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Abstract—The neck (cervical spine) is a flexible part of the 

human body and is particularly vulnerable to injury.  Patients 
suspected of cervical spine injuries are often imaged using lateral 
view radiographs.  Incorrect diagnosis based on these images may 
lead to serious long-term consequences. Our overarching goal is to 
develop a computer-aided detection system to help an emergency 
room physician correctly diagnose a patient’s injury. In this paper, 
we present a method to localize the corners of cervical vertebrae in 
a set of 90 lateral cervical radiographs. Haar-like features are 
computed using intensity and gradient image patches, each of 
which votes for possible corner position using a modified Hough 
forest regression technique. Votes are aggregated using two 
dimensional kernel density estimation, to find the location of the 
corner. Our method demonstrates promising results, identifying 
corners with an average median error of 2.08 mm. 

Keywords—Hough forest, random forest, classification, 
regression, cervical vertebrae, Haar-like features. 

I. INTRODUCTION 

The spine is one of the most important parts of the human body, as 
it not only provides support and movement for the body, it protects the 
spinal cord. Due to its degree of movement, the cervical spine, or neck 
region, is especially vulnerable to trauma. Cervical spine injuries (CSIs) 
can result from high energy impacts like automobile accidents, falls, 
dives into shallow water. Apart from these major accidents, minor 
injuries may also lead to CSI in elderly people and people with pre-
existing bone abnormalities. However, evaluation of a cervical spine x-
ray image is a major radiological challenge for an emergency physician, 
particularly those with less experience. Failure to establish a correct 
diagnosis may result in death or serious disability. Academic literature 
has reported up to 20% of CSI patients suffer tragic extension of their 
injuries due to delayed or missed diagnosis [1].  

Early and accurate detection of a CSI is critical to plan appropriate 
treatment. Despite standardisation and advances in imaging, missed or 
delayed diagnosis of cervical spine injuries is still a common problem 
in emergency departments.  In one study [1], the most common cause 
(accounting for 44%) of missed cervical spine injuries was 
misinterpretation of the images.  Another study [2] resulted in a similar 
number (47%) of missed or delayed diagnosis due to misinterpretation.  
In most cases, junior staff responsible for initial radiologic examination 
failed to diagnose the injuries until experienced staff later performed a 
second evaluation of the radiographs.  In [1], complications attributed 
to delayed or missed diagnosis ranged from motor and/or sensory 
neurologic deficits to complete quadriplegia.  In other studies, 67% of 
patients with missed cervical fractures suffered neurological 
deterioration and nearly 30% of delayed CSI diagnosis developed 
permanent neurological deficit [3].  

Therefore it is crucial to assist physicians in interpreting lateral 
radiographic images of the cervical spine through the state of the art 
advances in medical image processing. Our overarching goal is to 
develop a computer-aided detection system to assist the emergency 

room physician with interpretation of cervical spine radiographs.  As an 
important step towards this goal, this paper presents a semi-automatic 
method to detect vertebral corners.  

Although computer analysis of radiographic images is difficult due 
to high amount of noise and low contrast, the literature includes some 
work to address similar issues in different imaging modalities. Tezmol 
et al. [4] proposed a Hough transform based method to find the global 
position, orientation and size of the cervical vertebral column in an x-
ray image. Their method applies a brute force search using a template 
for all possible orientations, positions and sizes and votes in a four 
dimensional Hough space. The maximum vote indicates the best match 
to determine the orientation and position. Klinder et al. [5] proposed a 
3D atlas based method that locates the whole vertebral column in CT 
scan. Their method then applies an active appearance model (AAM) to 
achieve the segmentation. It also performs identification of different 
vertebrae of the spine, with a reported 70% to 85% success rate for the 
cervical region. A probabilistic graphical model has been utilized in [6] 
to perform identification of the cervical vertebrae, along with their 
coarse size and orientation. Glocker et al. [7] also present results using 
CT scans, applying a regression forest to localize vertebrae centres in 
arbitrary CT images. A hidden Markov model is utilized to refine the 
results, achieving promising results. Larhmam et al. [8] used template 
matching based Hough transform to detect cervical vertebra centres, 
reporting a maximum detection of 97% for the C3 vertebra. In [9], this 
approach was improved utilizing k-means clustering techniques. Most 
of the work described above is based on 3D CT scans. In [10], Haar-
like features are utilised in an Adaboost classifier to estimate the 
position of the cervical vertebra in lateral X-ray images. Then a multi-
resolution AAM is initialized on this position to segment the vertebrae, 
with results presented on the NHANES II dataset. In a similar vein, 
Benjelloun et al. [11, 12] apply an active shape model (ASM) to achieve 
the segmentation, however this method is sensitive to the initialization 
of the mean shape, based on a coarse orientation based on two user click 
points. However on more complex data with patients that have different 
neck articulations, as well as degenerative change poses a challenge. 
Vertebral edges are found using a Mahalanobis distance to achieve 
excellent segmentation results on the NHANES II dataset.  

In this work, a two stage process is employed to find the corners of 
each cervical vertebra. First, the coarse orientation and size of each 
vertebra are calculated based on user click points. Image patches are 
then created, and for each, Haar-like features [13] are computed using 
the distribution of image intensity and gradient in these image patches. 
A modified Hough Forest [14], a variant of the Random Forest [15, 16] 
technique, is used to train a forest that performs both classification and 
regression to locate a possible corner location given a test image patch. 
The contributions of this work include our patch creation method based 
on a vertebral shape, application of Hough forest based on Haar-like 
features to the problem of vertebral corner detection in cervical 
radiographs, and a novel filtering method to localise the corner. The 
proposed algorithm is tested on a dataset of 90 radiographs, with an 
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average median error of 2.08 mm, demonstrating promising 
performance.  

II. METHODOLOGY 

A. Data  

A total of 90 lateral cervical vertebrae radiographs form the dataset 
for this work. The images were provided by the Royal Devon & Exeter 
Hospital in collaboration with the University of Exeter. All scans were 
performed in 2014; the age of the patients varied from 17 to 96. 
Different (Philips, Agfa, Kodak, GE) radiographic systems were used 
to generate the images. Pixel spacing varied from 0.1 to 0.194 pixel per 
millimetre. Some images from the dataset are shown in Fig. 1. The 
dataset is very challenging, as it contains images with varying contrast 
as well as degenerative change and injury. The data is anonymised and 
standard protocols have been followed to use the images for research 
purposes. Each of the vertebrae in these images were manually 
annotated by an expert radiographer using a MATLAB GUI. A 
radiographer manually clicked on four corner points from which the 
centre of each vertebra was computed (as the centroid). Some manual 
annotations are shown in Fig. 2. 

 

Fig. 1. Lateral cervical radiographs 

 

Fig. 2. Manually annotated vertebra corners and centers 

B. Coarse Orientation and Size  

The coarse orientation and 
size of the vertebrae are 
computed using the centre points. 
For each vertebra a vector is 
drawn from its centre to the 
centre of the vertebra above (Fu) 
and below (Fd). Then the 
orientation vector for that 
vertebra is the average of these 
vectors. 

F = (Fu – Fd)/2                 (1) 

In case of the top vertebra F 
= -Fd and for the bottom vertebra 
F = Fu.  

The vertebra sizes in pixels vary considerably among images due to 
the difference in spatial resolution of the images. The size also varies in 
millimetres from patient to patient because of natural variation amongst 
the human population. In order to normalize these differences the 
magnitude N of the vector F is used as normalization constant, i.e. N = 
|F|.  N also represents the coarse size of the vertebra.  

C. Image Patch, Class Label and Response Vector  

Using the orientation vector F and normalization constant N, a 
bounding box is generated to identify a region of interest (ROI) around 
the vertebra centre (green box in Fig. 3). This ROI is then divided into 
16 image patches. Patches in the vertebra’s centre are not considered as 
they contain homogeneous intensity distributions. Each of the boundary 
patches are assigned a class label and five vectors (see Fig. 4). The class 
labels (from 1 to 12 clockwise) abstractly encode the relative position 
of the patch with regard to the vertebra centre. Vector d2 represents the 
patch centre from the vertebra centre. Four response vectors (d1P1, d1P2, 
d1P3 and d1P4) point to the four corners from the patch centre.  

 

Fig. 4. Class labels and response vectors 

For this work, these image patches are converted into feature 
vectors, Hv, by using Haar-like features (see Fig. 5).  

Hv = [f1, f2, f3, f4, ….. , f10]                                                            (2) 

The Haar-like features are chosen carefully to capture the variation 
seen in our vertebrae data. To calculate feature values from an image 
patch, the normalized intensity or gradient at each pixel is accumulated; 
the average signal intensity of the darker part is subtracted from the 
bright part.    

fi = Īshaded(i) – Ībright(i), where Īx is the average intensity of area x.   (3) 

 

Fig. 5. Haar-like features. 

D. Training Hough Forest  

Hough forest performs both classification and regression. In our 
work, class labels from the image patches are used for classification and 
d1 vectors for different corners are used for regression. Each forest is 
trained only for one corner, and we use 100 trees in each forest. Each 
tree only accesses a random 25% of all the training image patches. At 
each split node one feature variable is randomly chosen and 20 
randomly chosen thresholds are considered to split the data into its child 
nodes. The split occurs when it maximizes the information gain (IG) 
(Eqn. 4). Each branch of a tree terminates at a leaf node when maximum 

Fig. 3. Orientation and ROI 
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depth, Dmax, is reached or number of elements in a node becomes less 
than a threshold Nmin.  

The IG is calculated using the equation below [15]: 

�� = �(�) − ∑
|��|

|�|
 �(��)� � {�,�}                                                  (4) 

Where S is the set of data arriving at the split node, SL is the data to 
be sent in the left child node, SR is the data to be sent to the right child 
node and H(S) is the entropy of the data S. H(S) can be classification 
entropy or regression entropy. In Hough forest, the entropy is chosen 
randomly at each node between classification and regression. 

1) Classification entropy: The classification entropy is calculated based 
on the output class labels at the considered node. 

�(�) = − ∑ �(�) log��(�)�� � �                                                   (5) 

Here C is the set of classes available at the node considered. In our 
case C ⊂ {1, 2, 3, 4, …,12}. 

2) Regression entropy: The regression entropy is computed based on 
the d1 vectors at that node. 

�(�) ∝ ���(|�(�)|)                                                                    (6) 

Where S is the set of d1 vector arriving at the node and Λ(S) is the 
covariance matrix S. 

D. Prediction  

After training, each leaf node contains a set of classes and 
corresponding d1 vectors. During testing, a vertebrae is divided into the 
12 image patches (Fig. 4) following user clicks on the centre of each 
vertebrae. All 12 of these image patches are considered as test patch. 
The image patch is then converted into feature vector and fed into the 
forest. Each tree in a forest then returns a leaf node. Based on the 
training classes present on that leaf node, a class for the tree is predicted 
based on Eqn. 7.  

Ĉ���� =  arg ���� �(�|��)                                                          (7) 

These tree predictions are used to finally predict the final class from 
the forest.  

Ĉ������ =  arg ���Ĉ����
�(Ĉ����|��)                                            (8) 

A novel filtering process is then introduced where all the d1 vectors 

belonging to class other than Ĉ������ are discarded. Using the remaining 

vectors at each leaf node, a 2D kernel density estimation (KE2D) is 

initiated to determine �������. The process is repeated to estimate 

��������� from all the trees in the forest, which is essentially predicted 

vector, �������� , for the considered image patch.   

�������
= �� 2� ������������

�; �����������
= �∀ ���� = Ĉ�������                (9) 

��������
= �� 2� �{ �������(�)

,  �������(�)
,  �������(�)

, … … ..,  �������(� )
} �       (10) 

where N is number of trees in the forest. Finally the same is done 
for all the 12 patches. And each patch votes for a possible corner 
position, �� ����� , with respect to the vertebra centre. 

�� ���� � =  −�������
+ ������� �                                                     (11)  

where vector d2 is known and used to generate the ROI and patches 
at the start of the prediction process. These 12 possible predicted 
corners votes are then fed into 2D kernel estimation, to compute the 
final prediction of the corner, �� . 

�� = �� 2��{ �� �����(�), �� �����(�), … … .., �� �����(��)} �                (12) 

D. 2D Kernel Density Estimation  

Two dimensional kernel density estimation is applied to find the 
single estimated vector location from a collection of vectors. All the 
vectors are first located in the 2D plane. Then a normalized 2D 
Gaussian distribution is fit to each vector location. The distributions are 
added together and maxima of the aggregated distribution is localized 
[13]. This location is returned as the predicted vector. An example of 
an aggregated distribution for the corner detection process is 
graphically shown in Fig. 6. 

 

Fig. 6. The heat map 
visualizes confidence of 
the corner estimation. 
Yellow crosses are 
filtered corners from leaf 
patches, the red plus is 
the corner from manual 
demarcation and the 
green circle is the 
predicted corner. 

 

III. EXPERIMENTS  

In this work, we considered five cervical vertebrae, C3, C4, C5, C6 
and C7. Each vertebral body has four corners, so in total 20 corners are 
studied for each patient. Each forest is trained only for one corner at a 
time. For each corner, we employed a 10 fold cross validation, where 
for each fold 9 images were withheld for independent testing and the 
remaining were used to train the algorithm. As described in Section II-
C, image patches are converted into feature vectors by using ten Haar-
like feature patches. As stated earlier, the image patch itself can be the 
normalized signal intensity and/or the gradient of image intensities. 
Based on this we experimented with three different feature vector types. 

1. Intensity: Haar-like features are applied on normalized intensity 
of the image patch.  

2. Gradient: Haar-like feature are calculated using the gradient of 
the normalized intensity of the image patch. 

3. Mixed: Both the intensity and gradient are used to create a 
concatenated feature vector. 

IV. RESULTS & DISCUSSION 

The predicted corner locations are compared with manually 
annotated corner location. The error, measured as Euclidian distance in 
millimeters, is calculated for each corner. Finally the mean, median and 
standard deviation (std) of the error are computed from all 90 
radiographs and reported in Table 1. Graphical results are shown in Fig. 
7. 

The results from Table 1 indicate that the mixed features perform 
the best, followed by intensity based features and the gradient based 
features. The reason might be the choice of the Haar-like feature 
patches. Most of our selected Haar-like features (Fig. 5) bear similarity 
to the intensity within an image patch. For example image patches of 
class 1, 4, 7 and 10 have an abstract resemblance with first four Haar-
like patches (f1, f2, f3 and f4), and  a similar conclusion can also be made 
for next two (f5 and f6) Haar-like features with image patch class of 2, 
3, 5, 6, 8, 9, 11 and 12. The next two Haar-like patches (f7 and f8) are 
more related with gradient image patches as they look like vertical and 
horizontal edges. As we have most of the Haar-like patches similar to 
intensity image patches and fewer patches similar to gradient image 
patches, it is understandable why intensity vector performs better than 
gradient vectors. Similarly when mixed vectors are used, useful 
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information from both the intensity and gradient distribution are now 
available for selection.  

Another interesting point is that, the errors for C7 are lower than 
other vertebra. A possible explanation is that the coarse orientation 
works better for C7, so the bounding boxes for C7 are more consistent. 
Whereas for other vertebra, because of different degree of bending in 
the cervical spine, the orientation of the bounding box varies among 
different patients. As a result image patches from C7 from all images 
have better similarity. 

Representative examples of the corner prediction for all the 
vertebrae are shown in Fig. 7. Qualitatively it can be said that errors less 
than 3 mm are good. A few misdetections are also shown in the last two 
columns of Fig. 7. Similar to other image analysis techniques with 
radiographic images, the algorithm sometimes suffers from low 
contrast or absence of edges in the vertebra (Fig. 7. C6-E). However, 
since our proposed method uses voting from multiple patches, 

sometimes it can predict with high accuracy even though some patches 
have low contrast. (Fig. 7. C7-E). Also some patients have different and 
comparatively rare bone structure. For example, C5-D, E and C6-E 
have comparatively longer vertebrae. Detections for these cases yield 
higher error and misdetection.  

Comparison with other work is difficult as, similar vertebral corner 
detection process on radiographs are not found in the literature. 
However, Glocker et al. [7] worked on CT images, where center of the 
vertebra is located in 3D and compared with manual annotations. They 
reported a lowest average median error of 6.14 mm for cervical region. 
Our previous work [17] yielded a lowest average median of 3.05 mm 
using a normalized patch itself as a feature vector with different class 
prediction criteria. In comparison, in this work we have been able to 
reduce the error further to 2.08 mm. 

C3 

     

C4 

     

C5 

     

C6 

     

C7 

     

 A B C D E 
Fig. 7. Vertebral corner detection examples: the blue plus indicates vertebra centers, the red circle denotes predicted corner and green cross 

represents manually annotated corners 
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Table 1: Performance of different type of feature vectors 

Vertebra Corner 

Type of Haar Features 

Intensity Gradient Mixed: Intensity and Gradient 

Median Mean Std Median Mean Std Median Mean Std 

C3 

1 2.49 3.30 3.06 2.78 3.96 3.73 2.07 2.55 2.14 

2 1.84 2.89 3.32 1.85 3.11 4.10 2.09 2.95 3.71 

3 2.49 3.37 3.77 2.92 4.72 4.82 2.51 3.66 3.71 

4 2.75 3.85 3.92 2.94 4.22 3.95 2.39 3.43 3.18 

C4 

1 2.57 3.64 3.55 3.36 4.63 4.47 2.14 3.38 3.44 

2 1.73 3.26 4.20 1.84 2.73 2.79 1.62 2.48 3.31 

3 2.01 3.28 3.64 2.79 4.18 4.28 2.21 3.17 2.99 

4 2.21 3.87 4.40 2.84 4.33 4.36 2.11 3.04 2.85 

C5 

1 2.10 3.28 2.83 2.78 4.96 5.01 2.21 3.52 3.46 

2 1.57 2.76 3.53 1.63 3.20 3.90 1.69 2.58 2.83 

3 2.53 3.82 3.87 2.91 4.88 4.68 2.45 4.15 4.89 

4 2.67 4.44 4.31 3.01 4.49 3.85 2.46 3.52 3.26 

C6 

1 2.66 3.71 3.48 2.75 4.01 3.72 2.42 3.04 2.63 

2 1.56 3.07 3.74 2.67 4.10 4.60 2.07 2.86 2.96 

3 2.76 4.07 3.62 3.67 5.44 5.09 2.87 4.09 4.12 

4 2.45 3.60 3.61 2.83 4.26 3.62 2.26 3.59 4.18 

C7 

1 1.23 2.00 2.23 2.66 3.37 2.88 1.13 1.77 2.00 

2 1.10 1.66 1.55 1.56 2.83 2.91 1.03 1.95 2.03 

3 1.61 2.26 2.04 2.33 3.32 2.74 2.08 2.63 2.25 

4 1.56 2.33 2.14 3.26 4.21 2.78 1.88 2.19 1.58 

Average 2.10 3.22 3.34 2.67 4.05 3.91 2.08 3.03 3.08 

IV. CONCLUSION  

A semi-automatic cervical vertebral corner detection algorithm is 
proposed in this work. The proposed method is based on a modified 
Hough Forest architecture. In the process, a new model is introduced to 
generate image patches from vertebrae using manually clicked center 
points; whereas in original Hough Forest the patches are created 
randomly from positive examples. Haar-like feature are used in the 
framework. A novel two stage prediction method is introduced. First 
the class is predicted from a forest, then a filtering process is applied to 
exclude vectors belonging to other classes. Finally the corner position 
is predicted using a two dimensional kernel density estimation process.  

The algorithm is tested on a dataset of 90 emergency room lateral 
cervical radiographs. The experiments are performed with a 10 fold 
cross validation scheme. Errors between the predicted corners and 
manually annotated corners are reported. A lowest average median 
error of approximately 2 mm is achieved. 

In future, new features like displacement features [18] or bounding 
box features [19] can be used to compare their performance with Haar-
like features. The next phase of the project is to segment the vertebra 
correctly. These predicted corners can be used to initialize mean 
vertebra models on the vertebra. Then a statistical shape model 
segmentation approach like Active Shape Model (ASM) [20] or Active 
Appearance Model (AAM) [21] can be utilized to achieve the final 
segmentation.  
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