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ABSTRACT

A major challenge faced by multi-voxel Magnetic Resonance
Spectroscopy (MV-MRS) imaging is partial volume effect (PVE),
where signals from two or more tissue types may be mixed within a
voxel. This problem arises due to the low resolution data acquisition,
where the size of a voxel is kept relatively large to improve the signal
to noise ratio. We propose a novel supervised Signal Mixture Model
(SMM), which characterizes the MV-MRS signal into normal, low
grade (infiltrative) and high grade (necrotic) brain tissue types, while
accounting for in-type variation. An optimization problem is solved
based on differential equations, to unmix the tissue by estimating
mixture coefficients corresponding to each tissue type at each voxel.
This enables visualization of probability heatmaps, useful for
characterizing heterogeneous tumors. Experimental results show an
overall accuracy of 91.67% and 88.89% for classifying tumors into
either low or high grade against histopathology, and demonstrate the
method's potential for non-invasive computer-aided diagnosis.

1. INTRODUCTION

World Health Organization guidelines classify brain tumors into
four clinical grades: Grade I (GI) and II (GII) are low grade tumors
that have the better prognosis and survival time, whereas Grade I11
(GII) and IV (GIV) represent high grade malignant tumors [1].
Structural Magnetic Resonance Image (MRI) sequences are widely
used non-invasive tools for diagnosis and grading, whereas 'H
Magnetic Resonance Spectroscopy (MRS) provides additional tissue
metabolism information that has clinical potential to improve the
non-invasive characterization of brain tumors [2].

A major challenge faced by multi-voxel Magnetic Resonance
Spectroscopy (MV-MRS) imaging is the partial volume effect
(PVE). PVE results in a mixture of signals from two or more tissues
within a MRS voxel, which has relatively coarse resolution
compared to the structural MRI in order to boost the signal to noise
ratio of MV-MRS, and keep a reasonable acquisition time. Existing
work using MRS for tumor type classification includes linear
discriminant analysis [3], principal component analysis (PCA) and
independent component analysis (ICA) [4]-[8], (convex)
non-negative matrix factorization (NNMF) [9]-[12] along with
multi-layered perceptron for tumor type classification. In particular,
Raschke et al. was the first to address the problem of PVE with tissue
type datasets, based on a technique that used LCModel and a basis
set containing mean spectral representations of different tissue types,
and a variability term calculated using PCA to account for tissue
heterogeneity [7], [8]. Recently, Yang et al. investigated the use of
nonlinear dimensionality reduction for classification of MRS tumor
data [13]-[15]. Others have modeled PVE on signals in other brain
image modalities for different applications [16], [17].

In this paper we propose a novel supervised Signal Mixture
Model (SMM), which characterizes the MV-MRS signal into
normal, low grade (infiltrative) and high grade (necrotic) brain tissue
types. The proposed method is divided into training and prediction

frameworks (flowchart in Figure 1). The SMM is trained using a
labeled dataset of single-voxel Magnetic Resonance Spectroscopy
(SV-MRS) where for each signal a single voxel is carefully placed
on a homogeneous tissue region and histological tumor diagnosis is
confirmed using biopsy or resected tumor tissue samples. Mean and
eigenvectors encoding the variation about the mean for each tumor
grade are extracted using PCA to build the SMM. The prediction
stage optimizes the SMM against an input MV-MRS signal, where it
addresses the PVE using mixture coefficients corresponding to each
tissue type. These mixture coefficients represent the probability of
each tumor grade within a given voxel, and enable visualization of
probability heatmaps and identify regions of interest (ROIs) with
different tumor grades. To the best of our knowledge our proposed
SMM method is the first study to propose a fully supervised model
for PVE estimation designed for brain tumor characterization.
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Figure 1: Flowchart of the proposed Signal Mixture Model (SMM) method.

2.SIGNAL MIXTURE MODEL FOR MV-MRS

It has been established that the tumor grade is correlated with the
MRS signal, for example, a decrease in levels of N-acetylaspartate
(NAA) indicates neuronal loss or damage [2]. We use this relation to
propose a Signal Mixture Model (SMM) for characterizing brain
tissue as Grade n, Grade 1, and Grade h, corresponding to normal,
low grade (infiltrative), and high grade (necrotic), respectively.

Let a MV-MRS signal be denoted as x(t) and the proposed SMM
denoted as s(t) , where x and s represent the spectrum of
metabolites, and t represents the frequency in parts per million
(ppm). We use a database of SV-MRS signals of each type, acquired
by placing a voxel on a single homogeneous tissue region, to build
signal models for each tumor grade i € {n, [, h}. Signal models are
computed using PCA to represent each signal in terms of its mean,
and variation about the mean. For each grade i, we produce a model.

Ki
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where y; is the mean, e, are the eigenvectors, @;;, are weights that
allow variation from y;, and K; is the total number of selected



eigenvectors for the model. For a signal generated from a voxel that
is completely from grade i, we would expect it to be well modeled
with m;(t). However, particularly in MV-MRS, it is likely that the
voxels will contain tissues of multiple grades due to PVE. We
assume that the observed signal x(t) is a mixture of m, (t), m;(t),
my, (t) known as SMM, expressed as
s(t) = wymy () + oymy(t) + wpmy(t),

where w,, w;, wy, are mixture coefficients that represent the
probability of each tumor grade in x(t) and are constrained by

wp+w +wp,=1and w, 20, w;, =20, wp =20. (3)
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2.1. Signal Mixture Model (SMM) Optimization

Given a new MV-MRS signal x(t), we formulate the SMM
fitting as an optimization problem to determine the mixture
coefficients, wy,, w;, wp, as well as the weights a;;, in the model V i
and V k. This is a (3 + K, + K; + K;) dimensional optimization
constrained by Equation 3, where our proposed method finds an
optimal solution ¢* = [wy,, W}, Wy, Tk AL » Arx) Vk. The energy to
be minimized can be expressed as

E= f [x(t) — s(6)]2dt. )

To optimize this energy, we use gradient descent, which starts
with an initial solution and evolves it towards an optimal solution.
On each iteration 7, the solution ¢ moves in the direction of the
negative gradient, which can be derived analytically for this
problem. The derivative of the energy with respect to w; is

aaji = _Zf[']mi(t)dt, where (5)
K;
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In addition, the derivative of the energy with respect to a; is
given as
oE
7 = =2 [ Hogeidt. @)
We can therefore express the gradient of the energy with respect
to the (3 + K, + K; + K}) parameters as
0E O0E O0E O0E OE
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2.2. Initialization and Optimization

During initialization, we take an MV-MRS signal x(t) and
project it into the three signal models, forming projected signals
p;(t). The projection provides initial estimates for 3K; weights a;.

We measure the residual r; for each grade i, which describes the
error of trying to represent signal x(t) with signal model m;(t), as

n=fh@—m®?ﬂ, ©)

If the signal is perfectly modeled using signal model m;(t), we
would expect 1; to be zero. Let r = 1, + r; + 13, we initialize the
mixture coefficients as

M=1—?, (10)

followed by re-normalization so that they sum to one. This then
gives us an initial solution ¢° for SMM, as we have initial values for
w; and ay (Vi and V k). Given the initial solution ¢°, we
iteratively evolve the SMM in the negative gradient direction, i.e.
@11 = ¢ — yVE", where y is the step size. On each iteration, we
renormalize the mixture coefficients so that they are constrained by
Equation 3. An example is shown in Figure 2.
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Figure 2: SMM optimization for a given input MV-MRS signal x(t) (blue).
(a) SMM signal (red) for ¢°, and (b) ¢1°.

3. EXPERIMENTAL EVALUATION

We use SV-MRS and MV-MRS datasets acquired using a GE
Signa Horizon 1.5T MR system with Repetition Time (TR) = 2000
ms, short Echo Time (TE) = 30 ms. Point-resolved spectroscopic
sequence and PROBE-SI protocols were used for SV-MRS and
MV-MRS data acquisition, respectively. The SV-MRS data contains
samples from 137 patients (79 normal, 23 GII, 10 GIII and 25 GIV).
MV-MRS data was acquired from 30 patients with ground truth
(GT) histological diagnosis characterizing 12 patients as GII, 7 as
GIII and 11 as GIV. The SV-MRS data is used to build the SMM,
where Grade n includes normal tissue samples, Grade | includes GII
and Grade h includes GIV, which is then validated using MV-MRS
data. Due to the heterogenecous tumor characteristics, the
classification of GIII tumors can be very challenging, therefore our
validation presents results including both with and without GIII data
in Grade h.
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Figure 3: Cross-validation results for parameter selection shows eigenvector
variation in SMM using % eigenvalue energy.

3.1. Synthetic Data Generation

Ground truth mixture coefficients for our MV-MRS data are
unavailable. Therefore, we generate a synthetic MV-MRS dataset
with known mixture coefficients using the SMM formed from
homogeneous tissue. A sample is randomly drawn without
replacement from each tumor grade i € {n,[,h} in SV-MRS data
and used along with the GT mixture coefficients wgy; covering all the
possible mixture combinations to generate synthetic MV-MRS
signals. The remaining SV-MRS data is used for building the
proposed SMM. The whole process is repeated for 1000 iterations
with each iteration having 62 possible wgy; combinations for
parameter selection.



3.2. Parameter Selection

The proposed SMM consists of K; eigenvectors e (t), for
k € {1,2,...,K;}, determined experimentally using cross-validation
on the synthetic MV-MRS data. We vary the number of eigenvectors
K; based on the corresponding variation in % eigenvalue energy and
apply SMM on synthetic MV-MRS data. Mean squared error (MSE)
is calculated between estimated mixture coefficients w; and GT
mixture coefficients wy; ¥ i and MSE across all predictions for a
given K; is averaged. Figure 3 shows this MSE where it can be
observed that using the 90% eigenvalue energy produces the best
results. This corresponds to K, = 11, K; = 6 and K, = 3, which we
use for the rest of our experimental validation. This is due to the fact
that the eigenvectors corresponding to 90% eigenvalue energy
contain the most prominent signal information while filtering out the
less dominant signal variations and noise.

3.3. Quantitative Validation

We compare our method with histological diagnosis for each
patient in the MV-MRS data. The optimized SMM mixture
coefficients w; are used for classifying each input sample in
MV-MRS data into one of the brain tissue grades i € {n, [, h} by

= L.erg%}(wi), (10)

where i* is the predicted brain tissue class. The brain tumor is
classified for a given patient as the highest grade tissue found within
all MV-MRS signals for that patient. In Table 1 we compare these
results with the GT histological diagnosis and present the accuracy
for both the proposed SMM and the convex non-negative matrix
factorization (C-NNMF) method from [10], which argues that ICA
shows no advantage over C-NNMF.

Table 1: Classification accuracy using histological results as the gold
standard.

Grade | Grade h
GIII Overall
Method (Glg) GgI:]C]';V (C}Il\; Included Accuracy
C-NNMF _ 66.67% 83.33% 100.00% Yes 82.93%
SMM 91.67% 88.89% 100.00% 92.68%
C-NNMF  58.33% 83.33% 100.00% No 80.49%
SMM 91.67% 83.33% 100.00% 90.24%

From Table 1 it can be observed that the proposed SMM method
produces best results when, in addition to the highest risk GIV, GIII
data is also included in the Grade h training data. The proposed
SMM method is able to detect GIV tumor with 100% accuracy,
whereas low grade tumor and high grade tumor (GIII and GIV
combined) are classified with 91.67% and 88.89% accuracy,
respectively, providing promising result.

3.4. Qualitative Analysis

The estimated mixture coefficients w;, using the proposed SMM
method, relate to the probability of classifying a given MV-MRS
signal x(t) into one of the three tumor grades, i.e., i € {n,,h}. We
use these mixtures coefficients to overlay probability heatmaps for
each tumor grade on the brain MRI. These results are presented
along with the histological diagnosis outcome in Figure 4. Each
heatmap corresponds to the probability of detection of all three
tissue types, where green color represents normal grade, blue color
low grade and red corresponds to high grade tumor. The 24-bit RGB
representation is calculated according to the probabilities of each
tissue type contributed in each MRS voxel.

4. DISCUSSION AND CONCLUSION

This paper presents a supervised learning technique that trains on

ground truth data and optimizes for a given unseen signal to reliably
estimate (and visualize) the relative proportion of each glioma grade
in what is a relatively large MRS voxel as compared to conventional
structural MRI. The SV-MRS that we used as the “ground truth” was
placed according to post-Gd contrast T;-weighted, T,-weighted and
FLAIR structural contrast on a homogenous representative tumor
region with subsequent diagnosis according to clinical, radiological
and histopathological information of each patient. In this study, we
focused on analysis of gliomas, which are one of the more common
primary brain tumor types and for which there is still a need to map
out the tumor heterogeneity to aid treatment planning. There is
heterogeneity of MRS characteristics within each tumor grade, and
our SV-MRS data represent this, with pattern recognition applied to
provide classification for MV-MRS data.

Compared to C-NNMF, our SMM method produced superior
results (Table 1). This can attribute to the fact that C-NNMF is an
unsupervised technique, which is suitable to cluster and map the
most significant variations in the data, without any prior knowledge
of the signals and hence does not incorporate for partial volume
effect. In contrast to this, the proposed method is able to use an
SMM, trained on SV-MRS data in a supervised fashion, to generate
MV-MRS signals and reason how a given signal mixture
corresponds to the variations in the input MV-MRS signal [18].

FLAIR MV-MRS

Selected MRS

Figure 4: Example probability heatmaps and corresponding qualitative
intensity based structural MR images. Selected spectra in the red boxes of
each case are displayed in the last column to validate the RGB representation
of the probability heatmaps.

In our method, PCA is built for each grade separately forming a
model of the specific grade (normal, low grade, high grade) trained
from ground truth data from SV-MRS. The tumor grade unmixing is
achieved with an optimization technique using the trained models.
This differs from previous unsupervised techniques where PCA (or
similar methods including NNMF, ICA, and LE) of all the data is
used for both clustering and unmixing the tumor grades at the same
time in an essentially ‘blind’ fashion. A desirable feature of PCA is
its ability to rank the importance of principal directions through



eigenvalue strengths. To our knowledge this optimization approach
has not appeared in the literature. In addition, we avoid overfitting
by selecting only the most prominent eigenvectors, ranked by
eigenvalues. These selected eigenvectors capture the prominent
signal variations present in the training set, while at the same time
reject the intricate signal details that could result in overfitting. This
selection of eigenvectors is experimentally validated (Figure 3),
where one may notice overfitting with increased number of
eigenvectors showing increased error.

In this study we applied the SMM on MR spectroscopic data
without coupling any structural MR images because structural MRI
does not always reliably describe the tumor boundary. Compared to
qualitative intensities obtained using structural MRI, MRS signal
directly depicts biochemistry of tumor tissue by providing relative
abundance of metabolites, lipids and macromolecules. This provides
a detailed biochemical representation of tissue, which may be pure
tumor, normal brain tissue or a mix of both tumor and brain tissue.
Although the spatial resolution of MV-MRS is not as good as
structural MRI, it is well known that structural MRI cannot always
detect the true extent of the tumor, whereas MV-MRS is known to
provide clinically useful mapping of tumors [19]. Nevertheless,
there is still a need for robust methods of analyzing MV-MRS data
and its visualization for ready interpretation by radiologists in
comparison to structural MRI data. Interestingly, by visually
inspection of the structural MR images and comparison with the
probability heatmaps generated using our SMM method, we have
found vital evidence that MV-MRS can provide crucial information
of tumor infiltration and extended boundaries that may not be visible
in structural MR images. From a dataset of MV-MRS of glial tumors
we give examples of the above points in Figure 4. Most GII tumors
show no T1 post-Gd enhancement; however, in Figure 4 (a), we can
see the enhanced region for this particular GII case (Figure 4 (e)-(h)
shows a typical GII case). The hyper-intensity in FLAIR for GIV
cases can be a mix of infiltration and oedema (Figure 4 (j)); however,
in this case, the MRS spectrum shows that the FLAIR
hyper-intensity region is still quite normal (Figure 4 (1)). For a region
of typical GIV infiltration in the T2 hyperintensity see Figure 4
(m)-(p). Therefore, Figure 4 provides not only a qualitative
visualization based validation of our probability heatmaps but also a
clear demonstration that MV-MRS can catch extra critical
information for tumour boundary delineation.

To summarize, we proposed a SMM based method to characterize
the MV-MRS signals into normal, low grade (infiltrative) and high
grade (necrotic) brain tissue types, and addressed the problem of
PVE. The proposed method achieved a high accuracy of classifying
tumors into either low grade or high grade while identifying high
risk GIV cases with 100% accuracy. Together with the probability
heatmaps overlaid on structural MRI, we can conclude that the
proposed SMM based method has potential to be an alternative
non-invasive tool for computer-aided brain tumor diagnosis with the
far-reaching impact of surgical treatment and radiotherapy planning.
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