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Abstract. We propose a shape descriptor for 3D ear impressions, de-
rived from a comprehensive set of anatomical features. Motivated by
hearing aid (HA) manufacturing, the selection of the anatomical fea-
tures is carried out according to their uniqueness and importance in HA
design. This leads to a canonical ear signature that is highly distinctive
and potentially well suited for classification. First, the anatomical fea-
tures are characterized into generic topological and geometric features,
namely concavities, elbows, ridges, peaks, and bumps on the surface of the
ear. Fast and robust algorithms are then developed for their detection.
This indirect approach ensures the generality of the algorithms with po-
tential applications in biomedicine, biometrics, and reverse engineering.

1 Introduction

Shape analysis typically involves the abstraction of complex structures by re-
moving redundant details. It captures the essence of geometry via morphologi-
cal descriptors that emphasize more on informative and distinctive features of
the underlying surface. Such descriptors may be employed for classification in
addition to guiding registration [1] and segmentation. The problem is very chal-
lenging due to the variability of organic surfaces. Moreover, it is typically not
possible to consistently identify key features solely from geometric and topolog-
ical information, and the need of anatomical features becomes imminent.

We focus on the surfaces representing the external and outer human ear and
construct a canonical ear signature (CES). The idea is to derive a descriptor for
subsequent modeling of the anatomy of the human ear. This will eventually lead
to a 3D digital human ear atlas, and a framework for the design of implants and
prosthetic devices for the ear. This is in line with the recent trends in medical
image analysis, where the imaging technology is exploited for data modeling,
intervention planning, and corrective treatment. Our approach herein is to derive
the CES from the anatomy itself, which is quite well known in the medical
community. The first comprehensive atlas dates back to Gray in 1858 (Fig. 1(a),
with a 3D reconstruction in Fig. 1(b)). As shown, an ear impression consists of
a spindle shaped canal that sits deep in the outer ear and a base that resides
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(a) (b)

Fig. 1. The human ear anatomy (courtesy
[2]) and its 3D reconstruction

Fig. 2. Shell detailing and modeling. Last
item is the finished shell

in the external ear. The two are separated by a narrow opening called aperture.
Around the bottom of the external ear, there are two clamp like structures known
as tragus and anti-tragus. The deepest point in the external ear is the concha
peak that sits on the big bowl shaped concha. On the top, there is a narrow helix
structure sandwiched between the anti-helix and the crus. These anatomical
parts along with others are considered for the construction of the CES. Once a
3D impression of an ear is acquired, the problem then reduces to extracting its
signature representation. To this end, we adopt a generalized approach, and first
characterize the anatomical features into more generic topological and geometric
features, such as peaks, pits, concavities, elbows, ridges, and bumps. Fast and
robust algorithms are then constructed for the detection of generic features.
As a result, the application of proposed algorithms is not limited to ears. For
instance, the ridge detection algorithm may readily be used for tracing the nose
in face recognition, or the crest lines on human brains.

There is substantial literature on surface feature detection [3,4,7]. However,
not much work has been reported on ear shape analysis. We introduce three
major contributions: (a) It is the first work that comprehensively analyzes the
outer and external ear shape to automatically determine the CES. (b) Due
to the varied nature of the features, a collection of algorithms are proposed to
produce an overall system capable of their reliable detection. These methods
enable automation in the HA manufacturing (HAM) [6] and have the potential
of faster and more consistent design. (c) The resulting signature will serve as
a foundation to a 3D digital atlas of the human ear. In comparison to [3,7],
our algorithms are fast, and guarantee protection against broken ridges. We also
consider the detection of planes, which has not been attempted previously.

2 Canonical Ear Signature

First, we identify the anatomical constructs that uniquely identify the shape of
an ear impression. To this end, we are inspired by the HAM application. HAs are
generally custom made. Once a mesh is constructed from the 3D scan of an ear
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(a) (b) (c)

Fig. 3. Anatomical Features: (a) Points; (b) Curves and areas; (c) Planes and areas

impression, an operator carries out a sequence of surface modification operations
(Fig. 2), to design an HA shell [6]. Typically, he relies on manual measurements
(on sub-mm scale) implicitly using certain key anatomical features. Our hypoth-
esis is that since an HA is designed to comfortably fit the ear(s) of a patient, the
underlying features form a canonical representation of the anatomy. We have,
therefore, identified a comprehensive set of features that are well known in the
medical anatomy, and are implicitly used by HA designers (Fig. 3). Collectively,
they capture the structure of an ear in a Canonical Ear Signature.

3 Generic Feature Detection

Our approach to canonical feature detection is based on generalization. We char-
acterize various anatomical features via a set of generic features, peaks {Fp},
concavities {Fc}, elbows {Fe}, ridges {Fr}, and bumps {Fb}. Although some
anatomical features may not be represented by these geometric primitives, they
may still be derived from the latter or other derived features. Algorithms are
constructed for the generic features, thereby later providing a foundation for the
derived features. An advantage of such a hierarchical approach is that the generic
algorithms may readily be applied to other applications such as biometrics, and
reverse engineering, without compromising on the complexity. The relationship
between generic and anatomical features is tabulated in Table 1.

3.1 Problem Formulation

LetM be a 2D manifold representing a 3D ear impression embedded in R
3 locally

parameterized as φ : Ω → M, where Ω ⊂ R
2 represents the parameter space.

The problem is to detect a set of generic features F = {Fp ∪Fc ∪Fe ∪Fr ∪Fb}.

3.2 Peak Detection

A peak point is a prominent topological landmark on a surface. The basic idea
for its detection emanates from Morse theory, and involves defining a smooth
real valued function f :M→ R onM to abstract its shape via critical points. A
point p = φ(u) ∈ M, u ∈ Ω is a critical point of f if the gradient of f ◦φ vanishes
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Table 1. Generic Characterization of Anatomical Features

Characterization Anatomical Features

Peak Canal Tip, Concha Peak, Helix Peak
Concavity Tragus, Anti-Tragus, Anti-Helix, Center of Crus
Elbow First Bend, Second Bend
Ridge Inter-Tragal Notch, Crus-Side Ridge, Crus-Helix Ridge
Bump Canal Bulbous

at u. A critical point p ∈ M is regarded as non-degenerate if the Hessian �2f ◦
φ(u) is non-singular at φ(u). f is called Morse, if all of its critical points are non-
degenerate. The problem, therefore, reduces to finding a suitable Morse function.
For peak detection, we employ a height function, h : M → R, that assigns to
each point p(x, y, z) ∈ M a value equal to its height, h(p) := h(x, y, z) = z. For
a non-degenerate surface, h is a Morse function and its critical points are the
peaks, passes and pits of the surface. We use it for peak detection as in [4].

The algorithm for detecting the critical points of h follows from Morse defor-
mation lemma, and analyzes the level sets of h (horizontal planes) for topological
changes. By gradually increasing h ∈ [0, H ] in K steps, we find the intersections
of the surface with corresponding planes. Intersections are subsequently analyzed
for changes in topology between two successive planes. If a change in topology
is detected, we notice the existence of a critical level between them, and zoom
in to analyze the surface with larger K (effective K ← K2, since the interval is
smaller). The process is repeated until convergence to a critical point.

3.3 Concavities

Concavities are marked by depressions on a surface. For their detection, we uti-
lize orthogonal scans on a surface to generate a surface profile that is composed
of the intersection contours. Spline representations of individual contours are
analyzed for variations in signed curvature, where the negative sign identifies a
concavity. First, a profile in one direction is considered, and subsections of con-
tours with negative curvature are identified. For these subsections, the points of
least curvature are found, with their average computed as a seed point. This seed
point is corrected by a scan, orthogonal to the previous scan, shifting it towards
the lowest curvature point. Consequently, the seed point is pushed deeper in the
valley. The process is repeated iteratively to achieve the absolute local minimum
similar to minimization by alternating variables. Once the center of concavity is
identified, region growing based on negative curvature is used to determine the
concave region.

3.4 Elbows

The detection of elbows in the presence of noise and bumps is quite challenging,
which limits the use of only the curvature. Our approach, first identifies points
of high curvature on a surface followed by a selection/rejection strategy to fit
a plane along the elbow. This leads to a robust algorithm when compared with
computations based solely on the skeleton.
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Fig. 4. Elbow Detection: (a) Scanning;
(b) Two planes (shown red) define the
ROI Mr in the computation of tc-
sensitive elbow (yellow). Black radial lines
represent the spline representations ri.
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Fig. 5. Dotted lines indicate correspon-
dence between cp and cr. Corresponding
points (qp, qr) are compared via their dis-
tances from individual centroids (ĉp, ĉr).
qp ∈ cp is bumpy if ||qp − ĉp||2 > ||qr −
ĉr||2. Red points are bumpy but not the
blue.

The proposed algorithm relies on a predefined region of interest (ROI)Mr ⊂
M. First, Mr is scanned with planes Pt oriented along the centerline c(t) : t ∈
[0, 1], to generate its x-sectional profile {cp} = {M ∩ Pt, ∀t ∈ [0, 1]} (Fig 4(a)).
The profile contours, thus, capture information about bends on the surface.
Correspondences are then established among these contours along the radial di-
rection (Fig 4(b)), and each radial contour is eventually represented by its spline
parametrization ri(t) for robustness to noise. Once radial contours are parame-
terized, we proceed to identify points Q = {qi} of maximal curvature along these
contours. However, not all points reliably represent an elbow, due to potential
presence of bumps. The set Q is, hence, pruned via a point rejection strategy for
plane fitting similar to the deterministic RANSAC to increase robustness.

3.5 Ridge Detection

We define a ridge r : [0, 1]→M as a geodesic on M characterized by points of
high curvature, κ :M→ R. Note that local extrema of κ alone are not sufficient
for its detection, as isolated points may exhibit high curvature due to noise.
This is a major limitation of existing methods [3] in addition to their inherent
inability to maintain the integrity of a ridge if not prominent, or if broken.

At times, it is also required to identify a ridge in addition to its detection. We,
therefore, develop a method that first detects its starting and ending points ps

and pe respectively, using either the geometric information and/or some a priori
knowledge. A geodesic is then run between the two points. We are specifically
interested in a geodesic g that minimizes the cost of going from ps to pe, where
the cost is defined as a weighted combination of the geodesic distance and surface
curvature: C(g) =

∫ 1

0 w(κ(t))g(t)dt, where g(0) = ps and g(1) = pe and w(κ(t)) is
selected as a decreasing functional of curvature. Hence, the ridge is a minimizer
of C, and may easily be computed for a triangulated mesh, through Dijkstra’s
algorithm with curvature weighted edge lengths. Consequently, the resulting
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ridge does not suffer from the limitations outlined earlier, and, its accuracy
depends solely on robust detection of the end points. Curvature weighting ensures
that the geodesic passes through the high curvature ridge.

3.6 Bumps

We are interested in bumps on somewhat tubular subsurfaces. A bump is charac-
terized with gentle slope, instead of pointy high curvature area. The problem is
significant in CAD, for removing unwanted bumps, or in medical image analysis,
for instance, for detecting soft-plaques in CT angiography.

Our approach is to analyze a tubular subsurface via x-sectional scans in an
ROI, Mr, to generate a set of profile contours {cp}. The problem is, hence,
reduced to (1) identifying the contours that correspond to a bump, followed by
(2) determining “bumpy points” of a “bump contour”. A reference contour cr is
defined, with which all cp are compared, starting at one end ofMr and gradually
moving towards the other. Mr is selected to be sufficiently large to avoid the
boundary of Mr falling on a bump. Hence, the x-section at a boundary of Mr

may be selected as the initial cr, which is later continuously updated with the
last contour found without a bump.

For the identification of bump contours, the area of each contour cp is com-
pared to that of cr. If it exceeds the reference area by a certain threshold tP , cp

is considered to be on a bump. Once a bump contour is identified, the challenge
lies in determining its bumpy part. A bump contour is projected to the plane of
cr. In this 2D subspace of the reference plane, a correspondence is found between
the projected points and cr. Corresponding points are then compared by way of
their distances from individual centroids. If the distance of a projected point to
the centroid of cp, ĉp, exceeds the distance of the corresponding reference point
to the reference centroid, ĉr, the point is marked bumpy. Such a criterion takes
into account possible shifts of centroids and gives accurate estimates for bump
points. After all x-sections are examined, bump points are binned into areas of
connected points through recursion within 1-ring neighborhood.

4 Anatomical Feature Detection

We now detect the CES. The inter-tragal notch and the crus-side ridge require
the detection of their end points. We use PCA of the x-section to identify two
points on the canal as candidates for the inter-tragal notch top and the crus-side
ridge top. The bottom of the inter-tragal notch is detected by considering the
convexity of the bottom contour between tragus and anti-tragus. Geodesics are
run from the ridge tops to the bottom point according to Section 3.5. The shorter
geodesic is classified as the inter-tragal notch. The other ridge top is regarded
the crus-side ridge top, and the shortest geodesic from this point to the bottom
contour is the crus-side ridge. For detecting bulbous areas, and first and second
bends, the canal was selected as the ROI. The canal-concha (or canal-crus)
intersection is detected as an intersection of two geodesics, one running along a
canal ridge, while the other traced from the concha peak (or crus).
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Fig. 6. Automatic detec-
tion of Point features: G =
GT, D = detected features

Fig. 7. Automatic detection of: (Top) Canal Bulbous;
(Bottom) Inter-tragal notch, crus-side ridge, and inter-
tragal notch flare

Helix ridge is detected as the shortest curvature weighted geodesic between
the helix and the shell boundary. Crus area is computed as the area enclosed
by appropriately weighted geodesics run between the following feature pairs:
(1) center crus-helix ridge bottom; (2) center crus-crus ridge bottom; and (3)
the boundary contour. Crus-concha intersection is detected by analyzing the
tangential profile of the intersection of the shell with the crus valley plane.

5 Experiments

Statistical validation of the detected features was carried out over a dataset of
198 shells, for which an expert annotated the Ground Truth (GT). Features were
then detected automatically, and compared with GT (e.g., Fig. 6).

For quantitative validation, point features were compared by way of their dis-
tance from the GT. The similarity measure for plane features considered their
orientation and location. Orientations were compared via inner product between
plane normals. Deviation of plane locations was the average distance between
the two planes. Sensitivity and specificity were used for validating area features.
The mean and standard deviations of these measures are given in Fig. 8. The
results indicate good agreement with the GT. For the crus area, the mean sen-
sitivity was found to be 0.83 with a mean specificity of 0.93. Since bulbous is
not always present on an impression, only its qualitative evaluation was con-
sidered (Fig. 7(Top)). The ridges were analyzed qualitatively and in more than
90% of the cases the experts were satisfied with the performance. Examples in
Fig. 7(Bottom) precisely follow the actual ridges on the canal. Inter-tragal notch
flare is also at the correct location, precisely where the saddle is formed.

In the second set of experiments, an expert provided acceptable error toler-
ances for various features (3mm for points and plane locations, 150 for plane
orientations). The success rate was then computed as the percentage of cases
that resulted in features within the acceptable range. Mean success rate was
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Fig. 8. Feature Validation – Comparison with GT: (Top) Point Features – Mean and
standard deviation of the point deviations. (Bottom) Plane Features – Mean and stan-
dard deviation of deviations between plane (Left) locations; (Right) orientations.

87% for points (excluding Canal-Concha Intersection) and 82% for the planes.
On average, all individual features exhibited acceptable performance (overall av-
erage deviation of ∼ 2mm and ∼ 100) with the exception of the Canal-Concha
Intersection and the Second Bend. Computationally, on average it takes 1.7s to
compute all features for a dense mesh (79ms per feature) of ∼23k vertices.

6 Conclusions

We have proposed a comprehensive set of features for canonical representation
of human ears, in addition to fast and robust algorithms for their detection.
The representation may be used for automatic design of HA shells [5], feature
guided registration, and classification. Due to their robustness, they have already
been introduced for the automatic design of HAs by a major HA manufacturer.
We emphasized that the utility of the proposed algorithms is not limited to the
HAs. They have been designed with generality in mind, thereby providing a very
powerful tool for medical image analysis and CAD.
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