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Abstract

Change captioning is an emerging task to describe the changes between a pair of
images. The difficulty in this task is to discover the differences between the two
images. Recently, some methods have been proposed to address this problem. How-
ever, they all employ unidirectional difference localization to identify the changes.
This can lead to ambiguity about the nature of the changes. Instead, we propose a
framework with bi-directional difference localization and semantic consistency rea-
soning to describe the image changes. First, we locate the changes in the two images
by capturing bi-directional differences. Then we design a decoder with spatial-

channel attention to generate the change caption. Finally, we introduce semantic

consistency reasoning to constrain our bi-directional difference localization module
*Bolun Zheng, School of Automation,
Hangzhou Dianzi University, Hangzhou
310018, China.

Email: blzheng @hdu.edu.cn

and spatial-channel attention module. Extensive experiments on three public datasets
show that the performance of our proposed model outperforms the state-of-the-art
change captioning models by a large margin.
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1 | INTRODUCTION

Change captioning’?3'is an emerging subject to describe the differences between paired images. Change captioning is important
in many practical applications including anomaly detection, infrastructure inspection, and disaster prevention using images from
satellites or surveillance cameras.

Different from image captioning which characterizes the complete image content of a single image, change captioning only
focuses on the differences between two images. Often the changes are localized to regions in the images, but the images contain
plenty of other unchanged visual information. Furthermore, there may be global distractors, e.g. viewpoint shift and illumination
variations. Both will increase the difficulty of locating changes. Another difficulty is that change captioning must comprehen-
sively analyze the correspondences and disagreements between paired images to generate a fine-grained textual description.

Change captioning methods tried to model the mapping between two input images and output sentences describing the
changes. For example, Tan et al.”2 utilized a linear fusion of the paired image features to generate the change caption. But the
fused image features can not provide enough contrastive information, which produced generated captions with limited ability to
describe the changes. Later, Oluwasanmi et al.'® directly calculated the weighted L1 distance of paired images features, then
generated the change caption simply using the obtained contrastive features. Li et al.> proposes a simple and effective robust
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Before Image After Image

“The large blue matte
block that is to the left
of the small blue matte
cube is no longer there’

b

“Increase the
brightness and add the
sunset on the sky”

“The person pulling a
cart 1s closer to the
camera”

FIGURE 1 Overview of change captioning on three datasets: CLEVR-Change Dataset (top), Image Editing Request Dataset
(middle), Spot-The-Diff Dataset (bottom). The annotation on the right side is the corresponding referenced caption. Given a pair
of images, this task is to locate the changes between them to generate captions.

subspace learning method by incorporating the feature learning and visual understanding, which achieves surprising improve-
ment. However, these features lacked expressiveness to represent unchanged objects and the positional relationship between
unchanged objects and those that change. Recently, Dong Huk Park et al. leveraged the features of images before and after the
change as well as the unidirectional change between them to generate the change caption. However, there are two apparent lim-
itations in this approach: (1) due to the the unidirectional differencing, the method can be easily confused about changes such
as ‘add’, ‘drop’ and ‘move’, which require more sophisticated modeling to understanding to the semantics of the change. For
example, the localization of a ‘move’ change is similar to a ‘drop’ change in the ‘before’ image, but also similar to an ‘add’
change in ‘after’ image. (2) the method ignores the attributes of unchanged objects and the positional relationship between
unchanged objects and changed objects which results in inaccurate descriptions in the final output.

To mitigate the above-mentioned limitations, we propose a framework with bi-directional difference localization and semantic
consistency reasoning to describe the image changes. First, we compute and localize the bi-directional differences between the
‘before’ images and the ‘after’ images. Such bi-directional difference localization greatly reduces the confusion about certain
change types, especially ‘add’, ‘drop’ and ‘move’. Second, we design the decoder with spatial-channel attention to generate
the change captions. This attention module enables our model to not only focus on key feature maps but also further attend
to the core positions of each feature map at each decoding stage. This generates a more accurate description of the positional
relationship between changed unchanged objects and significantly facilitates downstream tasks that require more precise visual
content understanding®. Finally, we introduce semantic consistency reasoning to enhance the ability of our model to locate
changed regions and systematically analyze both features by reasoning about the relationship between captions and images.
The reasoning mechanism measures the relationship between captions and images by computing a consistency score which is
enforced as a loss. Extensive experiments on three public datasets show that the performance of our proposed model outperforms
the state-of-the-art change captioning models by a large margin.

The contributions of our work are summarized as follows:

e We introduce a novel change captioning method, where bi-directional difference localization reduces the confusion about
the change types and spatial-channel attention attends to the core positions of the key image.

e We propose a semantic consistency reasoning mechanism to match the textual information to the visual information by
calculating a consistency score between them.



Yaoqi Sun ET AL | 3

e Extensive experiments on three public datasets show that our model outperforms the state-of-the-art methods by a large
margin. In addition, we will release our code on Github.

2 | RELATED WORK

Our proposed method is inspired by existing work in image captioning, change captioning and text-to-image mapping. This
section discusses the related work in these three areas.

Image Captioning. Image captioning” provides textual a description of visual content in an image and has been extensively
studied. The most popular method is the neural-network-based encoder-decoder architecture®?1OHI2 Vinyals et al.™' first pro-
posed an image captioning model based on the encoder-decoder framework!?. This method had difficulty in exploiting all the
necessary visual information to produce captions. Xu et al.'* introduced a spatial attention mechanism to help the model attend
to the corresponding image region at each decoding step. Li et al.™> proposes a very interesting and novel end-to-end learning
framework based on CNN for visual understanding, which can seamlessly and simultaneously integrate multi-matrix factoriza-
tion to significantly improve the performance. Yao et al.1% proposed a graph convolutional neural network in the image encoding
phase to integrate semantic and spatial relationships between objects. Wang et al.'Z presented a Long Short-Term Memory plus
Relation-aware pointer network architecture (LSTM-R) which explored geometrical relationship between OCR tokens. Chen et
al.!8 proposed a new control signal for Controllable Image Captioning (CIC): Verb-specific Semantic Roles (VSR), and it is the
first control signal to consider both event-compatible and sample-suitable requirements. Ji et al.1® leverage global representation
to address the issue of missing objects and relationship bias. In recent work, attention plays a vital role not only in image caption-
ing but also video captioning20/21122123R425R6127128| Thege methods apply visual attention to different spatial regions at each text
generation time step. For example, You et al.23 employed a semantic attention model to combine the visual features with visual
concepts in a recurrent neural network that generates the image caption. Pan et al.2! presented X-Linear Attention Networks
to leverage higher order intra and inter-modal interactions. Guan et al.%? proposed a particular spatial-channel noise attention
unit to separate fixed pattern noise and real scene related features, to maximize the noise reduction and preserve details. Chen
et al.”# presented a video captioning framework named Motion Guided Spatial Attention (MGSA), which utilizes optical flow
to guide spatial attention. Lei et al.2 proposed a video captioning model based on channel soft attention and a semantic recon-
structor, which considers the global information for each channel. Therefore, to generate fine-grained captions, we introduce
spatial-channel attention mechanisms into the decoder in our framework.

Change Captioning. Change captioning combines the subjects of image captioning (discussed above) and change detec-
tion. Each of these subjects has been extensively studied in isolation®?22022 In change detection, Doi et al.?? utilized deep
graph matching which can estimate pixel-wise changes with object-wise change annotation to detect changed regions. Daudt
et al.*Y presented a network architecture to perform land cover mapping, which is then used to predict changes. Such methods
however lack the ability to describe, with text, the changes between images. Therefore, change captioning has been proposed to
characterise changes between iamges with textual output. Jhamtani et al.3! proposed a framework named Difference Descrip-
tion with Latent Alignment (DDLA) and an accompanying dataset. The dataset consists of images collected from two video
frames at different time steps of a given scene, along with a human textual annotation. In DDLA, the pixel-level difference is
calculated between the paired images and then input to the decoder for caption generation. Dong Huk Park et al.” presented a
Dual Dynamic Attention model (DUDA) and a CLEVR-Change Dataset. DUDA utilized dynamic attention structures to locate
changed regions. Then the images before and after the change as well as information capturing their differences are input into the
decoder. Qiu et al.3233 described changes based on multi-view image information. Hosseinzadeh et al.?* formulated a training
scheme that uses an auxiliary task to improve the training of the change captioning network.

Text-To-Image. Text-to-image is a task to generate images from a linguistic description. Goodfellow et al.*> introduced
the adversarial process into generative models. Generative adversarial networks (GANs) have been widely studied due to their
excellent performance and applied to the text-to-image problem. However, a large domain gap exists between images and lin-
guistic descriptions. To maintain the semantic consistency when modeling each modality, most text-to-image methods attempt
to constrain the semantics of these two modalities. Qiao et al.?% proposed a framework named MirrorGAN in which a mirror
structure has been embodied. Briefly, this method addresses not only a text-to-image task but also a text-to-image-to-text task.
In IR-GAN®Z, an adversarial mechanism is used in which the discriminator incrementally determines the consistency between
visual and semantic information. Inspired by these two methods, we design a semantic consistency reasoning mechanism to
align the visual and linguistic information.

1.35
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3 | APPROACH

As shown in Figure we propose a framework for change captioning that consists of bi-directional difference localization,
spatial-channel attention, and semantic consistency reasoning. We locate the changed region between the ‘before’ and the ‘after’
images (1, and I,;,) with the bi-directional difference localization module. Then we leverage the spatial-channel attention
mechanism to select helpful information to generate change captions. Finally, we utilize semantic consistency reasoning to
measure the consistency between visual and linguistic information to direct the decoder to generate better captions.

3.1 | Bi-directional Difference Localization

The bi-directional difference localization module takes fy,, and f,, as input. fy,, and f,, are the feature maps of I, , and
1,7, Bidirectional modeling can reduce the confusion of different changes by locating the changes on both the ’before’ and
“after’ images.

First, in order to capture the semantic difference in the input pairs, we use a bi-directional subtraction to obtain two contrastive
feature maps F,,,,5,q a0d Fyyep,00rq» Whereas conventional methods only subtract fy, , from f, /.

Fforward =faft_fbef’ (H

Fbackward = fbef _faft' (2)
Second, to pay more attention to the changed region, we calculate two separate attention maps a,,, and a,,, by contrastive
feature maps Fyy, 0 a0d Fyyepipara- AS shown in the following formulas, we not only concatenate visual features f; and con-
trastive feature map Fj,, 4.4, but we also concatenate visual features f; and contrastive feature maps F . ,q,q a0d Fppepipqrq 10
incorporate the comprehensive change information into visual features. This produces the fused features F; and F; :

F, = ReLU(conv; (Lf;;Fyorwaral); 3)

10’1

I?i,wu = RELU(COHUI-”M([fi; Ffarward; Fbackward])' (4)

In the fused features F; and F; ,the changing region has stronger semantic information than other regions. We can concatenate
F, and F; to obtain the corresponding change information contained in these fused features which represent spatial attention

maps which have a greater weights in the changing region:

F=I[F, :F, 1, 5)

a; = o(conuv(F))), (6)

where i € (bef,aft). The symbols [;], conv, ¢ indicate concatenation, convolutional layer, and sigmoid function. Finally, the
two attention maps are applied to f,,, and f,, to locate the changing region in the images based on the visual features. This
produces a weighted visual feature map r;

ri=a; 0 f; @)
where © indicates element-wise multiplication.

Compared to unidirectional difference localization, our bi-directional difference localization module increases the accuracy
in change localization, since this module not only provides the changes information on the *before’ images, it also provides the
changes on the "after’ images producing comprehensive change information at the spatial level. Furthermore, our localization
module greatly reduces confusion of change types, especially ‘add’, ‘move’ and ‘drop’. The reason is that bi-directional difference
localization can increase the representational power of features for all types of change.

3.2 | Spatial-Channel Attention

After the changing regions are located, we further employ a spatial-channel attention module to focus on regions which contribute
to word generation. The spatial-channel attention module contains two attention mechanisms: channel attention and spatial
attention.
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FIGURE 2 Our model consists of three modules: bi-directional difference localization, spatial-channel attention, and semantic
consistency reasoning. We firstly locate changes with the bi-directional difference localization module. Then, we employ the
decoder with spatial-channel attention to describe the changes. Finally, semantic consistency reasoning is used to measure the
consistency between visual and linguistic information.

Visual fusion

Semantic Consistency Reasoning

color its changed block brown The

The purpose of channel attention is to help our model pay more attention to the key feature maps obtained by the bi-directional
difference localization module at each decoding stage ¢. For example, when generating a word to describe the change type “add”,
the channel attention part should force the spatial part to focus more on the R; - ((Ry; s = Rypy — Ry p) and R 7.

Equally importantly, spatial attention assists our model to focus on different regions in each feature map at each decoding step.
When describing the attributes of unchanged objects, our model should attend to the unchanged object rather than pay attention
to the changed region all the time.

3.2.1 | Channel Attention

At each decoding stage ¢, we obtain the channel attention weights for the three feature maps Ry, , R;;;, and R, ;. According
to Equation (8, first we calculate the sum pooling of each R; so that the channels’ degree of importance can be retained. This
helps in the subsequent calculation of the key channel at current decoding stage z,

- Y &, ()
HW

As shown in Equation (9), we then fuse S; to get the latent projection v, with which we can encode the channel attention
information.

U=ReLU(Wdl[Sbef;Sdlff;Saft]+bd1)' (9)

After we get the latent projection v, we take v and sum of the hidden states h(lt_l) , h(zt_l) as input ¢’ to an LSTM to get the hidden
state hg),

u = o (hy ™" + K7V, (10)

hY = LSTMu®, hi™"), €8))

wherei € (bef,dif f,aft), h(lt_l) and hg_l) are the hidden states of LSTM 1 and LSTM?2 at the decoding stage r — 1. As shown
in Figure[2 ] LSTMI is used to decode the channel attention information. LSTM2 acts as a spatial decoder to decode the visual
information which has been enhanced by spatial attention. The information provided by hﬁt_l) and hg_l) enables the LSTM to
focus on the key feature maps at current decoding stage ¢, thus we could obtain the hidden state hg) which contains the channel
attention information. Further we obtain the comprehensive weighted feature ngm at step ¢ using the channel attention weights
predicted from hg) according to Equations and (T3):

al ~ softmax(Wy hY + by ), (12)

0 _ ot t t
Lcom - abebeef + aaftSflff + adifdeiff' (13)
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Finally, to help compute the spatial weights via channel attention, we utilize LSTM1 to decode the comprehensive feature and
the embedding of the previous word w,_, (ground-truth word during training, predicted word during inference):

x(t—l) = EIW(H)’ (14)
@=L (15)
h = LSTM1(c®, n"™"), (16)

where h(lt) represents the hidden states of LSTM1 at decoding stage ¢, used in part to generate the distributions over the next word.
Wa,s by s Wy, and b, are learnable parameters. The lw(H) is the one-hot encoding of the word w,_;, and E is an embedding
layer.

3.2.2 | Spatial Attention

We calculate the spatial attention with the output of channel attention h(lt) and the previous hidden state of LSTM?2 h(zt_l). First,
we concatenate h(lt) and h(;_l) as well as the embedding word and get the spatial attention tensor A’S £

-1
Al = w A1 (7

where the hidden state h(ll) plays the role of providing the channel attention information for calculating the spatial attention.
Therefore, A’S r brings the channel information into the calculation of spatial attention. Second, we calculate each changed visual
feature r’s spatial attention map A; using A'¢ . to predict the spatial attention weight agi) via a softmax:

Al r

A=—31 (18)
ARl

al ~ softmax(A,), (19)

hence the weighted feature maps can be obtained by the sum pooling of element-wise multiplication between the spatial attention
weight and the corresponding visual feature:

A? - 2 af;f or, (20)
HW

wherei € (bef,dif f,aft). Next, all the weighted feature maps are concatenated together which will act as one part of LSTM2’s
input for getting the representation of spatial attention in hidden space, to ensure that the computation of spatial attention has
the time continuous property as word generation. The hidden state of LSTM2 is also used in part to generate the distributions
over the next word,

S; = ReLU(W,_ [A(I’:d; A(};w; Ag’:ﬂ] +by,). (21)
S(t) = [w(t—l); S1]7 (22)
A = LSTM2(s®, ni™"), (23)

where W, , b, are learnable parameters.
As above mentioned, the word generation at each step includes the comprehensive features from channel attention and spatial
attention. Therefore the probability distribution of the next word can be calculated via softmax:

w? ~ Softmax(h®” + hY), (24)

where W, and b,, are learnable parameters.
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3.3 | Semantic Consistency Reasoning

To ensure the consistency of textual and visual information, we propose a semantic consistency reasoning mechanism. This
mechanism calculates a relevance score between the visual information and the text description, thereby generating more accu-
rate captions. Further, due to the constraints among before and after the visual information change , generated captions will be
more robust to describe changes. The relevance score can be calculated as:

r = R(f,, D)), (25)

where f; € (fy.r, fop0)- Dy 1s the caption to describe the changes between the input pair 1, , and 1, ,. First, we fuse the three
feature maps, which are the feature maps used in spatial-channel attention module, to generate captions:

Cl = WC,[Z fbef; Z Fforward; Z faft] +bC,’ (26)
HW HW HW

where W and b are learnable parameters, F,,,,,,,4 i predicted from Equation (T). For the captioning information, we employ
a bi-directional GRU to encode the caption:

d; = BiGRU(w,, w?, ..., w"), @27

where wtl, wtz,..., w? denote the embedding of each word in D, hence we obtain d; which represents the semantic information of
the corresponding caption. Finally, to measure relevance between the visual information and the textual description, we leverage
semantic consistency reasoning to align the fused feature and caption:

r=R(f;,D;)=d;C; + ¢(C)). (28)

The first term in Equation (28)) is the inner product of d; and C; which represents the degree of relevance, in accordance with
our intuition that similar features’” inner product will be larger. ¢ is a fully connected layer which projects C; into a scalar.

3.4 | Optimization

Similar to the image captioning, we train our model end-to-end with a word-level cross-entropy loss (XE) which minimizes the
distance L between the generated sequence W, and the ground truth sequence W} :

Lyp(0) = log(py(WIW))), (29)

where 6 denotes all the parameters in our model. Besides the cross-entropy loss, we apply a regularization to the attention
maps generated by the bi-directional difference localization module to minimize unnecessary activations. In addition, we use
a consistency loss calculated by the relevance score to maximize the consistency between visual information and generated
captions. The final loss function is as follows:

L(®) = LXE + /ILI + :uLconsistency’ (30)
where
L. = pfoke 4 pred (31
consistency consistency consistency’
L{oan];istency = _IE[mln(O’ _R(E’ DI)) - 1]s (32)
Lzeofl{w‘xtency = _[E[mln(o’ R(Fn D?T)) - 1] (33)

4 | EXPERIMENTS

4.1 | Experimental settings

Evaluation Metrics. We evaluate the performance of our model using CIDEr®, BLEU*?, ROUGE*?, METEOR*! and
SPICE#Z. CIDETr is voting-based metric which penalizes the often-seen but uninformative n-grams in the dataset. BLEU is the
metric for computing the n-gram based precision between the candidate sentence and reference sentences. In BLEU metrics, we
mainly calculate the popular BLEU-4 metric to evaluate the matching degree of 4-word sub-sequences between the generated
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TABLE 1 Total performance comparison of our model on the CLEVR-Change Dataset. Our model outperforms all other
methods.

Approach CIDEr BLEU-4 METEOR SPICE
Capt-Pix-Diff 75.9 30.2 23.7 17.1
Capt-Rep-Diff  87.9 335 26.7 19
Capt-Att 106.4 42.7 32.1 23.2
Capt-Dual-Att  108.5 43.5 32.7 234
DUDA 112.3 47.3 339 24.5
Ours 118.1 54.2 38.3 31.7

caption and the ground truth caption. ROUGE is also n-gram based, which computes recall between candidate sentence and
reference sentences. In our experiments, we adopt the ROUGEL metric which computes F-measure with a recall bias accord-
ing to longest common subsequence between candidate sentence and reference sentences. Similar to ROUGEL, METEOR also
computes the F-measure based on matches, and returns the maximum score among references. SPICE parses each caption to
derive a scene graph and computes the F-SCORE to measure the scene graph’s similarity. Further, we utilize the Pointing Game
evaluation® to validate the ability of our model to accurately locate the changed regions.

Implementation Details. The spatial resolution of visual features f is 1024*14*14. The features are obtained from the
convolutional layer before the global average pooling in ResNet1014* pre-trained on ImageNet*>. The hidden state dimension
of the LSTM in our spatial-channel attention module is 512. The word embedding layer is trained from scratch and each word
is represented by a 300 dimensional vector. The hidden state dimension of Bi-GRU which is used to encode the captions is
1024. We train our model for 80 epochs using the Adam Optimizer*® with a learning rate of 0.0007 and a batch size of 128.
The hyperparameter for our consistency loss is 0.025 and for regularization terms is 0.0025. Our model is implemented using
PyTorch*Z, and our code will be made publicly available.

4.2 | Results on CLEVR-Change Dataset

The CLEVR-Change Dataset*8 consists of 39803 images before the change, 39803 images for the scene change (add, move,
drop, color, texture) and 39803 for the distractors (viewpoint change, illumination change) without scene change. The dataset is
split into 33830%3, 1988*3, and 3985*3 for training, validation, and testing.

To evaluate the effectiveness of our model on the CLEVR-Change Dataset, we compare it with several models.The Capt-Pix-
Diff? first utilizes a pixel-level difference image which is obtained by calculating the difference of the corresponding pixels in
the two input images. Then we downsample the spatial resolution of the difference image to the same size as the features of the
original images. Finally, the downsampled difference image is concatenated with the input image features, and then is input to the
LSTM for caption generation. Capt-Rep-Diff* is similar to Capt-Pix-Diff, the difference is that Capt-Rep-Diff utilizes a feature-
level difference image to describe changes. Capt-Att? introduces a single spatial attention into Capt-Rep-Diff, and applies the
learned single spatial attention to the two images. Compared to Capt-Att, Capt-Dual-Att> learns two separate spatial attentions
for the paired images. Dual Dynamic Attention Model (DUDA)? is currently the state-of-the-art model for change captioning
and includes a dual attention module to locate the change regions and a dynamic speaker for caption generation.

We compare the performance of our model with the above approaches in several respects: (1) total performance (2) scene
change and distractor and (3) change types.

Total performance. We evaluate the total performance of our model for three aspects: the accuracy of generated cap-
tions(Table[I]), robustness for viewpoint shift (Figure[ |(a)) and accuracy of change localization in different viewpoints (Figure
mb)). We observe that our model outperforms DUDA.

As for the accuracy of change localization, we upsample the attention maps to the original image size and then check whether
the point with the highest activation is in the ground truth bounding box*3. We observe good performance of our model, as shown
in Figure [ [b). We owe the performance improvement to the bi-directional difference localization module which identifies
differences for all change types.

For the robustness to viewpoint shift, in Figure [ |(a), we can observe that the performance of our model not only outperforms
DUDA, it is also more stable than DUDA. We speculate the reason is that the spatial-channel attention module helps our model
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TABLE 2 Total performance comparison of our model on the CLEVR-Change Dataset. Our model outperforms all other
methods.

Approach Scene Change Distrator
CIDEr BLEU-4 METEOR SPICE CIDEr BLEU-4 METEOR SPICE

Capt-Pix-Diff ~ 36.2 21.9 17.7 7.9 98.2 434 389 26.3
Capt-Rep-Diff ~ 51.8 26.0 21.1 10.1 105.3 494 41.7 27.8
Capt-Att 87.2 383 279 18.0 106.6 535 432 28.4
Capt-Dual-Att ~ 89.8 38.5 28.5 18.2 108.9 56.3 44.0 28.7
DUDA 94.6 429 29.7 19.9 110.8 59.8 45.2 29.1
Ours 105.8 52.1 34.3 28.5 116.1 62.7 50.3 34.8

TABLE 3 Evaluation for every change type on the CLVER-Change Dataset.

A Color Material Drop Add Move
pproach
C M S C M S C M S C M S C M S
Capt-Pix-Diff 4.2 7.4 1.3 16.1 16.0 6.8 27.1 209 106 30.1 244 114 18.0 182 9.2
Capt-Rep-Diff  44.5 192 82 219 182 8.8 49.7 235 12.0 50.1 257 121 265 189 9.6
Capt-Att 1121 305 179 759 254 163 984 312 190 91,5 302 19.0 49.6 222 145
Capt-Dual-Att  115.8 32.1 19.8 827 26.7 17.6 103.0 31.7 169 857 295 169 52,6 224 147
DUDA 1204 328 212 867 273 183 1034 314 224 1082 334 224 564 235 154
Ours 1159 36.1 289 1068 31.6 262 1249 368 320 1213 387 320 718 281 235

utilize more useful information to for word decoding at each step, and reduces the influence of location error generated in
localization module to some extent.

Finally, the semantic consistency reasoning mechanism further aligns the visual information and text captions which helps
our model generate a more accurate output. Therefore, our method outperforms competing techniques as shown in Table

Scene Change and Distrators. In Table[2 | we observe a larger performance improvement for scene change than distractors.
This is due to bi-directional difference localization, which is more effective at distinguishing different scene change types.
Compared to the unidirectional difference, the bi-directional difference localization increases the information difference for all
change types.

Change Types. The performance in Table [3_| demonstrates that our model surpasses DUDA in almost all change types. C,
M and S in the table refer to CIDEr, METEOR and SPICE respectively. In particular, the relative improvement of the ‘move’
change is surprising. The reason is that for the ‘move’ change, we need to overall analyze the different change localization
regions in the ‘before’ and ‘after’ images. Further, the ‘move’ change is more easily confused with the ‘add’ and ‘drop’ changes.
In this case, if the model lacks the ability to systematically analyze the information in the ‘before’ image and the ‘after’ image,
it will be difficult to identify the ‘move’ change. However, the semantic consistency reasoning in our model can enhance the
ability to systematically analyze visual information by ensuring the consistency between captions and images. Additionally, the
bidirectional difference localization module reduces the confusion by increasing the information difference for all change types.

We show the qualitative comparison of the ‘move’ change in Figure[3 ] We observe that our model can well locate the different
change regions in the ‘before’ and ‘after’ images compared to DUDA. Less attention to the position of change object in ‘before’
images in DUDA accounts for the confusion between the ‘move’ and ‘add’ change. In contrast, our model pays attention to the
two change regions equally through bi-directional difference localization which proves the ability of our model to recognize
various change types.

4.3 | Results on Image Editing Request Dataset

To validate the usefulness of our model for different tasks, we conduct further experiments on the Image Editing Request
Dataset?. This dataset consists of 3939 images which are split into 3061, 383, and 495 for training, validation, and testing. The
changes in this dataset are more diverse including scene changes and more comprehensive change. Therefore, it is more difficult
to accurately caption the changes in this dataset.
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Before Image After Image
GT:
the small yellow metallic ball
on the right side of the big
green cylinder changed its
location

DUDA:

the tiny yellow metal cylinder
in front of the red object has
been newly placed

Ours:

the tiny yellow metal ball on
the right side of the cyan
object changed its location

FIGURE 3 Qualitative comparison of the ‘move’ change
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FIGURE 4 a: Evaluation for robustness to viewpoint shift. Horizontal axis is IOU and the normal axis is CIDEr score. b:
Location accuracy evaluation in different viewpoints.
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Capt-Att Ours

TABLE 4 Total performance comparison on Image Editing Request Dataset.

Approach CIDEr BLEU-4 ROUGEL METEOR
static+dynamic rel-att ~ 26.36 6.72 37.35 12.80
DUDA 22.82 6.54 37.29 12.40
Ours 27.68 6.89 38.51 14.62

The performance comparison in Table ] indicates that although the task in this dataset is different from scene change, our
model also is effective. In Figure[5_| compared to DUDA which locates the wrong region, our model can locate the background,
which changes in these pictures, and then describes the visual change precisely. We speculate that since DUDA lacks the bi-
directional difference localization of our model, it does not accurately identify the change. Further, the spatial channel attention
also helps our model learn to focus on the other information related to changes, and accounts for the accurate description. Also,
the semantic consistency reasoning’s constraint between the visual information and textual description also contributes to a
description that accurately matches the visual content.
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U Sy

Ours: change the backgrund to blue DUDA: remove the people in the background

FIGURE 5 Qualitative comparison on Image Editing Request Dataset.

TABLE 5 Total performance comparison on the Spot-the-Diff Dataset.

Approach CIDEr BLEU-4 ROUGEL METEOR

DDLA 32.8 8.5 28.6 12.0
DUDA 32.5 8.1 29.1 11.8
Ours 42.2 6.6 29.5 10.6

4.4 | Results on Spot-the-Diff Dataset

The Spot-the-Diff dataset®! possesses one or more scene changes with real images and human-provided descriptions. We eval-
uate our model in a single change setting by picking out the images with one caption in the dataset. The images are split into
3852, 653, and 789 for training, validation, and testing.

We present the comparison on the Spot-the-Diff dataset in Table[5_| We notice that our model achieves a performance gain of
+9.7 compared to the DUDA and +9.4 compared to the DDLA on the CIDEr metric. CIDEr is a widely recognized evaluation
metric in the task of image captioning. On the BLEU-4 metric, it is important to give each caption four reference captions to
reduce the impact of language diversity. However, we select the images with a single description to evaluate our model which
results in the low performance on the BLEU-4 score to some extent. Besides, as Dong Huk Park et al.? mentioned, the Spot-
the-Diff dataset shouldn’t be the definitive test for the change captioning task because the dataset doesn’t consider the presence
of distractors, which means more experiments need to be set up for verifying captioning effectiveness.

4.5 | Ablation Study

We conduct experiments on different variants of our model to evaluate the effectiveness of each of the model’s components
including the bi-directional difference localization, spatial-channel attention, and semantic consistency reasoning, which are
abbreviated as bidiff, attention and reasoning in Table [6 ] To evaluate the performance improvement from bi-directional dif-
ference localization module, we implement a degraded model which includes spatial-channel attention, semantic consistency
reasoning and unidirectional difference localization. All ablation studies are performed on the CLEVR-Change dataset.

As seen in Table[6 ] thanks to the bi-directional difference localization, our model achieves a performance improvement of
+2.1 in the CIDEr score. The CIDEr scores in the third and fourth rows prove that our spatial-channel attention contributes
a performance improvement with +0.4. In addition, compared to DUDA, we observe that our semantic consistency reason-
ing module boosts the CIDEr score by +3.6, which makes the descriptions generated by our model more consistent with the
images. We also observed a performance decline of 0.3 on the SPICE metric with spatial-channel attention module, and we
speculate that the combination of the bi-directional difference localization and spatial-channel attention is the reason. When the
bi-directional difference localization and spatial-channel attention work together, a more precise description will be generated
so the arbitrariness of potential description will decrease. This means that under the F-score based metric, such as the SPICE
metric, a more accurate description may result in a lower score. Finally, the model with three modules outperforms the model
only with spatial-channel attention and semantic consistency reasoning.
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TABLE 6 Ablation experimental results of different variants conducted on CLEVR-Change Dataset.

Approach CIDEr METEOR SPICE
DUDA 112.3 33.9 24.5
bidiff 114.4 379 32.0
reasoning 115.9 37.7 31.5
attention+reasoning 116.3 38.0 31.6
bidiff+reasoning 117.0 38.2 32.0
bidiff+reasoning+attention ~ 118.1 38.3 31.7

CONCLUSION

In this paper, we propose the bi-directional difference localization and semantic consistency reasoning network to address the
change captioning task. We first employ the bi-directional difference localization module to locate changes which can well
distinguish all change types. Second, we design a decoder with spatial-channel attention to generate the change caption. This
attention module enables our model to not only focus on key feature maps but also attend to the core positions of each feature
map at each decoding stage. Finally, we introduce semantic consistency reasoning to enhance the ability of our model to locate
the change regions and systematically analyze both features by reasoning the relationship between text captions and images.
Extensive experiments on three public datasets show the effectiveness of our approach.
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