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Abstract—Accurate assessment of the quality of concrete bridge
decks and identification of corrosion induced delamination lead to
economic management of bridge decks. It has been demonstrated
that ground penetrating radar (GPR) can be successfully used for
such purposes. The growing demand on GPR has brought into the
challenge of developing automatic processes necessary to produce
a final accurate interpretation. However, there have been few pub-
lications targeting at automatic detection of bridge deck delami-
nation from GPR data. This paper proposes a novel method using
partial differential equations to detect rebar (or steel-bar) mat sig-
natures of concrete bridges from GPR data so that the delamina-
tion within the bridge deck can be effectively located. The proposed
algorithm was tested on both synthetic and real GPR images and
the experimental results have demonstrated its accuracy and reli-
ability, even for diminished image contrast and low signal-to-noise
ratio. Therefore, an accurate deterioration map of the bridge deck
can be generated automatically.

Note to Practitioners—This work was motivated by the problem
of automatic detection of delamination inside a bridge deck.
Nowadays, to generate the final bridge condition report from
GPR data still relies on experienced civil engineers’ excessive
intervention and scan-by-scan processing. Therefore, the current
method is both time and labor-consuming. Moreover, it has lim-
ited reproducibility and is subject to an operator’s variability.
This work presents a new approach to automatically generate the
bridge deterioration report. It derives mathematical equations to
fit the rebar shape in GPR images and applies the results to real
data. The rebar inside the bridge deck can be detected accurately
in spite of the low signal-to-noise ratio and low contrast. The final
deterioration map is then generated based on the corroded rebar
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detection results automatically. This work is already tested and
used in a real bridge in New Jersey, U.S.A.

Index Terms—Automatic detection, ground penetrating radar
(GPR), image processing, partial differential equations (PDEs).

I. INTRODUCTION

T HE I-35 highway bridge collapsed into the Mississippi
River, in Minneapolis, MN, during the evening rush hour

on August 1, 2007. Approximately 100 vehicles were involved
and 13 deaths were attributed to the collapse. This tragedy sig-
nifies that the condition of the bridges in the United States is
deteriorating and requires enormous financial and human re-
sources for its maintenance and mitigation. An important com-
ponent of the inspection and rehabilitation of concrete bridges
is the assessment of the bridge deck condition. The advent of
nondestructive evaluation techniques has significantly aided this
task, and several methods have been successfully utilized to de-
tect common defects in concrete bridge decks. Among these
methods, Ground Penetrating Radar (GPR) is one of the most
widely used techniques nowadays.

Accurate assessment of the quality of concrete bridge decks
and identification of corrosion induced delamination are very
important research topics. They can lead to economic manage-
ment of bridge decks. Romero et al. have demonstrated that
GPR can be successfully used for such purposes [2]. There is a
growing need to develop automatic processes necessary to pro-
duce a final accurate interpretation from GPR data.

While it is capable of detecting deck delaminations at various
stages of deterioration, precise interpretation of the measured
parameters has yet to be fully automated. The postprocessing
procedures leading to the final interpretation still suffer from
some drawbacks, such as excessive reliance on experienced op-
erators’ intervention and scan-by-scan processing. Significant
improvements to the automation of a bridge condition evalua-
tion process are expected to come from imaging and image pro-
cessing techniques.

On the GPR section, potential areas of deterioration appear
as zones of signal attenuation. Delamination is most likely to
occur around rebar mats within the concrete. Typically, corroded
rebar area has a lower dielectric constant than normal rebar area,
producing an incoherent/weaker reflection on the GPR section.
Therefore, the amplitude of reflection and attenuation are mea-
sured as an indication of delamination of the rebar mat from the
concrete and deterioration of the concrete. Our work is targeting
at the automatic detection of bridge deck delamination.

A crucial component of automatic bridge condition evalua-
tion is the detection of corroded rebars, as delamination always
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occurs around rebars. Due to the GPR imaging principle, the
reflected wave feature of the rebar mat is a series of hyper-
bolas and the top of each hyperbola denotes the corresponding
rebar’s position. Despite its importance, however, there is a lim-
ited amount of literature that can be found about hyperbolas se-
ries specific fitting algorithm for GPR data from a bridge deck.

Cylindrical objects such as buried pipes appear in the GPR
images as hyperbolas. There have been several hyperbolic sig-
nature detection methods in literature for the applications such
as detection of distinct landmine or buried pipe. Among them,
migration is a commonly used frequency-domain method and it
collapses hyperbolas into short linear regions [3]. Another trend
is using neural network or fuzzy logic to detect arc signatures in
GPR scans [4]–[8]. However, few of these methods are devised
for the corroded rebar mats in concrete bridges, which is much
more difficult to detect than the ordinary buried utilities. Most
GPR-related data processing work tends to rely on less sophis-
ticated techniques for hyperbolic signature detection, and thus
suffers from drawbacks caused by noise, such as the detector in
[9], being only able to detect good and good-minus signatures,
which is not suitable for delamination detection.

In this paper, we propose a novel method based on partial dif-
ferential equations (PDEs) to discriminate rebar mat signatures
for bridge deck delamination detection in GPR images. We first
detect the apex of each rebar using a template-based method
with a similarity metric of sum of squared difference (SSD) and
then estimate the parameters of each hyperbola in the GPR im-
ages with a PDE method. Based on the rebar detection result, de-
terioration map of bridge decks can be generated automatically
for maintenance and rehabilitation guidance. We also perform
a comparison study of the proposed method with the traditional
manual approach in condition assessment of bridge decks.

The rest of this paper is organized as follows. Section II gives
a brief review of GPR history and describes the characteristic
shape of rebar signatures in GPR images. Section III proposes a
novel PDE-based rebar detection method. Section IV provides
results that demonstrate the ability of the proposed method
to detect rebar signatures in GPR images, even for images
of diminished contrast and low signal-to-noise ratio (SNR).
Section V provides the deterioration map of the test bridge with
our automatic method. Section VI concludes this paper.

II. GROUND PENETRATING RADAR (GPR)

A. History and Applications of GPR

The history of GPR applications in transportation infrastruc-
ture surveys dates back to the early and mid 1970s when the Fed-
eral Highway Administration (FHWA) in the U.S. tested its fea-
sibility in tunnels, bridge decks applications [10] and for mois-
ture detection in construction materials [11]. Later on, GPR use
was expanded to encompass bridge deck inspection [12] and
void detection under concrete highways. In the late 1980s and
early 1990s, most infrastructure applications in North America
focused on pavement thickness measurements, detecting voids
under concrete slabs and detecting deteriorated areas in bridge
decks [13], [14].

The real exploration in the advancement of GPR occurred
in the mid and late 1990s. Many groups worldwide began to
show great interests in this technology. On the commercial side,

Fig. 1. Basic principle of a GPR technique.

during this time, Geophysical Survey System Inc. (GSSI) (USA)
gained considerable commercial success. Besides GSSI, other
leading commercial manufacturers of GPR showed up as well,
such as Mala (Sweden), Roadscanners (Finland), IDS (Italy),
Penetradar (U.S.), Sensors and Software (Canada), and UTSI
Electronics (U.K.).

On the academic side, more attention started to be paid
by both geophysical and electrical engineering communities
two decades ago. Techniques like digital data processing and
2D numerical simulation have been developed since then
[15]. 3D numerical modeling is performed [16]. Besides, civil
engineering professionals have focused on gaining a more de-
tailed understanding of the relationship between the dielectric
properties and permanent deformation properties of unbound
materials [17]. In the image processing/computer vision field,
researchers have been putting much effort on object detection,
such as mines and utilities from GPR images.

The history of GPR is intertwined with diverse applications
of the technique. Currently, the most common applications of
GPR in bridge surveys include: 1) Bridge deck condition assess-
ment; 2) Determining concrete cover depth on new structures;
3) Measuring bridge deck thickness; 4). Locating metallic and
nonmetallic targets in concrete; 5) Void detection and location;
and 6) Inspection of other reinforced concrete structures.

During the past decade, the development on GPR was focused
on various applications in bridge inspection. Among them, GPR
seemed to be the most successful for pavement layer thickness
measurements, while agencies reported less satisfactory results
with void detection and questionable results locating the areas
of delamination [10]. Recently, the focus has been on collecting
reflection amplitude data from bridge decks and preparing “de-
terioration maps” that present damaged areas in the bridge struc-
tures [18].

B. Basic Principle of GPR

A GPR system uses a radio wave source with a central fre-
quency varying from 10 MHz up to 2.5 GHz to transmit a pulse
of electromagnetic energy into the medium. When the pulse
reaches an electric interface in the medium, some of the en-
ergy is reflected back while the rest proceeds forwards. The re-
flected energy, originating within the medium at interfaces be-
tween materials of different dielectric properties or of differing
conductivities, is received and recorded for the analysis of in-
ternal structure of the medium, as illustrated in Fig. 1. The re-
flected energy is collected and displayed as a waveform showing
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Fig. 2. An example of GPR image (color print is preferred).

Fig. 3. Rebar signature in a GPR image.

amplitudes and time elapsed between wave transmission and re-
flection. When the measurements are repeated and the antenna
is moving, a continuous profile is obtained across the target, as
depicted in Fig. 2.

GPR data usually consist of: 1) changes in reflection strength;
2) changes in arrival time of specific reflections; 3) source wave
distortion; and 4) signal attenuation.

When applied to the analysis of bridge decks, these different
GPR signatures can be used for detecting internal corrosion of
steel reinforcement within the concrete deck. They can be con-
sidered as an indicator of poor quality overlay bonding or de-
lamination at the rebar level.

Although no imaging of debonding or delamination is mea-
sured directly with GPR, the radar reflection character is related
directly to the amount of debonding/delamination, which allows
(chloride-bearing) fluids to reach the rebar mat.

C. Hyperbolic Signatures

Locating rebar mat is usually done by noting hyperbolic
shapes in the GPR image, as indicated in Fig. 3 (color printout
is needed for better readability for all figures). A series of
hyperbolas are shown in the GPR image, with some of the hy-
perbolic signatures being blurred. The apex of each hyperbola
locates each rebar. These hyperbolas occur due to the reason
that the antenna transmits energy in a spatially varying pattern
that can be approximated to a cone. Consequently, it receives
reflections from the rebar at decreasing two-way travel time
as it approaches the rebar, then increasing the travel time after
passing over the rebar. Areas of the rebar mat exhibiting weak
reflection amplitude are typically indicative of deterioration.

A hyperbolic rebar signature can be described by a simple ge-
ometrical function. For example, let a point in a south-opening
hyperbola (concave) be expressed as

(1)

where is the coordinate, is the center point, and
are the shape parameters. The asymptotes cross at the center

Fig. 4. Hyperbola profile.

Fig. 5. A rebar template in a GPR image.

of the hyperbola and have slope for the south-opening
hyperbola. The hyperbola profile is depicted in Fig. 4.

It is worth noting that there are four degrees of freedom for
the hyperbola profile fitting according to (1), while some re-
searchers use an equation modeling the hyperbolic signatures
from GPR data in the form as follows [9], [19]:

(2)

Unfortunately, (2) uses only three degrees of freedom for
the hyperbola fitting, which does not suffice to deal with the
problem at hand. Moreover, it is based on the assumption that
the modeled signatures result from point reflectors, which
cannot be guaranteed in the case of a rebar mat.

III. SIGNATURE DISCRIMINATION BASED ON PDE

The proposed scheme consists of two major stages: first,
using a template based method, we detect the apex of the hyper-
bolic signatures. Next, we fit the hyperbola curves to the GPR
image data using partial differential equations in an iterative
fashion, with the initial guess of the center point modified from
the apex obtained in the previous step.

A. SSD-Based Hyperbola Center Point Detection

In this step, we use a template, as shown in the box in Fig. 5,
to match the rebar signature based on the similarity metric of
sum of squared difference (SSD), defined as follows:

(3)

where and denote the template image and the
region over a sliding window in the GPR image, respectively.
When these two images are geometrically aligned, the SSD
value reaches its minimum. SSD is chosen as it offers sufficient
accuracy and is simple to implement.

We first search the minimum SSD values along each column
in the whole GPR image and the one that contributes to min-
imum SSD values is selected as a reference rebar apex position.
Since the interval between two adjacent rebars is usually fixed,
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we then exploit the periodicity of the hyperbolic signatures so
as to detect all the rebars. To determine the periodicity, a com-
monly used method Fast Fourier Transform (FFT) is applied.
Other methods than using FFT can also be used to determine
the periodicity. FFT is selected due to its simplicity for imple-
mentation. Therefore, with the assistance of reference rebar and
periodicity of hyperbolic signatures, apex positions of all the re-
bars are obtained. Afterwards, the knowledge is incorporated to
the PDEs as the initial guess of center point of each hyperbola
for the next step.

B. Hyperbolic Signature Discrimination

Our goal is to fit the hyperbola curve to the GPR image data.
To accomplish this, an energy function is designed as

(4)

where is the intensity of pixel and the integral is along
the hyperbola from point to . By maximizing this energy
function, the intensity of the image data along the hyperbola
achieves its maximum. Therefore, the hyperbola curve is fit to
the GPR image.

Starting with an initial guess, we can iteratively update the
hyperbola parameters using PDEs to maximize the energy func-
tion in (4). Note that, we use the position of the hyperbola center
point obtained from the previous step as the initial guess of
and .

Using a chain rule, differentiation of energy function with
respect to parameter gives

(5)

where is the gradient of the image, .

We solve according to (1) as

(6)

Therefore, and are derived as

(7)

(8)

In a similar fashion, we can calculate the expressions for
, and . Clearly,

. Next, we derive , and .
Differentiation of with respect to , and , can be ex-

pressed, respectively, as

(9)

(10)

(11)

Consequently, differentiations of energy function with re-
spect to parameter , , and give

(12)

(13)

(14)

In order to maximize the energy function, we use a gradient
ascent method, i.e.,

(15)

where and is the step-size parameter. Equation

(15) is iterated until the maximum number of iteration steps is
reached or the prescribed accuracy is met, i.e.,

(16)

where is a given small positive value, typically .
Consider the first step of the algorithm, we assume that the

image size (number of pixels) is and the template size is .
Then, the time complexity is . Regarding the second
step of the algorithm, we assume that the number of rebars is ,
obtained from the first step, and the iteration number is . Then,
the time complexity is .

IV. EXPERIMENTAL RESULTS

In the experiments, we begin with synthetically generated
data, designed to study the detection performance as the con-
trast level is diminished, as depicted in Fig. 6. Here, the contrast
refers to the difference in visual properties that makes an object
(or its representation in an image) distinguishable from other
objects and the background. To quantify the detection perfor-
mance with respect to the diminishing contrast, which occurs
around corroded rebars, we calculate the distance between the
ground truth and the detected hyperbolas as the detection error,
defined as follows:

(17)

where is the number of pixels along the rebar curves and
is the Euclidean distance between the th point in the original
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Fig. 6. Rebar detection in synthetic GPR images. The left column shows the
original synthetic GPR Images with contrast level being diminished. The right
column is the detection results.

Fig. 7. Detection error as a function of diminishing contrast.

hyperbola and the corresponding point in the detected curve.
Note that the “ground truth” here means the parameter values
of the original hyperbola. From Fig. 7, we can observe that the
detection performance does not degrade when the contrast is
diminished.

To evaluate the algorithm performance with respect to SNR,
we devise another set of experiments, as depicted in Fig. 8. Sim-
ilarly, we calculate the distance between the ground truth and the
detected hyperbolas as the detection error, according to (17). We
define the noise level in the image as the standard deviation of
the background noise. From Fig. 9, it is obvious to notice that the
proposed method is very robust to decreasing SNR or increasing
noise level. The detection error is only around 0.013 pixel.

We also examine the effectiveness of the proposed method
for real GPR images of bridges, as depicted in Figs. 10(a) and
11(a). The pulse transmitted by GPR is usually displayed in an
image as a characteristic dark-light-dark series of bands. The
results are fairly clear.

In the original GPR images Fig. 10(a) and (c), there is a
section with the amplitude of the signal reflection around the
rebar being attenuated, as highlighted in the box, which can be

Fig. 8. Rebar detection in synthetic GPR images. The left column is the orig-
inal synthetic GPR Images with SNR being decreased. The right column is the
detection results.

Fig. 9. Detection error as a function of decreased SNR.

a sign of deterioration zones. From the result images, as shown
in Fig. 10(b) and (d), we can notice that the proposed method
detects the bright rebar hyperbolic signatures accurately, even
in the attenuation zones where the rebar has less contrast.

In another example, the real GPR image has a noisy back-
ground, and the rebars are not aligned, as shown in Fig. 11(a).
Despite these challenges, the rebar signatures are detected cor-
rectly with the proposed method, as shown in Fig. 11(b).

V. BRIDGE DECK ASSESSMENT: CASE-STUDY EXAMPLE

GPR has been widely used for the detection and location of
bridge deck delamination. However, the interpretation of the
large amount of acquired and stored GPR data requires the op-
erations of well-trained civil engineers, involving thus high cost
in terms of time and money. Also, such a detection method is
neither reliable nor efficient. These problems have resulted in an
increasingly growing demand for the development of semi- and
fully automated bridge assessment techniques that are reliable,
robust and rapid.

GPR data processing usually includes four phases: a) prepro-
cessing; b) data processing; c) interpretation and visualization;
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Fig. 10. Rebar detection in a GPR image. (a) Original GPR image. (b) Rebar detection result. (c) Highlighted and enlarged region in the original GPR image.
(d) Highlighted and enlarged region in detection result.

Fig. 11. Rebar detection in a GPR image. (a) Original GPR image. (b) Rebar
detection result.

and d) reporting. Despite the facts that computer processors are
becoming more efficient and GPR software packages are be-
coming more user-friendly, such as RADAN from GSSI Inc.,
the processing and interpretation of the GPR data from bridges
is still the most time-consuming phase and an interpreter’s skills
play a key role in the success of a GPR project. Many of the pre-
viously mentioned GPR manufacturers are also producing soft-
ware packages or modules for infrastructure surveys. Most of
them, however, are designed for roads instead of bridges. Even
for the bridge specific packages, such as RADAN, the current
procedures leading to the final assessment report suffer from
such drawbacks as excessive reliance on experienced operators’
intervention and scan-by-scan processing. Also, the Bridge As-
sessment Module from GSSI cannot generate the final contour
plot of the bridge condition. It has to rely on a third-party soft-
ware package “Surfer” and a considerable amount of manual
process by civil engineers, such as depth correction. Rebar am-
plitude signal decreases as a function of depth in the concrete
since the GPR signal attenuates simply due to beam-spread and
scattering. Hence, a process named “depth correction” is usu-
ally applied.

Significant improvements to the automation of a bridge con-
dition evaluation process are expected to come from the effec-
tive use of image processing and visualization techniques. This
work represents significant effort to this end. It presents an auto-
matic detection approach of bridge deck delamination. A bridge
deck in Warren County of western New Jersey is chosen as a test
case to demonstrate the proposed approach.

In our study, the surveyed bridge is located at the township of
Bloomsbury in Warren County of western New Jersey. Its loca-
tion is shown in the map in Fig. 12. It was built and named Mu-

Fig. 12. Location of the bridge.

nicipal Drive Bridge over Pohatcong Creek in 1970. The bridge
has a bare concrete deck, which is about 35 m (120 ft) long.

We develop a bridge assessment platform that is used to com-
bine the 2D input GPR files into a single 3D one. Each 2D file is
a cross-section GPR image slice of the bridge deck, indicative
of one scan in the longitudinal direction of the bridge. We align
these 2D files together to form a single 3D file, representing the
internal structure of the bridge deck, which is used to generate
the deterioration map. There are three major processing steps in-
volved in creating a deterioration map from a 3D file, including
rebar detection, as discussed in the previous section, depth cor-
rection and contour plot generation. Among these three compo-
nents, rebar detection is the most important.

The color coded planview contour plot (deterioration map)
is generated using the normalized and corrected amplitude of
the reflection at the rebar level. Color levels assigned to the am-
plitude represent the level of attenuation and, qualitatively, the
severity of deterioration. Usually, the hot colors (red, orange,
and yellow) represent the severest levels of deterioration and the
cool colors (blue and green) represent the low level of deterio-
ration or a deck in a good condition. In our test case in Warren
County, the contour plot of amplitude attenuation at the rebar
layer is shown in Fig. 13.

For the sake of validation, experienced civil engineers also
generated the corresponding deterioration map with the tradi-
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Fig. 13. Contour plot of deterioration map.

Fig. 14. Contour plot using traditional method.

tional manual method, as shown in Fig. 14. It is then compared
with our results. Note that “alert” zones with hot colors in the de-
terioration map is of great importance for evaluating the bridge
deck condition. The experts compared the maps generated with
automatic and traditional methods, especially the positions and
areas of the “alert” zones in two maps and validated our auto-
matic detection approach based on the comparison results.

VI. CONCLUSION

Accurate bridge deck assessment is of significant importance
considering that numerous bridges have been in use for a long
time and thus are regularly to be examined. This paper proposes
a novel method using PDEs to detect the rebar mat of bridge
deck in GPR images. Our experiments have demonstrated the
ability of this method to accurately detect rebars in GPR images,
even for diminishing contrast and low SNR. The results pre-
sented in the paper indicate that the proposed method has much
promise in automatic delamination detection of bridge decks. In
future work, we are interested in testing our method with a large
number of real GPR image datasets. Additional future topics can
include benchmark studies with other methods such as subspace
selection.
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