
 

 

 
Abstract 

 
This paper introduces Conditional Regressive Random 
Forest (CRRF), a novel method that combines a closed-
form Conditional Random Field (CRF), using learned 
weights, and a Regressive Random Forest (RRF) that 
employs adaptively selected expert trees. CRRF is used to 
estimate a depth image of hand given stereo RGB inputs.  
CRRF uses a novel superpixel-based regression framework 
that takes advantage of the smoothness of the hand’s depth 
surface. A RRF unary term adaptively selects different 
stereo-matching measures as it implicitly determines 
matching pixels in a coarse-to-fine manner. CRRF also 
includes a pair-wise term that encourages smoothness 
between similar adjacent superpixels. Experimental results 
show that CRRF can produce high quality depth maps, even 
using an inexpensive RGB stereo camera and produces 
state-of-the-art results for hand depth estimation. 

1. Introduction 

Recently there has been surging interest in virtual and 
augmented reality devices [2, 4] that has in turn prompted 
research into natural approaches for interacting with such 
systems, e.g. hand gesture. While human body pose 
estimation from RGBD data may be considered a solved 
problem, open challenges remain for estimating hand pose 
as hands exhibit a high degree of self-occlusion and greater 
variation in orientation relative to the camera [22, 23]. We 
argue that the key to natural gestural interaction with next 
generation devices is robust hand pose estimation. An 
important design criterion for a hand pose estimation 
approach is the type of imaging sensor employed.  RGBD 
sensors are a popular choice, as depth-based input provides 
good shape information, robustness to clutter and changes 
in ambient conditions.  Using the depth channel, inference 
algorithms can be developed to estimate the hand pose [22, 
23]. Despite the successes of such approaches, depth 
channel data capture poses several limitations, including 
poor form factor in egocentric applications, large energy 
consumption, poor near distance coverage, and inferior 
performance outdoors. Therefore, in this paper we focus 
instead on RGB data capture.  By acknowledging that a 
single RGB camera does not provide enough shape and 

structure information, we focus on a stereovision technique 
using two cameras.   

The goal of our research is to extract robust hand depth 
information from stereo RGB inputs as a precursor to hand 
pose estimation. Depth estimation from two views has a 
long and rich history in computer vision, and fundamentally 
relates to establishing correct correspondences between 
images.  However, the recovery of hand depth provides 
unique challenges that differentiates the problem from 
depth recovery of arbitrary scenes as expressed in [9]. 
Unlike generic scene depth estimation, there is significantly 
less texture in hand depth estimation, which makes stereo 
matching substantially more challenging. There is also high 
tendency of self-occlusion which manifests in changes in 
depth that might not reflect in a change in texture. For 
example, the occlusion of a finger on the palm will yield a 
change in depth but the color and the texture of the region 
of occlusion might remain largely unchanged as the color 
of the skin might be consistent (whether on the finger or on 
the palm region). This necessitates a new hand-specific 
depth estimation technique to outperform generic stereo 
matching algorithms. 

Whilst recovery of hand depth provides unique 
challenges, the fact that the depth recovery task will only 
apply to a class of object (hand) means that stereo matching 
constraints can be learnt using a machine learning approach 
and tested on similar surfaces. This is particularly useful as 
we can better establish the matching criteria that can 
achieve the best stereo matches and hence disparity since 
we know the typical structure of the “scene” for which we 
are going to be estimating depth. In this work, we do not 
implement gesture recognition, instead we solely focus on 
recovering accurate depth. The proposed technique also 
relies on a robust hand segmentation procedure. We do not 
address hand segmentation in this paper as there is a large 
body of literature on this subject (see, for example, [7, 8]). 

This paper proposes a novel, data-driven Conditional 
Regressive Random Forest (CRRF) framework.  CRRF 
learns the mapping between a stereo image pair and high 
quality ground truth depth measurement. In so doing, we 
present an innovative combination of Regressive Random 
Forest and Conditional Random Fields to model this 
mapping. A major contribution of this research is the use of 
a machine learning framework to combine various stereo 

 

Conditional Regressive Random Forest Stereo-based Hand Depth Recovery 

Rilwan Remilekun Basaru 
City, University of London 
London, United Kingdom 

Remilekun.basaru.1@city.ac.uk 

Chris Child, Eduardo Alonso, Greg Slabaugh 

City, University of London 
London, United Kingdom 

C.Child@city.ac.uk 
E.Alonso@city.ac.uk 

Gregory.Slabaugh.1@city.ac.uk 



 

 

matching criteria (multiple cost functions and window 
sizes) with the aim of implicitly determining stereo 
correspondences.  Unlike conventional CRF methods that 
require iterative solutions, we derive a closed form solution 
to CRRF inference. We note our CRRF framework has 
much wider application, particularly to problems that can 
be posed using graph theory. 

2. Related Work 

The computer vision literature includes numerous 
methods of depth estimation, but for conciseness we focus 
on the most related approaches. Stereovision is based on the 
physical concept of stereopsis. This specifies that given the 
view of a scene from two perspectives, the shift undergone 
by corresponding pixels in both images varies such that it 
is inversely proportional to the distance from the camera. 
Hence the problem of depth recovery given a pair of images 
is reduced to establishing correct correspondences between 
both images. The Middlebury website [6] contains a large 
collection of stereo match algorithms and cost functions, as 
well as a test-bed for relative comparison.  

Depth recovery from a single image is proposed in [18-
20], modelling the depth estimation as a Markov Random 
Field (MRF) learning problem. The success of Deep 
Learning in computer vision has prompted recent 
approaches to model the problem with Convolutional 
Neural Networks (CNNs) [21]. While showing much 
promise, work to date has lacked stronger geometric 
features (like stereoscopic information) highly correlated 

with depth. A closely related technique to ours is [5], where 
a data-driven approach has been taken to develop a near-
infrared based depth camera. In this study, a two-layered 
Random Forest framework was used to establish the 
mapping between near infrared images of a scene consisting 
of articulated hand poses captured from modified RGB 
cameras to actual depth. While this is a unique and 
relatively inexpensive technique, it suffers from ambient 
infrared radiation (e.g., when used in an outdoor scene). In 
addition, it requires nontrivial hardware modifications.  
Our work is also related to [9], where the prediction of joint 
locations that are prominently modelled with a Random 
Forest is conditioned on global variables (like torso 
orientation). A major difference is that we explicitly 
combine Random Forest and Conditional Random Fields. 
To the best of our knowledge, the closest approach in 
literature is [10], which attempts to solve the problem of 
multiclass object recognition and segmentation by 
modelling perceptual organization (e.g., surrounding pixels 
are correlated) and context-driven recognition (e.g., that 
establishing an object is in the scene may indicate that 
another object will be in the scene) using a CRF. CRF 
inference in [10] is achieved using the Swendsen-Wang cut 
algorithm that iterates Metropolis-Hastings jumps. These 
approaches differ to ours in that we adaptively combine 
prediction from the trees using the unary term of our CRRF 
whilst the pairwise term maintains spatial pixel depth 
constraints. Also, we present a closed form solution to 
inference on our Conditional Random Regressive Forest.  

Figure 1: An illustration of the proposed approach.  First the reference stereo image is segmented into superpixels. Using
different window sizes and cost functions we compute the disparity cost along the epipolar line in the corresponding image.
This cost is concatenated to generate a feature signal that is fed into a Regressive Random Forest. Posterior probability
distributions from the trees are combined using the matrix, ࡭ (the defining component of the unary term of our CRRF model).
The similarity measure between neighboring superpixels is multiplied with ࢼ to yield the pairwise term. The CRRF resolves 
a closed form solution ࢟∗ that maximises Eq. 11. 
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This contrasts with earlier approaches like [10] that apply 
an iterative approach to achieving inference. Another work 
that bears similarity to our approach is [17], where the task 
of facial feature localization is addressed with regression 
random forest conditioned on the head pose. Like our 
approach, training samples are partitioned in to a subset 
based on an auxiliary parameter (that describes the head 
orientation) and each tree is exposed to a subset. Then at 
test time, the probability of the auxiliary parameter given a 
facial image is used to modulate the voting probability from 
each tree for feature location. There has been a recent 
increase in interest in hand pose estimation, with several 
techniques proposed, particularly those working with data 
captured from active depth sensors or monocular cameras 
[3], [22] and [23].  However, less work has been done on 
hand pose recovery based on stereo images [15] and [16]. 
We contribute to this area by developing a machine learning 
framework that recovers depth from stereo.  

3.  Overview of Conditional Regressive Random Forest 

Our method recovers a high-quality depth image from 
two stereoscopically acquired images of the hand.  Our 
dataset captures the hand in a variety of poses. Figure 1 
shows an overview of the approach. First, we segment the 
reference stereo image1 into superpixels using SLIC [24]. 
For every hand superpixel, we compute its stereo matching 
cost with all potentially matching pixels along the epipolar 
line in the corresponding image. We apply five different 
matching cost functions. Each of the stereo matching cost 
functions is applied under varying window sizes that are 
centered on the centroid of the superpixel, and on the 
potentially matching pixels in the corresponding stereo 
pair. The matching cost values that are computed across all 
combinations of cost function, window size and potentially 
matching pixel are concatenated to a single feature vector. 
Henceforth we will refer to this vector of features as the 
matching-cost feature vector. Note that we do not attempt 
to identify matching pixels explicitly; we simply compute 
the matching-cost feature vector (for each superpixel). In 
addition, we extract features that relate to the hand in the 

                                                           
1 The reference stereo image is one of the two images in the pair.  For 

each pixel in the reference image, we seek a correspondence in the other 

scene. These features primarily represent how far away the 
entire hand is from the camera, texture, and the color of the 
skin. We refer to this as the holistic hand feature vector.  

A Regressive Random Forest (RRF) is trained to regress 
for the depth of a superpixel based solely on its matching-
cost feature, however, each tree in the RRF is exposed to a 
subset of the training data based on its holistic hand feature. 
Finally, we use a CRF to combine the predictions from each 
whilst constraining for smooth depth surface prediction. 

4. Conditional Random Field and Random Forest 

For ease of presentation, vectors and matrices are 
denoted with a boldface lowercase and uppercase 
respectively. Vector and matrix transpose are denoted with 
an upper script T, as in	{}். Unless explicitly specified, all 
vectors are assumed to be column vectors e.g. ࢖ ,	௫݌	ൣ= ,	௬݌  A vector whereby of its entries is one is	௭൧்.݌
denoted as ࢏, whilst ࡵ denotes the identity matrix.  

For a given reference image, z, and its corresponding 
stereo image, z’, we denote a hand superpixel in z as	ݔ௝ ∈൛ݔଵ, … , 	௃ൟ and the centroid pixel of the superpixel asݔ ௝࢜. 
For each	 ௝࢜, we define a search space of W potentially 
matching pixels,		 ௝࢜,௪ ∈ ൛࢜′௝,ଵ, … , ௝࢜,ௐᇱ ൟ located in z’.  We 
then compute ࢉ௞,௚൫ ௝࢜൯ = [	 ௞݂,௚൫	 ௝࢜, ࢜ᇱ௝,ଵ൯, … , ௞݂,௚(	 ௝࢜, ࢜ᇱ௝,ௐ)], (1) 
where fk,g is the resulting cost from using the ݇th matching 
cost function,  and ݃th window size. We 
concatenate	ࢉ௞,௚( ௝࢜) for all combinations of k and g to get 
a single matching-cost feature vector. Hence for each 
superpixel, ݔ௝, given that ݇ ∈ {1, . . ݃ and {ܭ ∈ {1, . .  the ,{ܩ
corresponding matching cost feature will be ࢉ௝ ∈ ℝ୒ 
where	ܰ = ܹ ∗ ܩ	 ∗  Note that W, G and K are the .ܭ
number of pixels in the search space, the number of window 
sizes, and the number of matching cost functions 
respectively. Where the ground truth depth at the centroid 
pixel,	 ௝࢜, is	 ௝݀, we denote the regression dataset 

as	{(݀ଵ, ,ଵ)(௭)ࢉ … , ൫݀௃,  ௃൯(௭)} for all Z stereo image pairsࢉ
collected over different hand poses and subjects.    

image. Hence a resulting disparity image registers perfectly with the 
reference stereo image. 

Figure 2: An illustration of the unary potential when T = 240, D = 500 and H = 6. This illustrates how A weighs the posterior
probability, ࢐ࡼ, from the trees using ࢎ to give a final probability distribution. 
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4.1. Expert Random Forest 

 Decision trees were grown by recursively splitting and 
passing training data based on matching-cost features. The 
intuition is that the trees implicitly learn how to adaptively 
select the window size and type of cost function based on 
different tree split levels. This is analogous to adaptively 
determining the size of the window and type of cost 
function to use at different stages of a coarse-to-fine 
approach to searching for pixel correspondence. The 
entropy decreases moving through each tree from the root 
to the leaf nodes. Expert Trees: As previously stated, 
holistic hand features (features that describe the entire 
hand), are additionally computed. This step is motivated by 
the significant effect that skin color and the overall distance 
of the hand have on the matching-cost features. 
Consequently, establishing a stereo-matching criterion (i.e., 
matching cost, window size, etc.) that works effectively 
across different skin tones and hand depth levels is a 
difficult task. To this end, all the stereo image pairs are 
clustered into classes based on their holistic hand features. 
Each tree in the RRF is trained by bagging from only one 
of the classes, making it an expert at regressing the depth 
for that class. Thus, a tree may be expert at predicting the 
depth of superpixels in a darker-toned hand that is closer to 
the camera, whilst another may specialize in lighter-toned 
hands that are farther away. See Section 5.2 for more detail 
on holistic hand features. When predicting the depth of an 
unseen stereo pair with a holistic hand feature, the CRF 
framework, discussed in the next subsection, ensures that 
more emphasis is placed on prediction from expert trees 
with similar holistic hand features than to others. 

4.2. Conditional Regressive Random Field 

This section describes the CRRF framework (using the 
same notation). Consider a new stereo image pair, with a 
holistic hand feature vector, h, whose superpixels’ depths 

are to be predicted using the trained RRF. For a single 
superpixel, ݔ௝, each RRF tree, t, produces a posterior 
probability distribution,	݌௧൫ ௝݀หࢉ௝). We discretize this 
distribution by quantizing the depth values into D finite 
values. This yields a probability vector,	࢖௧,௝ ∈ ℝ஽	that is 
then consolidated across all the T trees into	ࡼ௝ ,ଵ,௝࢖		]= ଶ,௝࢖	 …	 [௝,்࢖	 ∈ ℝ஽×்.  We model the probability of ௝݀ given the reference stereo image and trained RRF, ܲ൫ ௝݀หࡼ௝,  ൯, as a CRF model. Conventionally a CRFࢎ
formulates conditional probability as a product of 
potentials, that is  Pr(ܽ|ܾ) = 1ܼ(ܾ)ෑexp	(ɸ௜)௜ = 1ܼ(ܾ) exp ൥෍(ɸ௜)௜ ൩ , 	(2)	 
where ܼ(ܾ) is the partitioning function, and ɸ௜ are 
potentials. [12] Inspired by [13], the potentials in our 
framework take the form of a unary	ܧ௎ and a pairwise 
term	ܧ௉. The conditional probability is approximated 
because of the intractable nature of	ܼ(ܾ) in our framework,   Pr෪൫ࢊ௝หࡼ௝, ൯ࢎ = exp ൥෍(ɸ௖)௖ ൩ = exp[ܧ௎ [௉ܧ	+ , 					(3) 
where Pr෪	denotes an unnormalized probability distribution. 
This approximation will suffice because the objective is to 
estimate the depth level with the maximum probability. 
Hence, the probability of the predicted depth probability for 
all superpixels given	ࡼ௝	and the image’s holistic hand 
feature, h, is represented as the exponent of sums of both 
potentials. While the unary term aims in yielding a 
conditional probability distribution that maximizes the 
probability of the true depth level, the pairwise term 
encourages neighboring superpixels to have a similar 
posterior probability distribution. 

Unary Potential: The unary term predicts the depth level 
of a superpixel based on its posterior distribution from the 
RRF trees and the holistic hand feature. To this end a unary 
weighting matrix, ࡭ ∈ ℝ்×ு, is introduced, which weighs 
the posterior from each tree based on	ࢎ ∈ ℝு.  This is 
important because expert trees are trained, as opposed to 
randomly bagged trees. The ࡭ matrix provides weights to 
trees depending on the holistic hand feature. Hence it places 
varied emphasis on the predictions from different trees. 
Taking inspiration of the Bhattacharyya metric [15], we 
formulate ܧ௎ as an affinity measure between true depth 
probability, ෝ௝்࢖  and the predicted probability, ࡼ௝ટࢎ as in, 

௎ܧ = ܬ1 ෍൥࢖ෝ்௝	ࡼ௝ટࢎ࡭்࢏ࢎ ൩.																														(4)௃
௝ୀଵ 		 

This is accumulated across all superpixels in the reference 
stereo image. The denominator in Eq. 4 ensures that ࢐ࡼટࢎ 
remains normalized. The surface plot in Figure 3 shows 

Figure 3: A surface plot of the matrix A, used to weigh the
expert trees based on the holistic hand feature.  A higher
value indicates more weight.  Consider a hypothetical
holistic hand feature vector, [0, 0, 0, 1, 1, 1], which when
post-multiplied with A will give less weighting to trees 40
to 80 and 160 to 200 based on their lower values (bluer
colors). 
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how the different entries of A vary relatively. Figures 2 and 
3 give an illustration of the weighting ability of A. The 
peaks indicate strong relationship between entries of h and 
the tree index. Studying both figures, consider a 
hypothetical example where ࢎ = 	 [0	0	0	1	1	1]்.  In this 
case, the holistic hand feature vector will weigh the 
prediction from the 240 trees based on the last three 
columns of	࡭, thereby giving less weighting to trees 40 to 
80 and trees 160 to 200. 

Let ෝ࢟ 	= 	 ,ෝଵ୘࢖] ,	ෝଶ୘࢖ … , [ෝ௃୘࢖ ∈ ℝ(஽∗௃)  be a vector 
resulting from the concatenation of the actual probability 
distribution of all hand region superpixels and let ࢅ	 ,	ଵࡼൣ	= ,ଶࡼ … , ௃൧୘ࡼ ∈ ℝ(஽∗௃)×்		be the matrix whose row 
vectors are the concatenation of the predicted probability 
distribution from each tree. Then the unary potential in Eq. 
4 can be rewritten for all superpixels in a single stereo 
image, z in matrix form as follows:  ܧ௎ = ࢎ࡭்࢏ܬ1 ෝ்࢟ࢅટ.ࢎ																																						(5) 
The larger ܧ௎ becomes, the more similar the consolidated 
predicted probability, ࡼ௝ટࢎ, is to the true depth 
probability, ෝ௝்࢖ . 
Pairwise Potential: The pairwise potential enforces the 
constraint that adjacent superpixels often possess similar 
depth and hence similar probability distributions. This is 
based on the smooth nature of the depth of the hand surface. 
Similar to [13], a visual similarity measure between 
neighborhood superpixels is established to apply an 
adaptive depth similarity constraint. Specifically, 
neighbouring superpixels that appear dissimilar in terms of 
color, texture, and size will have a weaker pairwise 
potential encouraging similar predicted depth. This is 
particularly intuitive in a self-occluded scenario. The 
discontinuity in texture resulting from a finger occluding 
the palm, for example, will indicate that less smoothness 
constraint is placed on neighbouring superpixels that exist 
on the edge of the finger and the palm. To achieve this 

behavior, a similarity vector, ௝࢙,௞ = ቂݏ	௝,௞	(ଵ) , … , (ொ)	௝,௞	ݏ 	ቃ, is 

introduced, and a pairwise weighting, ࢼ ∈ ℝொ. For a pair of 
neighbouring superpixels, ݔ௝ and	ݔ௞, Q superpixel 
similarity measures are computed between them (more 
details on the superpixel similarity measures are presented 
in Section 5.2). We specify our pairwise potential as: ܧ௉ = 1|ܷ| ෍ ்ࢼ ௝࢙,௞	࢖ෝ௞୘࢖ෝ௝(௝,௞)∈୙ ,																										(6) 
where U is a set of all possible pairs of neighbouring hand 
superpixels. Subsequently, the pairwise potential is a 
measure of the affinity of the probability of all pairs of 
neighbouring superpixels, and  ࢼ୘ ௝࢙,௞ determines the 
contribution of each pair of superpixels to this measure.  
Let ۰ ∈ ℝ௃×௃ be a matrix such that, its elements are given 
by  

௝௞࡮ = ୘ࢼ	 ௝࢙,௞۷,																																									(7)                  
and zeros everywhere else. ࡵ is a D×D identity matrix. 
With this matrix, the pairwise potential in Eq. 6 can be 
represented in matrix form as: ܧ௉ = 	 1|ܷ|	 ෝ࢟୘࢟࡮.ෝ 																																						(8) 
A resulting depth image with high level of smoothness will 
yield a large pairwise potential,	ܧ௉ and vice versa. 
Complete CRRF: At this stage, both potentials, unary and 
pairwise, have been established and that, the higher they 
are, the smoother and the more accurate the predicted depth 
becomes. Eqs. 3, 4 and 6 are combined to result in  

Pr෪(࢟|ࡼ, (ࢎ = exp ቎1ܬ ෍ቈ࢖ෝ௝் ࢎ࡭்࢏ࢎࢡ௝ࡼ ቉௃
௝ୀଵ 		

+ 1|ܷ| ෍ ்ࢼ ௝࢙,௞	࢖௞ෞ୘	࢖ఫෞ(௝,௞)∈௎ ቏,														(9) 
for a single stereo image pair. In this unified framework, the 
aim is to maximize Eq. 9 based on ࡭ and	ࢼ. For all stereo 
images in the training set, z, the framework attempts to 
maximize	∑ log Pr෪൫࢟(௭)หࡼ(௭)൯௭ . Formally, 

max࡭ஹ૙,ࢼ෍ log Pr෪൫࢟(௭)หࡼ(௭)൯௓
௭ୀଵ + 1)ߣ −  (10)																					,(ࢼ୘ࢼ

 
where ߣ is the decay weight on the constraint with ࢼ 
maintaining a unit length and 

log Pr෪(࢟|ࡼ, 	(ࢎ = ܬ1 ෍ቈ࢖ఫ்෢ࡼ௝ࢎ࡭்࢏ࢎࢡ ቉௃
௝ୀଵ 		

+ 1|ܷ| ෍ ்ࢼ ௝࢙,௞	࢖௞ෞ୘	࢖ఫෞ(௝,௞)∈୙ .															(11) 
During optimization, we ensure that all the entries of ࡭ are 
positive, so that ࢎࢡ࢐ࡼ represents a probability. With the 
aim of solving for Eq. 10, stochastic gradient ascent is 
applied using the partial derivative of Eq. 11 with respect to ࡭ and	ࢼ. ߲൛log Pr෪(࢟|ࡼ, ࡭ൟ߲(ࢎ 																																																																													 

= ௝்ࡼ෍ܬ1 (ࢎ࡭்࢏)்ࢎఫෞ࢖ − ൫࢖ఫෞ்ࡼ௝ࢎ࡭൯[ࢎ࡭்࢏]்ࢎ࢏૛௃
௝ୀଵ 			(12) 

and ߲{log Pr෪(࢟|ࡼ, ࢼ߲{(ࢎ = 	 1|ܷ| ෍ 	 ௝࢙,௞் ఫෞ࢖		 ௞ෞ୘(௝,௞)∈௎࢖	 .								(13) 
We randomly initialize ࡭ and	ࢼ, and iteratively update 
accordingly. See Section 5.4 for details. 



 

 

4.3. Prediction 

Having established ࡭ and	ࢼ, predicting the posterior 
probability for new stereo pairs involves solving the 
Maximum a Posteriori inference on Eq. 9. To achieve this, 
the matrix representations of ܧ௉ and ܧ௎ are used in Eq. 5 
and Eq. 8 resulting in  Pr෪(࢟|ࡼ, (ࢎ = exp ቂ ଵ|௎| ࢟୘࢟࡮ + ଵே  ቃ.           (14)ࢎટࢅࢀ࢟

The aim is to determine ࢟ that maximizes	Pr෪(࢟|ݔ) for a 
pre-computed ࡭ and	ࢼ pair. ࢟∗ = 	 argmax௬ Pr෪(࢟|ࡼ, (ࢎ = argmax௬ ଵ|௎| ࢟୘࢟࡮ + ଵே    ࢎટࢅࢀ࢟

    (15) 

This is easily derived in closed form by solving for the 
zeros of the second derivative. Formally, ࢟∗ = 	 |௎|ே ۰ି૚ࢅટ.ࢎ																																			(16)   ࢟∗ represents the concatenated predicted depth probability 
for all superpixels in an image. The predicted depth level 
for a superpixel is the depth with the maximum depth 
probability. 

5. Implementation Details 

5.1. Registering reference stereo to RGBD camera 

   To establish a database of strong registration between the 
pairs of data, image and depth acquisition were carried out 

on both the stereo camera and a RGBD camera, almost 
adjacently positioned. Using camera calibration [14], depth 
data from an RGBD sensor was registered to the left image 

of the RGB pair. This allows {(݀ଵ, ,ଵ)(௭)ࢉ … , ൫݀௃,  ௃൯(௭)} toࢉ
be established for all captured instances of stereo pairs, z.       

5.2. Extracted Features 

 Matching-cost Features, ࢐ࢉ: our implementation used 
five matching cost functions: Sum of Absolute Difference 
(SAD), Sum of Squared Differences (SSD), Normalized 
Cross Correlation (NCC), Quantized Census (QC), and 
Zero-mean Sum of Absolute Differences (ZSAD). The 
reader is referred to [1] for details on these cost functions. 
These cost measures were chosen because of their 
prominence, computation cost and simplicity. Each of the 
cost functions were applied under three window sizes:	[7 ×7],	[11 × 11], and	[15 × 15].  
Holistic Hand Features, h: For each captured instance of 
stereo pairs three main factors are focused on in describing 
the scene. First, the average intensity value of all hand 
region pixels across all three-color channels is considered. 
This quantifies the skin tone. Second, the aggregative shift 
of all hand pixels in the reference stereo camera compared 
to the other stereo camera is computed. This quantifies how 
far away the hand is from the camera, representing the 
difference in the average pixel’s position for hand region 
pixels in both cameras. Last, we compute the ratio between 
the numbers of hand and non-hand region pixels. This 
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Figure 4: Qualitative Results using real captured poses. The reference image of the stereo pair is shown in the 1st row and 
the corresponding ground truth depth is presented in the 2nd row. The results from our full technique are presented in the
3rd row. Results from solely using the unary term with RF are in the 4th row, while recovered depths from RF are presented 
in the 5th row.   



 

 

quantifies the size of the hand (if considered relatively to 
the aggregative shift). This analysis resulted in a six-
dimensional holistic hand feature vector (3 color channels 
values, 2 vector shift values, and 1 ratio of pixels in the hand 
vs. non-hand regions).  
Superpixel Similarity Measure,	 ௝࢙,௞: To quantify 
similarities of two neighboring superpixels, four measures 
were used. The first measure is the difference in the average 
LAB color of both superpixels. The second is the difference 
in the Local Binary Pattern. The third measure is the 
difference in the standard deviation of pixels’ values in 
LAB color. Finally, we examine the summed difference in 
histogram. In each of these cases, the exponent of the 
negative Euclidean norm is applied to the resulting 

difference. For instance, the LAB difference is 	 ௝࢙,௞(ଵ) =݁ି||࢙ೕಽಲಳି	࢙ೖಽಲಳ||, where ௝࢙௅஺஻ is the average LAB value for 
superpixel ݔ௝. This yields a similarity measure vector with 
a length of four or	ܳ	 = 	4.  

5.3. Data and Training 

Using the setup described above, 500 instances of hand 
poses at different distances, from 12 different participants 
(6,000 stereo pairs in total), were captured. Participants 
were of different skin tone, hand size and gender. Data from 
four participants was reserved for testing, and the remaining 
data (from the other eight participants) was used for 
training. SLIC segmentation was applied to all reference 
stereo images, producing approximately 3,000 superpixels 
per image. Note that only a fraction of these 3,000 
superpixels are hand region superpixels. The amount of 
hand superpixels (ranging approximately from 200 to 500 
per image capture) depends on the distance between the 
hand and the camera. In total, roughly 2.5 million 
superpixels were used in training and evaluating the 
algorithm. The depth values posterior distribution of the 
RRF was quantized into 500 bins, i.e. D = 500. The depth 
range of the hand poses in the entire dataset, generally 
ranged from 500mm and 1800mm. Hence, the RRF can 
predict to a resolution of (1800mm-500mm)/500 bins = 2.6 
mm. Each round of training (i.e., to train for each posterior ࢅ௭(௦)) takes approximately 3 - 4 hours.  Since eight rounds 
were needed, training took roughly one day. Finally, the 
propagation of all superpixels and combining the posteriors 
using ࢼ executes typically in 185 seconds. Hence testing for 
the depth, a frame of stereo images on the cluster will 
typically take 260 seconds.  

5.4. Stochastic Gradient Descent ࡭ and	ࢼ are learned separately by first randomly 
initializing with all elements of A being positive. We 
trained for A and ࢼ with the learning rate initialized at 

12,000. We ran 100 epochs, reducing the learning rate by 
10% every 10 epochs. The decay weight, λ, was set as 0.05.  

6. Experimental results  

The approach was validated experimentally, presenting 
both qualitative (Figure 4) and quantitative (Table 1) 
results. Three main comparisons were made, these include: 
prediction solely using RF (with only matching-cost 
features and with a combination of matching-cost and 
holistic features); using RF with the unary term framework; 
as well as a prominent stereo-matching technique (SGM). 
The results were quantitatively appraised for accuracy by 
computing the percentage of correctly predicted depth both 

at superpixel and pixel levels,	∑ ி{|ௗ೛ಸ೅ିௗ೛|ழ௧}೛ചಿ ே , where ݀௣ீ் 

and ݀௣ are the ground truth and the predicted depth at 
superpixel (or pixel) p;	ܨ{} is a function that returns 1 for 
true input and 0 otherwise; and N is the number of hand 
region pixel/superpixel. We also computed the average 

relative error,	ଵே ∑ |ௗ೛ಸ೅ିௗ೛|ௗ೛ಸ೅௣ఢே , to quantitatively evaluate the 

performance of the test.  

6.1. Stereo-matching Comparison 

To validate the machine learning approach, we attempt to 
extract depth (through disparity) from stereo pairs in our 
dataset using a prominent stereo matching technique, SGM. 
At the time of writing, this was the 9th best performing 
published stereo-matching technique on the Middlebury 
stereo evaluation chart [6]. We compare to SGM as it is the 
highest performing technique for which a MATLAB 
implementation is readily available.  

We fed the rectified stereo image pair of hands into the 
standard MATLAB implementation of SGM for stereo 
matching. Stereo baseline and focal length resolved from 
stereo calibration [14] are combined with the SGM 
generated disparity to yield actual distance. We then 
compute error based on hand pixel regions. The 
performance is shown in (last row) Figure 4 and Table 1.  
  This is an interesting comparison as SGM also applies 
global optimization. Nonetheless, its poor performance is 
apparent from Table 1. It provides the least accuracy in 
comparison to the rest of the machine learning techniques. 
We hypothesize that this due to the untextured nature of the 
hand as well as radiometric differences present in the stereo 
pair. The SGM technique attempts to universally appraise 
pixel correspondence by applying a pre-established 
matching criterion. The untextured nature of the hand and 
radiometric inconsistencies, in conjunction with the varying 
skin colors and hand sizes makes this task hard. This result 
emphasizes the significance of our approach in that a 
conventional stereo-matching approach (even one as robust 
as SGM) performs poorly for skin regions.   



 

 

We also compared the proposed method with [16], which 
also applies a regressive random forest to estimate image 
depth.  However, in [16], a single similarity measure 
(Quantized Census) is used to compute a depth image, and 
no pairwise term is modelled in the regression that maps a 
disparity image to a depth image.  As the results in Table 1 
show, our method, even without the pairwise term, 
outperforms [16].  We attribute the improved performance 
of our CRRF method to the features used.  Unlike [16], 
which uses a single similarity measure, our method learns 
the features that best regress the depth using multiple 
similarity measures, disparity shifts, and window sizes in a 
concatenated feature vector.  Also unlike [16], which uses 
disparity as an intermediate representation, our CRRF 
method maps directly from the stereo pair to depth.  
Additionally, our approach to regression is more 
sophisticated in that we conditionally learn expert trees, 
which are combined using holistic hand features.  Finally, 
the pairwise term in our model provides additional 
smoothing constraints that yield superior performance. 

6.2. Baseline Comparison 

Three baseline comparisons were made. The first was 
predicting depth solely from the matching-cost feature, 
using conventional RRF. The results (Figure 4 and Table 1) 
validate our hypothesis that applying a machine learning 
approach to determining stereo correspondence is a more 
effective approach. Using a set of simple stereo matching 
criteria and stochastically determining which to use at 
different tree depths has resulted in almost a 272.7% 
increase (from 0.132 to 0.492) in pixel level accuracy.  

Secondly, we augmented the matching-cost feature by 
concatenating it with the holistic hand features whilst still 
regressing with a conventional RRF model. The aim was to 
specifically investigate the impact of using “expert trees”.  
From Table 1 we can see a notable improvement in the 
prediction resulting from adding the holistic feature, 
yielding greater accuracy (0.492 to 0.689) and less relative 
error (0.500 to 0.353) in both superpixel level and pixel 
level. However, a much greater increase in accuracy results 
from using the holistic feature to learn expert trees as 

opposed to just concatenating it with the stereo-matching 
feature. This yielded a 50.2% increase in accuracy on 
average in comparison to the 29.1% increase in accuracy 
provided by solely concatenating the holistic features.  

The last baseline comparison was to investigate the 
significance of the pairwise term. Recall that the 
contribution of the pairwise term is to add a smoothing 
constraint on the depth prediction. This is presented in the 
qualitative results. The predicted depth is clearly smoother 
and hence a better representation of the surface of the hand. 
The quantitative result from Table 1 also conveys the 
superiority of the prediction made when the pairwise term 
is applied. Interestingly, the pixel level accuracy is almost 
as strong as the superpixel level accuracy when the pairwise 
term is applied. This is again due to the smoothing effect.    

7. Conclusion 

In this paper, we proposed and developed an innovative 
application of the regression forest technique for resolving 
depth from stereo images. We present Conditional 
Regressive Random Forest, a framework that uniquely 
combines expert trees based on the features of the 
superpixel whose depth is being predicted. Note that the 
technique is relevant for to other applications, including 
classification problems like scene labelling. The framework 
further enforces smoothness constraints as it predicts depth 
of superpixels away from the camera. Thus, we have 
demonstrated the use of a relatively cheap stereo camera rig 
to generate a high-quality depth image of the hand.  

RGB cameras have advantages over depth cameras as 
discussed in the introduction, but computing the depth of a 
hand using standard stereo algorithms that use a single 
matching cost function produces inferior results due to 
ambiguities arising from a lack of texture, and variations in 
hand size and skin tone.  To date, the use of machine 
learning for hand depth estimation has received little 
attention, despite the importance of depth estimation for 
hand gesture and pose estimation in HCI applications.  This 
paper fills this gap by presenting a new state-of-the-art 
machine learning approach in recovering accurate depth 
images from stereoscopic images of the hand.  

Methods Superpixel Level Accuracy  Pixel Level Accuracy  Ave. Relative Error 
t=10mm t=20mm t=10mm t=20mm per Superpixel per Pixel 

SGM [11] - - 0.103 0.132 - 0.772 
Basaru et al. [16] - - 0.455 0.515 - 0.534 

RRF  0.599 0.610 0.423 0.492 0.503 0.500 
RRF (with 

Holistic Feature) 
0.686 0.757 0.610 0.689 0.358 0.353 

RRF + Unary 0.835 0.885 0.684 0.788 0.229 0.231 

CRRF (Pairwise 
+ Unary) 

0.911 0.911 0.811 0.852 0.181 0.190 

 
Table 1: Quantitative comparison of our technique (RF + Pairwise + Unary) against existing work in stereo-matching 
[16], conventional RRF, and different variants of our technique.
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