights w,,.

P (By1-i)
R (14

= / p (¢gt7 wgt) [log p (¢gt7 ¢gt)

—10g(Y_ p (6,9 [rn, d) wy)ldbdy. (15)
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The partial derivative w.r.t w,, can then be defined as:

P (Pgt, Vgt) P (&, Y|, )d d 16
// Zn 1p¢¢|r"’ ) Wn (bw ( )

8wn

Optimization We use gradient descent with:

OFE OF OF oE

VE=|—+—,+—" " 57— 17
{6@01 Owsy’ Ows dwn (7
for which the optimization is iteratively evolved for a solution given by:

Wit =W — AVE?, (18)

where A is the step size along the negative gradient direction and + is the iter-
ation number. At this stage, we have the optimal weights fit to the GT. These
are required to train the marginalization weights regressor that produces the

weights w,, during online prediction. This regressor is described next.

Marginalization weights regressor We use a multi-variate Random For-
est regressor to learn the mapping of CDF vectors to marginalization weights
wyp. This regressor is used during prediction to infer marginalization weights
wy, for marginalizing the posterior probabilities p (¢, 1|r,,d) from each expert

regressors using Equation [I0]

5.6. Ezxtension to Estimate Orientation and Pose
The proposed staged probabilistic regression method can be extended to si-
multaneously infer the hand orientation and pose. To achieve this, we utilize
a hand orientation and pose dataset which contains the CDF (dj), the corre-
sponding hand pose label (i) and the orientation angles (og). We introduce
the pose classification into each expert regressor by including the discrete poste-
rior probability distributions p (x|d) in the leaf nodes. Training of this extended
model is driven by both orientation regression as well as pose classification data.
We achieve this by using a selected information gain @, which is determined
by:
Qs = (1- Qs + BQ., (19)

25



where @, is the orientation regression information gain, ). is the pose clas-
sification information gain and 8 € {0,1} is a random variable selected with
probability p(8). We use standard classification and regression information gain
as defined in [47].

Given the additional pose classification task, we define the latent variable
space r, by modifying Equation [L1] with an additional term as:

P (k) = 1 if Jop(k) — ok| > a or xp(k) # X, (20)

0 otherwise,
w0 where x,(k) and xj are the predicted and GT hand poses, respectively. The
additional criteria related to hand poses in Equation identifies samples for
which the existing intermediate model has difficulty in inferring the hand pose.
For an input CDF vector d, each expert model now additionally infers the
posterior probability p (x|rn,d). We marginalize these posterior probabilities
using:

de Zp |’f‘n, Pns (21)

where p,, are weights corresponding to each latent variable for the classification
posterior probabilities and Zg pn = 1. We estimate these marginalization

weights using discrete version of energy E defined as:

_ P (Xgt)
E.= ijp (xgt) log o) (22)

The partial derivatives w.r.t p,, can be defined using E. as:

Z p th X‘Tna ) (23)

n 1p(X|Tn7 ) Pn

We use gradient descent to estimate the optimal weights p, for the clas-
sification posterior probabilities. We augment the marginalization weights for
w5 classification p, and regression w, to train a marginalization weights regressor

that infers both weights simultaneously.
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Figure 7: Four hand postures, along with their corresponding labels, used for multiple pose
experimental validation. (a) shows an open hand pose used for single pose experimental

validation of SPORE.

6. Experimental Validation

We evaluate our proposed staged probabilistic regression (SPORE) method
using two datasets collected from 22 participants. The first dataset referred to
as single pose dataset herein, contains 9414 samples captured for an open hand
pose from 22 different participants. The second dataset, referred to as multiple
pose dataset herein, contains 8675 samples captured using four different hand
poses (shown in Fig. m) from 10 different participants. The different hand poses
used for experimental validation are limited, however, they demonstrate the ap-
plicability of the proposed method in scenarios where multiple hand poses are
required. All of the hand poses used in this paper are planar, which enables
us to extract reliable GT hand orientation using the method described in [13].
The range of the orientation angles captured by these datasets are restricted to
a circular space defined by \/m < 45°. This gives us an appropriate ratio
for the number of samples against the variations within the defined orientation
space. We show experimental results that demonstrate the ability of our pro-
posed staged probabilistic regression method to infer hand orientation and pose

on these datasets.

6.1. Comparison Methods

The proposed method is compared with a previous method for hand orienta-

tion regression that uses a single-layered single-variate Random Forest (SL-SV
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RF) with independence assumption on each hand orientation angle [I3]. We also
compare with four different methods for the marginalization of ML-RF regres-
sors [7 17, 32]. Furthermore, as SPORE is inspired by Boosting, we compare it
with Random Forest with Adaboost (RF Adaboost) [35], Alternating Regression
Forest (ARF) [37] and Gradient Boosted Trees (GBT) [36]. Our previous work
proposed in [I7], referred to as ML-RF MtR herein, is closely related to SPORE.
This method also utilized a multi-layered Random Forest, where the first layer
consisted of a single marginalization weights regressor and the second layer con-
tained five expert regressors. The expert regressors in ML-RF MtR were trained
on subsets of the orientation dataset defined using a simple observation that the
hand can be oriented (i) fronto-parallel or facing (ii) right, (iii) left, (iv) upwards
or (v) downwards with respect to the camera. Marginalization weights for the
expert regressors were extracted using posterior probabilities and a Kullback-
Leibler divergence-based optimization similar to the one described in Section
ML-RF MtR differs from our proposed SPORE method in terms of the explicit
definition of the five latent variables for defining subsets of the training data. In
contrast, SPORE relies on the learned models to define the next most suitable
latent variable space, which has a number of advantages that are discussed in
Section We refer to the other ML-RF marginalization methods as ML-RF1,
ML-RF2 and ML-RF3 herein, adapted from [7] and [32]. These methods also
rely on the same explicit definition of latent variables as in ML-RF MtR. While
the methods proposed in [7] and [32] do not originally address hand orientation
regression problem, they provide a method for marginalizing the ML-RF in dif-
ferent domains. In our experimental validation, these three ML-RF comparison
methods use a two-layered Random Forest with a coarse latent variable classi-
fication in the first layer and expert orientation regression in the second layer.
These methods only differ in marginalization where ML-RF1 uses the predicted

latent variable in the coarse layer to select the corresponding expert regressor

28



485

490

495

for prediction, as defined by Equations [24] and

ry = argmaxp (r,|dg), (24)

Tn

(QS*a 7/}*) = argmaxp (¢7 1,[)|’I":’, dk) . (25)

)

ML-RF2 uses posterior probabilities of each latent variable in the coarse
layer as marginalization weights for predicted angles from each expert regres-
sor, whereas ML-RF3 uses posterior probabilities from both the coarse and the
expert layers to present the marginalized posterior probability. The mathemat-

ical formulation for predictions using ML-RF2 is shown in Equation
N

(6" ¢") = p(ralds) argmaxp(g, Ylr, di). (26)

n=1 ’

where N = 5 is the total number of expert regressors in the ML-RF model.
Equations and show the formulation for making predictions using ML-
RF3.

N
p(¢,¢ldr) = D p(rulde) p(o, ¢lra, di), (27)
n=1
(6%, ¢") = argmaxp(¢, v|dy). (28)
(9,9)

We evaluate the extension of our proposed method to simultaneously esti-
mate orientation and pose using the multiple pose dataset. To show the role of
hand orientation in improving the pose classification performance we compare
this extension of our work with a Random Forest classifier (RF CIf) that infers
hand pose only. We also make the comparison of orientation inference of this
extension with all of the comparison methods that utilize Random Forest. These
include ML-RF MtR, SL-RF SV, ML-RF1, ML-RF2, ML-RF3, RF Adaboost
and ARF. We exclude evaluation of GBT on this data as this method does not
provide a way to combine regression and classification into the same model. The

results of these comparisons are discussed in Section [6.5

6.2. Error Measures
We evaluate the proposed method using a number of qualitative as well

as quantitative error measures. These include Mean Absolute Error (MAE)
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for each orientation angle, Combined Mean Absolute Error (CMAE) for both
azimuth and elevation angles, GT versus predicted angle plots and percentage
data versus error plots. We present a brief overview of the quantitative measures

below.

6.2.1. Mean Absolute Error
Given a set of GT orientation angles (¢, 1) and the corresponding pre-

dicted angles (¢pk, ¥pr) from a trained regressor, the MAE (¢, ¥p,) is defined
by Equations [29] and [30]

721@1(: |ok — Dpi

Gy = SE=L 2 TP e L (29)
D

Pm = B (30)

We use MAE instead of Euclidean distance between the GT and predicted
orientation as in our work we found that sometimes the regressor is able to infer
only one of the two angles correctly. In such a scenario, a Euclidean distance
does not present accurate measure of performance. On the other hand, MAE
provides a quantitative measure of the regressor’s performance independently

for each orientation angle. We use the MAE to define the CMAE as:

Gm + Vm

CMAFE = 5

(31)
CMAE is particularly used for tuning different training parameters of SPORE.

6.3. Parameter Optimization

The proposed SPORE method has different training parameters. These
include the number of trees (T'), depth of each tree (&;), minimum number of
samples in each leaf node (n;), the number of features selected at each split
node (€), the number of stages (IV), the latent variable generation parameter
« and the probability p(8) for selecting information gain for the extension of
the proposed method for simultaneous hand orientation and pose inference. As

all comparison methods utilize Random Forest, therefore we empirically set the
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Figure 8: Percentage data versus error in prediction shows the percentage of data that lies
below a given error in prediction for the single-fold validation using (a) single pose dataset

and (b) using multiple pose dataset.

values of the related parameters as, I' = 100, §; = 10, n; = 20, ¢ = 1. As the
proposed SPORE method is independent of the number of predefined subsets,
therefore any number of stages IV can be used. We perform single-fold validation
using the single pose dataset, randomly selecting 70% of the data for training
and 30% for testing, to evaluate the optimal values for N, a and p(f3).

The CMAE with varying number of stages N is shown in Fig. [§] (a). It
can be seen that SPORE with N = 5 stages presents the minimum MAE for
both azimuth (¢) and elevation (i) angles combined. The error increases for
N > 5 as the subsequent regression stages with N > 5 do not get enough data
for training. Hence, N = 5 optimally captures the variations in our dataset by
providing a good balance for the number of stages and sufficient samples in the
subsets defined by the corresponding latent variables. We choose N =5 for the
rest of the experimental validation. Fig. [§ (b) shows the CMAE with varying
« threshold in Equation [11j using N = 5. We note that selecting o = 6° yields
the best performance of the proposed SPORE method. « acts as a threshold
for defining the subset of training data for the next stage. We observe that if
« is too low, i.e. a =~ 0, then the subsequent stages will all be trained using all
training samples, thus not targeting to learn from specific variations. On the

contrary, if « is set too high, i.e. a > 10°, then the latent variable space will not
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Figure 9: Parameter optimization for p(8 = 0) shows evaluation of the proposed SPORE
method with hand orientation and pose estimation extension. (a) presents Combined Mean
Absolute Error (CMAE) for orientation inference and (b) shows the accuracy of pose classifi-
cation against varying probability p(8 = 0) of selecting classification or regression information

gain.

be fully defined for subsequent stages, hence resulting in under fitting models.
We note that o = 6° maintains a good balance for selecting harder samples for
training subsequent stages. Therefore we select this value for the rest of the
experimental validation.

The extension of our proposed SPORE method for simultaneously inferring
hand orientation and pose additionally depends on probability p(3) for selecting
classification or regression information gain for training. We present the effect
of varying this probability on hand orientation and pose inference in Fig.[)] We
note that selecting regression information gain more often than classification
information gain (i.e. p(8 = 0) > 0.5) yields better performance for both hand
orientation and pose inference. It can also be seen that the pose classification
is solved even when no classification information gain is used (p(8 = 0) = 1).
This is because the information for each pose is well encoded within the CDF
and hand orientation. In our experimental validation we use p(8 = 0) = 0.9.
This means that at each split node, regression information gain is selected more

frequently than classification information gain. As we will further demonstrate
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Table 1: Mean Absolute Error (MAE) in degrees for single pose experimental validation in

Section

Method used Azimuth (¢) Elevation (v)
p-value p-value
SPORE (proposed) 8.42° - 7.38° -
ML-RF MtR [17] 9.65° 0.00 7.81° 0.13x10°1°
SL-RF SV [13] 11.58° 0.25x10°8 8.75° 0.00
RF Adaboost [35] 11.54° 0.72x10710 9.06° 0.00
ML-RF1 10.24° 0.22x10°° 8.02° 0.00
ML-RF?2 12.82° 0.20x1073 9.12° 0.11x102
ML-RF3 10.45° 0.10x10~20 8.13° 0.15x10~18
ARF [37] 11.67° 0.29x10~2 9.00° 0.00
GBT [36] 10.39° 0.96x10~3 7.62° 0.90x10~*

in Section the hand orientation information can significantly improve pose
classification results as with orientation the SPORE model is able to build a

better understanding of the hand pose dataset.

6.4. Experimental Validation using Single Pose Dataset

The evaluation of our proposed hand orientation inference method is done
using the single pose dataset. We perform single-fold validation by randomly
dividing 70% of the data into the training set and using the remaining 30% for
testing. Table [1| shows the MAE in degrees for the single-fold evaluation using
the proposed SPORE method and the comparison methods. Furthermore, we
also show in Fig. |10 (a) the percentage of data that lies under a given error in
prediction.

We note that the proposed staged probabilistic regression outperforms the
existing state-of-the-art in ML-RF marginalization as well as hand orientation
inference. The proposed method also outperforms the method related to Boost-

ing, namely, RF Adaboost, ARF and GBT. These methods lack a probabilistic
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Figure 10: Percentage data vs error in prediction shows the percentage of data that lies below
a given error in prediction for the single-fold validation using (a) single pose dataset and (b)

using multiple pose dataset.

approach resulting in higher MAE. On the contrary, the proposed method is
formulated using probabilities, where the complex mapping between each stage
and the input features is learned. We further notice from Fig. (a) that the
proposed staged probabilistic regression performs better with 78% of data lying
in under 10° of error. We also note that at around 20° of error, the ML-RF2,
SL-RF SV, RF Adaboost, ARF and GBT contain more percentage data than
any other method. This is due to the fact that all other comparison methods,
including the proposed SPORE, contains symmetry problem for around 10%
of the data. The symmetry problem arises as a result of depth ambiguity in
2D monocular images, where multiple hand orientations can produce the same
contour. This affects the regressors where for a given hand contour, the regres-
sors infer symmetrically opposite hand orientations. This problem shows up
in all methods that use a probabilistic approach for marginalization. ML-RF2,
SL-RF SV, RF Adaboost, ARF and GBT infer only a few symmetrically oppo-
site hand orientations. As these methods rely on the weighted sum of regressor
predictions or a prediction from a single regressor, therefore the variations due
to the symmetry problem result in introducing a model bias. This results in
greater MAE for these methods in Table [I] These models have a bias as they

are unable to fully learn from all the variations within the orientation dataset.
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Figure 11: Ground Truth (GT) versus predicted orientation angle plots showing results for
(a)-(b) the proposed SPORE method and (c)-(d) the ML-RF MtR method proposed in [17].
(e)-(f) shows the errors in ML-MtR that were corrected by SPORE (green arrows) and the
correct predictions by ML-MtR that were incorrectly inferred by SPORE (red arrows). The
larger number green lines compared to red show that SPORE improves estimation for the

majority of samples.
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Figure 12: Success and Failure cases for the proposed SPORE method. The GT orientation
(green) and predicted orientation using SPORE (blue) and ML-RF MtR (red) are shown with
arrows. The first row shows the color images, whereas the corresponding silhouette images
are shown in the second row. (a)-(d) shows success cases where the proposed SPORE method

successfully able to infers the orientation. (e)-(f) shows the failure cases where the proposed

method fails.

SPORE produces the results with the least error and a paired t-test with p-value
less than 0.05 demonstrates that SPORE’s improvement over all other methods
is statistically significant.

We also present the comparison of the proposed SPORE method with the
most closely related ML-RF MtR method proposed in [I7]. In Fig. we
present the single-fold validation results showing the GT versus predicted plots
for the proposed SPORE method and the ML-RF MtR method. Fig|11] (e)-(f)
shows the comparison of both methods, where green arrows show predictions
that were corrected using the proposed SPORE method and red arrows show
the predictions that were incorrectly inferred by the proposed method. We note
that in this comparison a number of incorrectly inferred predictions by ML-
RF MtR are corrected by the proposed SPORE method. This is due to the
ability of our proposed SPORE method to define the latent variable space using
predictions from previous stages. This approach, however, is absent from the
ML-RF MtR method where the latent variable space is explicitly defined based
on the observation that the hand can be (i) fronto-parallel or facing (ii) right,

(iii) left, (iv) upwards or (v) downwards with respect to the camera. Fig.
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Figure 13: Easy versus hard training samples. (a) shows easy training samples that are
successfully learned from in the first regressor with error |op(k) — ox| < a. (b) shows harder
training samples, with error |op(k) — 0| > «, that are not completely learned from in the
first expert regressor and hence are selected for the next stage training. Green arrows show
the GT orientation. The difference between easy and hard samples can be seen in terms of

inter-person pose, shape and style variation.

shows success and failure cases for the proposed SPORE method. We observe
that the proposed method fails on difficult samples where the fingers are not
completely outstretched (Fig. [12| (e)-(f)). Moreover, in Fig. [L3| we present the
easy versus harder to learn hand orientation samples. In Fig.[13|(a) easy samples
are presented that the SPORE learns from in the first stage. Fig.[13| (b) shows
harder to train samples that are used for learning the next stages of SPORE.
It can be seen that easy samples contain limited inter-person variation in hand
shape, size and style, whereas harder samples have additional variations induced

due to the movement of fingers, affecting the inter-finger spacing.

6.5. Experimental Validation using Multiple Pose Dataset

We use the multiple pose dataset to evaluate the extension of our proposed

staged probabilistic regressor for inferring both hand orientation and pose simul-
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Table 2: Mean Absolute Error (MAE) in degrees for multiple pose experimental validation in

Section

Method used Azimuth (¢) Elevation (v)
p-value p-value
SPORE (proposed) 8.53° - 8.14° -
ML-RF MtR [17] 9.63° 0.41x10~ 11 9.77° 0.00
SL-RF SV [13] 15.04° 0.33x10°8 14.95° 0.92x10~ 10
RF Adaboost [35] 11.52° 0.29x10~ 16 10.77° 0.32x10713
ML-RF1 11.20° 0.22x10°° 11.43° 0.00
ML-RF2 12.83° 0.31x10°° 11.63° 0.11x10-¢
ML-RF3 11.00° 0.33x10~ 16 10.81° 0.00
ARF [37] 11.51° 0.4x10~1° 10.83° 0.47x10713

so  taneously. The MAE in degrees for the single-fold evaluation using this exten-
sion and the comparison methods is presented in Table [2| Fig.[10[(b) shows the
percentage of data that lies under a given error in prediction for SPORE and the
comparison methods. We notice that again, the proposed SPORE outperforms
the comparison methods that infer hand orientation and pose simultaneously.
sis A paired t-test with p-value less than 0.05 shows that improvement in orienta-
tion predictions using SPORE are statistically significant as compared to the

comparison methods.

Table 3: Hand pose classification results Table 4: Hand pose classification results
using SPORE. using RF CIf.
Predicted Pose Predicted Pose
X1 X2 X3 X4 X1 X2 X3 X4
% x1 BEELY 0.00% 1.74% 0.32% % X1 0.00% 4.60% 0.00%
E x2  0.00% [REXIEM 0.17% 0.17% E x2  0.00% [REMGM 5.84%  0.00%
© xs  0.44% 0.00% 1.03% © xs 0.15% 0.00% LRI

17.84% RN

1.69%

x4 0.14%  0.56% 97.61% x4 0.00%  1.54%

Furthermore, we compare the pose classification accuracy of the proposed
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Figure 14: Hand poses that are correctly inferred by the proposed SPORE method but mis-
classified by RF CIf. (a) shows x1 poses incorrectly classified as xs3, (b) shows x2 pose
incorrectly classified as x3, (c) shows x3 poses incorrectly classified as x4 and (d) shows x4
incorrectly classified as x3 by the RF CIf comparison method. Green arrows show the GT ori-
entation information that is used by SPORE to correctly infer the hand pose. This orientation

information is not used for RF CIf training.

SPORE method with RF CIf that learns only the pose classification. We present
confusion matrices for these results in Table [3]and Table [4] respectively. It can
be seen that the proposed SPORE method outperforms an RF CIf for the pose
classification task. This is due to the presence of the additional orientation
information that the SPORE method uses to learn both hand orientation and
pose simultaneously. The comparison RF CIf method lacks the orientation in-
formation, which is why it is unable to differentiate the poses with variations in
orientation. In Fig. [I4] we present the samples that are misclassified by RF CIf
due to the absence of orientation information. These results let us understand
the importance of hand orientation in hand pose classification in 2D images. We
note that when such orientation information is not present, then the classifiers
have difficulty in hand pose classification under varying viewpoint.

This paper focuses on using SPORE for hand orientation and pose inference.
We observe that the proposed method is generalizable to other domains. SPORE
can be used with any probabilistic regressor or classifier, where the dataset

contains large variations that are not fully captured with a single model.
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7. Conclusion

We proposed a staged probabilistic regression method that is capable of
learning well from a number of variations within a dataset. The proposed
method is based on multi-layered Random Forest, where the first layer con-
sisted of a single marginalization weights regressor and second layer contained
an ensemble of expert learners. The expert learners are trained in stages, where
each stage involved training and adding an expert learner to the intermediate
model. After every stage, the intermediate model was evaluated to reveal a
latent variable space defining a subset that the model had difficulty in learning
from. The subset was used to train the next expert regressor. The posterior
probabilities for each training sample were extracted from each expert regres-
sors. These posterior probabilities were then used along with a Kullback-Leibler
divergence-based optimization method to estimate the marginalization weights
for each regressor. A marginalization weights regressor was trained using Con-
tour Distance Features and the estimated marginalization weights. We showed
the extension of our work for simultaneous hand orientation and pose inference.
The proposed method outperformed the state-of-the-art for the marginaliza-
tion of multi-layered Random Forest, hand orientation inference and Boosting.
Furthermore, we show that a method which simultaneously learns from hand
orientation and pose outperforms pose only classification as it is able to better
understand the variations in pose induced due to viewpoint changes. Our future
work focuses on introducing a bigger vocabulary of hand poses, application of
SPORE in other domains and the introduction of a temporal coherence method
that addresses the symmetry problem. Exploring effective CNN architectures
for simultaneous hand orientation and pose estimation is another interesting

future direction for our work.

References

[1] J. S. Supancic, G. Rogez, Y. Yang, J. Shotton, D. Ramanan, Depth-based

hand pose estimation: data, methods, and challenges, in: Proceedings of

40



665

670

675

680

685

690

the IEEE international conference on computer vision, 2015, pp. 1868—1876.

J. Han, L. Shao, D. Xu, J. Shotton, Enhanced computer vision with mi-
crosoft kinect sensor: A review, Cybernetics, IEEE Transactions on 43 (5)

(2013) pp.1318-1334.

C. Keskin, F. Kirag, Y. E. Kara, L. Akarun, Hand pose estimation and
hand shape classification using multi-layered randomized decision forests,

in: Computer Vision-ECCV 2012, Springer, 2012, pp. 852-863.

D. Tang, T.-H. Yu, T.-K. Kim, Real-time articulated hand pose estimation
using semi-supervised transductive regression forests, in: IEEE Interna-

tional Conference on Computer Vision, 2013, pp. 3224-3231.

I. Oikonomidis, N. Kyriazis, A. A. Argyros, Efficient model-based 3d track-
ing of hand articulations using kinect., in: British Machine Vision Confer-

ence, Vol. 1, 2011, p. 3.

J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Keskin, T. Sharp,
E. Soto, D. Sweeney, J. Valentin, B. Luff, et al., Efficient and precise in-
teractive hand tracking through joint, continuous optimization of pose and

correspondences, ACM Transactions on Graphics (TOG) 35 (4) (2016) 143.

S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim, D. Sweeney, A. Crim-
inisi, J. Shotton, S. B. Kang, T. Paek, Learning to be a depth camera for
close-range human capture and interaction, ACM Transactions on Graphics

(TOG) 33 (4) (2014) 86.

A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, X. Twombly, Vision-based
hand pose estimation: A review, Computer Vision and Image Understand-

ing 108 (1) (2007) pp.52-73.

M. Oberweger, P. Wohlhart, V. Lepetit, Training a feedback loop for hand
pose estimation, in: Proceedings of the IEEE International Conference on

Computer Vision, 2015, pp. 3316-3324.

41



695

700

705

710

715

[10]

[13]

[15]

[16]

[18]

X. Sun, Y. Wei, S. Liang, X. Tang, J. Sun, Cascaded hand pose regression,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 824-832.

M. de La Gorce, N. Paragios, A variational approach to monocular hand-
pose estimation, Computer Vision and Image Understanding 114 (3) (2010)
pp.363-372.

M. de La Gorce, D. J. Fleet, N. Paragios, Model-based 3d hand pose esti-
mation from monocular video, IEEE Transactions on Pattern Analysis and

Machine Intelligence 33 (9) (2011) 1793-1805.

M. Asad, G. Slabaugh, Hand orientation regression using random forest for
augmented reality, in: International Conference on Augmented and Virtual

Reality, Springer, 2014, pp. 159-174.

Z. Ren, J. Yuan, J. Meng, Z. Zhang, Robust part-based hand gesture recog-
nition using kinect sensor, IEEE transactions on multimedia 15 (5) (2013)

1110-1120.

E. Yoruk, E. Konukoglu, B. Sankur, J. Darbon, Shape-based hand recog-
nition, IEEE Transactions on Image Processing 15 (7) (2006) 1803-1815.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, In-

ternational journal of computer vision 60 (2) (2004) 91-110.

M. Asad, G. Slabaugh, Learning marginalization through regression for
hand orientation inference, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, 2016, pp. 10-18.

T. Lee, T. Hollerer, Handy ar: Markerless inspection of augmented reality
objects using fingertip tracking, in: IEEE International Symposium on

Wearable Computers, IEEE, 2007, pp. 83-90.

Y. Mizuchi, Y. Hagiwara, A. Suzuki, H. Imamura, Y. Choi, Monocular

3d palm posture estimation based on feature-points robust against finger

42



720

725

730

735

740

745

[20]

[23]

[24]

[25]

[26]

[27]

motion, in: International Conference on Control, Automation and Systems

(ICCAS), IEEE, 2013, pp. 1014-1019.

I. Oikonomidis, N. Kyriazis, A. A. Argyros, Full dof tracking of a hand in-
teracting with an object by modeling occlusions and physical constraints,
in: 2011 IEEE International Conference on Computer Vision (ICCV),
IEEE, 2011, pp. 2088-2095.

T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhe-
mann, I. Leichter, A. Vinnikov, Y. Wei, et al., Accurate, robust, and flexible
real-time hand tracking, in: Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems, ACM, 2015, pp. 3633-3642.

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, R. Moore, Real-time human pose recognition in parts from single

depth images, Communications of the ACM 56 (1) (2013) 116-124.

R. Rosales, S. Sclaroff, Combining generative and discriminative models
in a framework for articulated pose estimation, International Journal of

Computer Vision 67 (3) (2006) 251-276.

R. Y. Wang, J. Popovié¢, Real-time hand-tracking with a color glove, in:
ACM Transactions on Graphics (TOG), Vol. 28, ACM, 2009, p. 63.

C. Keskin, F. Kirag, Y. E. Kara, L. Akarun, Real time hand pose estimation
using depth sensors, in: Consumer Depth Cameras for Computer Vision,

Springer, 2013, pp. 119-137.

D. Tang, H. Jin Chang, A. Tejani, T.-K. Kim, Latent regression forest:
Structured estimation of 3d articulated hand posture, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 3786-3793.

J. Tompson, M. Stein, Y. Lecun, K. Perlin, Real-time continuous pose
recovery of human hands using convolutional networks, ACM Transactions

on Graphics (TOG) 33 (5) (2014) 169.

43



750

755

760

765

770

[28]

[31]

[33]

[34]

L. Ge, H. Liang, J. Yuan, D. Thalmann, Robust 3d hand pose estimation in
single depth images: from single-view cnn to multi-view cnns, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 3593-3601.

M. Oberweger, P. Wohlhart, V. Lepetit, Hands deep in deep learning for
hand pose estimation, arXiv preprint arXiv:1502.06807.

G. Poier, K. Roditakis, S. Schulter, D. Michel, H. Bischof, A. A. Argyros,
Hybrid one-shot 3d hand pose estimation by exploiting uncertainties, arXiv

preprint arXiv:1510.08039.

C. Xu, L. Cheng, Efficient hand pose estimation from a single depth image,
in: Proceedings of the IEEE International Conference on Computer Vision,

2013, pp. 3456-3462.

M. Dantone, J. Gall, G. Fanelli, L. Van Gool, Real-time facial feature detec-
tion using conditional regression forests, in: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2012, pp. 2578-2585.

M. Sun, P. Kohli, J. Shotton, Conditional regression forests for human pose
estimation, in: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE, 2012, pp. 3394-3401.

S. Hallman, C. C. Fowlkes, Oriented edge forests for boundary detection,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1732-1740.

D. P. Solomatine, D. L. Shrestha, Adaboost. rt: a boosting algorithm for
regression problems, in: Neural Networks, 2004. Proceedings. 2004 IEEE
International Joint Conference on, Vol. 2, IEEE, 2004, pp. 1163-1168.

J. H. Friedman, Greedy function approximation: a gradient boosting ma-

chine, Annals of statistics (2001) 1189-1232.

44



775

780

785

[37]

S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, H. Bischof, Alternating
regression forests for object detection and pose estimation, in: Proceedings
of the IEEE International Conference on Computer Vision, 2013, pp. 417—
424,

C. Li, K. M. Kitani, Pixel-level hand detection in ego-centric videos, in:
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on, IEEE, 2013, pp. 3570-3577.

M. J. Jones, J. M. Rehg, Statistical color models with application to skin
detection, International Journal of Computer Vision 46 (1) (2002) 81-96.

V. Vezhnevets, V. Sazonov, A. Andreeva, A survey on pixel-based skin
color detection techniques, in: Proc. Graphicon, Vol. 3, Moscow, Russia,

2003, pp. 85-92.

A. Criminisi, J. Shotton, Decision forests for computer vision and medical

image analysis, Springer, 2013.

S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of
Mathematical Statistics 22 (1) (1951) 79-86.

45



