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Abstract—The neck (cervical spine) is a flexible part of the
human body and is particularly vulnerable to injury. Patients
suspected of cervical spine injuries are often imaged using lateral
view radiographs. Incorrect diagnosis based on these images may
lead to serious long-term consequences. Our overarching goal is to
develop a computer-aided detection system to help an emergency
room physician correctly diagnose a patient’s injury. In this paper,
we present a method to localize the corners of cervical vertebrae in
a set of 90 lateral cervical radiographs. Haar-like features are
computed using intensity and gradient image patches, each of
which votes for possible corner position using a modified Hough
forest regression technique. Votes are aggregated using two
dimensional kernel density estimation, to find the location of the
corner. Our method demonstrates promising results, identifying
corners with an average median error of 2.08 mm.
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1. INTRODUCTION

The spine is one of the most important parts of the human body, as
it not only provides support and movement for the body, it protects the
spinal cord. Due to its degree of movement, the cervical spine, or neck
region, is especially vulnerable to trauma. Cervical spine injuries (CSIs)
can result from high energy impacts like automobile accidents, falls,
dives into shallow water. Apart from these major accidents, minor
injuries may also lead to CSI in elderly people and people with pre-
existing bone abnormalities. However, evaluation of a cervical spine x-
ray image is a major radiological challenge for an emergency physician,
particularly those with less experience. Failure to establish a correct
diagnosis may result in death or serious disability. Academic literature
has reported up to 20% of CSI patients suffer tragic extension of their
injuries due to delayed or missed diagnosis [1].

Early and accurate detection of a CSI is critical to plan appropriate
treatment. Despite standardisation and advances in imaging, missed or
delayed diagnosis of cervical spine injuries is still a common problem
in emergency departments. In one study [1], the most common cause
(accounting for 44%) of missed cervical spine injuries was
misinterpretation of the images. Another study [2] resulted in a similar
number (47%) of missed or delayed diagnosis due to misinterpretation.
In most cases, junior staff responsible for initial radiologic examination
failed to diagnose the injuries until experienced staff later performed a
second evaluation of the radiographs. In [1], complications attributed
to delayed or missed diagnosis ranged from motor and/or sensory
neurologic deficits to complete quadriplegia. In other studies, 67% of
patients with missed cervical fractures suffered neurological
deterioration and nearly 30% of delayed CSI diagnosis developed
permanent neurological deficit [3].

Therefore it is crucial to assist physicians in interpreting lateral
radiographic images of the cervical spine through the state of the art
advances in medical image processing. Our overarching goal is to
develop a computer-aided detection system to assist the emergency
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room physician with interpretation of cervical spine radiographs. As an
important step towards this goal, this paper presents a semi-automatic
method to detect vertebral corners.

Although computer analysis of radiographic images is difficult due
to high amount of noise and low contrast, the literature includes some
work to address similar issues in different imaging modalities. Tezmol
et al. [4] proposed a Hough transform based method to find the global
position, orientation and size of the cervical vertebral column in an x-
ray image. Their method applies a brute force search using a template
for all possible orientations, positions and sizes and votes in a four
dimensional Hough space. The maximum vote indicates the best match
to determine the orientation and position. Klinder et al. [5] proposed a
3D atlas based method that locates the whole vertebral column in CT
scan. Their method then applies an active appearance model (AAM) to
achieve the segmentation. It also performs identification of different
vertebrae of the spine, with a reported 70% to 85% success rate for the
cervical region. A probabilistic graphical model has been utilized in [6]
to perform identification of the cervical vertebrae, along with their
coarse size and orientation. Glocker et al. [7] also present results using
CT scans, applying a regression forest to localize vertebrae centres in
arbitrary CT images. A hidden Markov model is utilized to refine the
results, achieving promising results. Larhmam et al. [8] used template
matching based Hough transform to detect cervical vertebra centres,
reporting a maximum detection of 97% for the C3 vertebra. In [9], this
approach was improved utilizing k-means clustering techniques. Most
of the work described above is based on 3D CT scans. In [10], Haar-
like features are utilised in an Adaboost classifier to estimate the
position of the cervical vertebra in lateral X-ray images. Then a multi-
resolution AAM is initialized on this position to segment the vertebrae,
with results presented on the NHANES II dataset. In a similar vein,
Benjelloun et al. [11, 12] apply an active shape model (ASM) to achieve
the segmentation, however this method is sensitive to the initialization
of the mean shape, based on a coarse orientation based on two user click
points. However on more complex data with patients that have different
neck articulations, as well as degenerative change poses a challenge.
Vertebral edges are found using a Mahalanobis distance to achieve
excellent segmentation results on the NHANES II dataset.

In this work, a two stage process is employed to find the corners of
each cervical vertebra. First, the coarse orientation and size of each
vertebra are calculated based on user click points. Image patches are
then created, and for each, Haar-like features [13] are computed using
the distribution of image intensity and gradient in these image patches.
A modified Hough Forest [14], a variant of the Random Forest [15, 16]
technique, is used to train a forest that performs both classification and
regression to locate a possible corner location given a test image patch.
The contributions of this work include our patch creation method based
on a vertebral shape, application of Hough forest based on Haar-like
features to the problem of vertebral corner detection in cervical
radiographs, and a novel filtering method to localise the corner. The
proposed algorithm is tested on a dataset of 90 radiographs, with an
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average median error of 2.08 mm, demonstrating promising
performance.

II. METHODOLOGY
A. Data

A total of 90 lateral cervical vertebrae radiographs form the dataset
for this work. The images were provided by the Royal Devon & Exeter
Hospital in collaboration with the University of Exeter. All scans were
performed in 2014; the age of the patients varied from 17 to 96.
Different (Philips, Agfa, Kodak, GE) radiographic systems were used
to generate the images. Pixel spacing varied from 0.1 to 0.194 pixel per
millimetre. Some images from the dataset are shown in Fig. 1. The
dataset is very challenging, as it contains images with varying contrast
as well as degenerative change and injury. The data is anonymised and
standard protocols have been followed to use the images for research
purposes. Each of the vertebrae in these images were manually
annotated by an expert radiographer using a MATLAB GUIL. A
radiographer manually clicked on four corner points from which the
centre of each vertebra was computed (as the centroid). Some manual
annotations are shown in Fig. 2.

Fig. 2. Manually annotated vertebra corners and centers

B. Coarse Orientation and Size

The coarse orientation and
size of the vertebraec are
computed using the centre points.
For each vertebra a vector is
drawn from its centre to the
centre of the vertebra above (Fu)
and below (Fa). Then the
orientation vector for that
vertebra is the average of these
vectors.

F = (Fu— Fo)2 (1)

In case of the top vertebra F
= -Fq and for the bottom vertebra
F=F u.

Fig. 3. Orientation and ROI

The vertebra sizes in pixels vary considerably among images due to
the difference in spatial resolution of the images. The size also varies in
millimetres from patient to patient because of natural variation amongst
the human population. In order to normalize these differences the
magnitude N of the vector F is used as normalization constant, i.e. N =
|F|. N also represents the coarse size of the vertebra.

C. Image Patch, Class Label and Response Vector

Using the orientation vector F and normalization constant N, a
bounding box is generated to identify a region of interest (ROI) around
the vertebra centre (green box in Fig. 3). This ROl is then divided into
16 image patches. Patches in the vertebra’s centre are not considered as
they contain homogeneous intensity distributions. Each of the boundary
patches are assigned a class label and five vectors (see Fig. 4). The class
labels (from 1 to 12 clockwise) abstractly encode the relative position
of the patch with regard to the vertebra centre. Vector dz represents the
patch centre from the vertebra centre. Four response vectors (dzpi1, d1p2,
dip3 and d1pq4) point to the four corners from the patch centre.

Fig. 4. Class labels and response vectors

For this work, these image patches are converted into feature
vectors, Hy, by using Haar-like features (see Fig. 5).

Hy = [11, 12 15 fa, ..., fi0] 2

The Haar-like features are chosen carefully to capture the variation
seen in our vertebrae data. To calculate feature values from an image
patch, the normalized intensity or gradient at each pixel is accumulated;
the average signal intensity of the darker part is subtracted from the
bright part.

fi = Lshadea — Iorigiy, where I is the average intensity of area x. (3)

f6 f7 fs fo

Fig. 5. Haar-like features.

D. Training Hough Forest

Hough forest performs both classification and regression. In our
work, class labels from the image patches are used for classification and
d; vectors for different corners are used for regression. Each forest is
trained only for one corner, and we use 100 trees in each forest. Each
tree only accesses a random 25% of all the training image patches. At
each split node one feature variable is randomly chosen and 20
randomly chosen thresholds are considered to split the data into its child
nodes. The split occurs when it maximizes the information gain (IG)
(Eqn. 4). Each branch of a tree terminates at a leaf node when maximum
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depth, Dmax, is reached or number of elements in a node becomes less
than a threshold Nuin.

The 1G is calculated using the equation below [15]:
16 = H(S) = Ticpumyy HESY )

Where S is the set of data arriving at the split node, S" is the data to
be sent in the left child node, S® is the data to be sent to the right child
node and H(S) is the entropy of the data S. H(S) can be classification
entropy or regression entropy. In Hough forest, the entropy is chosen
randomly at each node between classification and regression.

1) Classification entropy: The classification entropy is calculated based
on the output class labels at the considered node.

H(S) = _ZCECP(C) IOg(P(C)) (5)

Here C is the set of classes available at the node considered. In our
case C c{l,2 3,4, ..,12}.

2) Regression entropy: The regression entropy is computed based on
the d; vectors at that node.

H(S) o log(A(5)D (6)

Where S is the set of d; vector arriving at the node and A(S) is the
covariance matrix S.

D. Prediction

After training, each leaf node contains a set of classes and
corresponding d; vectors. During testing, a vertebrae is divided into the
12 image patches (Fig. 4) following user clicks on the centre of each
vertebrae. All 12 of these image patches are considered as test patch.
The image patch is then converted into feature vector and fed into the
forest. Each tree in a forest then returns a leaf node. Based on the
training classes present on that leaf node, a class for the tree is predicted
based on Eqn. 7.

Ctree = argmax, p(c|H,) 7

These tree predictions are used to finally predict the final class from
the forest.

Cforest = argmaxe,... p(ctreele) 3

A novel filtering process is then introduced where all the d; vectors
belonging to class other than Cfarest are discarded. Using the remaining
vectors at each leaf node, a 2D kernel density estimation (KE2D) is
initiated to determine Elme. The process is repeated to estimate

d, Forest from all the trees in the forest, which is essentially predicted

vector, d; patch? for the considered image patch.
dy, .. =KE2D (dlfiltered); dlfiltered = {V d1|c = Cfores'} &)

i, 0))  (10)

where N is number of trees in the forest. Finally the same is done
for all the 12 patches. And each patch votes for a possible corner

position, D pqecp, With respect to the vertebra centre.

= KE2D ({dy,,,,y 4

dlpatch ltree2)’ dlt,gdg), PR

(an

where vector d> is known and used to generate the ROI and patches
at the start of the prediction process. These 12 possible predicted
corners votes are then fed into 2D kernel estimation, to compute the
final prediction of the corner, D.

D= KEZD({ ﬁpatch(l)' Bpatch(z)'

DpafCh = _dzpatch + dlpatch

- Dyarcnaizy}) (12)

D. 2D Kernel Density Estimation

Two dimensional kernel density estimation is applied to find the
single estimated vector location from a collection of vectors. All the
vectors are first located in the 2D plane. Then a normalized 2D
Gaussian distribution is fit to each vector location. The distributions are
added together and maxima of the aggregated distribution is localized
[13]. This location is returned as the predicted vector. An example of
an aggregated distribution for the corner detection process is
graphically shown in Fig. 6.

Fig. 6. The heat map
visualizes confidence of
the corner estimation.
Yellow  crosses are
= filtered corners from leaf
patches, the red plus is
the corner from manual
demarcation and the
green circle is the
predicted corner.

III. EXPERIMENTS

In this work, we considered five cervical vertebrae, C3, C4, C5, C6
and C7. Each vertebral body has four corners, so in total 20 corners are
studied for each patient. Each forest is trained only for one corner at a
time. For each corner, we employed a 10 fold cross validation, where
for each fold 9 images were withheld for independent testing and the
remaining were used to train the algorithm. As described in Section II-
C, image patches are converted into feature vectors by using ten Haar-
like feature patches. As stated earlier, the image patch itself can be the
normalized signal intensity and/or the gradient of image intensities.
Based on this we experimented with three different feature vector types.

1. Intensity: Haar-like features are applied on normalized intensity
of the image patch.

2. Gradient: Haar-like feature are calculated using the gradient of
the normalized intensity of the image patch.

3. Mixed: Both the intensity and gradient are used to create a
concatenated feature vector.

IV. RESULTS & DISCUSSION

The predicted corner locations are compared with manually
annotated corner location. The error, measured as Euclidian distance in
millimeters, is calculated for each corner. Finally the mean, median and
standard deviation (std) of the error are computed from all 90
radiographs and reported in Table 1. Graphical results are shown in Fig.
7.

The results from Table 1 indicate that the mixed features perform
the best, followed by intensity based features and the gradient based
features. The reason might be the choice of the Haar-like feature
patches. Most of our selected Haar-like features (Fig. 5) bear similarity
to the intensity within an image patch. For example image patches of
class 1, 4, 7 and 10 have an abstract resemblance with first four Haar-
like patches (f1, /2, f3 and f4), and a similar conclusion can also be made
for next two (f5 and fs) Haar-like features with image patch class of 2,
3,5,6,8,9, 11 and 12. The next two Haar-like patches (f7 and fs) are
more related with gradient image patches as they look like vertical and
horizontal edges. As we have most of the Haar-like patches similar to
intensity image patches and fewer patches similar to gradient image
patches, it is understandable why intensity vector performs better than
gradient vectors. Similarly when mixed vectors are used, useful
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information from both the intensity and gradient distribution are now
available for selection.

Another interesting point is that, the errors for C7 are lower than
other vertebra. A possible explanation is that the coarse orientation
works better for C7, so the bounding boxes for C7 are more consistent.
Whereas for other vertebra, because of different degree of bending in
the cervical spine, the orientation of the bounding box varies among
different patients. As a result image patches from C7 from all images
have better similarity.

Representative examples of the corner prediction for all the
vertebrae are shown in Fig. 7. Qualitatively it can be said that errors less
than 3 mm are good. A few misdetections are also shown in the last two
columns of Fig. 7. Similar to other image analysis techniques with
radiographic images, the algorithm sometimes suffers from low
contrast or absence of edges in the vertebra (Fig. 7. C6-E). However,
since our proposed method uses voting from multiple patches,

C3

C4

(6]

Co6

(o)

sometimes it can predict with high accuracy even though some patches
have low contrast. (Fig. 7. C7-E). Also some patients have different and
comparatively rare bone structure. For example, C5-D, E and C6-E
have comparatively longer vertebrae. Detections for these cases yield
higher error and misdetection.

Comparison with other work is difficult as, similar vertebral corner
detection process on radiographs are not found in the literature.
However, Glocker et al. [7] worked on CT images, where center of the
vertebra is located in 3D and compared with manual annotations. They
reported a lowest average median error of 6.14 mm for cervical region.
Our previous work [17] yielded a lowest average median of 3.05 mm
using a normalized patch itself as a feature vector with different class
prediction criteria. In comparison, in this work we have been able to
reduce the error further to 2.08 mm.

iate B O T
C D E
Fig. 7. Vertebral corner detection examples: the blue plus indicates vertebra centers, the red circle denotes predicted corner and green cross
represents manually annotated corners
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Table 1: Performance of different type of feature vectors

Type of Haar Features
Vertebra | Corner Intensity Gradient Mixed: Intensity and Gradient
Median Mean Std Median Mean Std Median Mean Std
1 2.49 3.30 3.06 2.78 3.96 3.73 2.07 2.55 2.14
Cs 2 1.84 2.89 3.32 1.85 3.11 4.10 2.09 2.95 3.71
3 2.49 3.37 3.77 2.92 4.72 4.82 2.51 3.66 3.71
4 2.75 3.85 3.92 2.94 4.22 3.95 2.39 3.43 3.18
1 2.57 3.64 3.55 3.36 4.63 4.47 2.14 3.38 3.44
c4 2 1.73 3.26 4.20 1.84 2.73 2.79 1.62 2.48 3.31
3 2.01 3.28 3.64 2.79 4.18 4.28 2.21 3.17 2.99
4 2.21 3.87 4.40 2.84 4.33 4.36 2.11 3.04 2.85
1 2.10 3.28 2.83 2.78 4.96 5.01 2.21 3.52 3.46
Cs 2 1.57 2.76 3.53 1.63 3.20 3.90 1.69 2.58 2.83
3 2.53 3.82 3.87 2.91 4.88 4.68 2.45 4.15 4.89
4 2.67 4.44 4.31 3.01 4.49 3.85 2.46 3.52 3.26
1 2.66 3.71 348 2.75 4.01 3.72 2.42 3.04 2.63
Cé 2 1.56 3.07 3.74 2.67 4.10 4.60 2.07 2.86 2.96
3 2.76 4.07 3.62 3.67 5.44 5.09 2.87 4.09 4.12
4 2.45 3.60 3.61 2.83 4.26 3.62 2.26 3.59 4.18
1 1.23 2.00 2.23 2.66 3.37 2.88 1.13 1.77 2.00
c7 2 1.10 1.66 1.55 1.56 2.83 291 1.03 1.95 2.03
3 1.61 2.26 2.04 2.33 3.32 2.74 2.08 2.63 2.25
4 1.56 2.33 2.14 3.26 4.21 2.78 1.88 2.19 1.58
Average 2.10 3.22 3.34 2.67 4.05 3.91 2.08 3.03 3.08
IV. CONCLUSION REFERENCES

A semi-automatic cervical vertebral corner detection algorithm is
proposed in this work. The proposed method is based on a modified
Hough Forest architecture. In the process, a new model is introduced to
generate image patches from vertebrae using manually clicked center
points; whereas in original Hough Forest the patches are created
randomly from positive examples. Haar-like feature are used in the
framework. A novel two stage prediction method is introduced. First
the class is predicted from a forest, then a filtering process is applied to
exclude vectors belonging to other classes. Finally the corner position
is predicted using a two dimensional kernel density estimation process.

The algorithm is tested on a dataset of 90 emergency room lateral
cervical radiographs. The experiments are performed with a 10 fold
cross validation scheme. Errors between the predicted corners and
manually annotated corners are reported. A lowest average median
error of approximately 2 mm is achieved.

In future, new features like displacement features [ 18] or bounding
box features [19] can be used to compare their performance with Haar-
like features. The next phase of the project is to segment the vertebra
correctly. These predicted corners can be used to initialize mean
vertebra models on the vertebra. Then a statistical shape model
segmentation approach like Active Shape Model (ASM) [20] or Active
Appearance Model (AAM) [21] can be utilized to achieve the final
segmentation.
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