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Abstract—Compressed Sensing Magnetic Resonance Imaging
(CS-MRI) enables fast acquisition, which is highly desirable for
numerous clinical applications. This can not only reduce the
scanning cost and ease patient burden, but also potentially reduce
motion artefacts and the effect of contrast washout, thus yielding
better image quality. Different from parallel imaging based fast
MRI, which utilises multiple coils to simultaneously receive MR
signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to
reconstruct MRI images with much less required raw data. This
paper provides a deep learning based strategy for reconstruction
of CS-MRI, and bridges a substantial gap between conventional
non-learning methods working only on data from a single image,
and prior knowledge from large training datasets. In particular, a
novel conditional Generative Adversarial Networks-based model
(DAGAN) is proposed to reconstruct CS-MRI. In our DAGAN
architecture, we have designed a refinement learning method
to stabilise our U-Net based generator, which provides an end-
to-end network to reduce aliasing artefacts. To better preserve
texture and edges in the reconstruction, we have coupled the
adversarial loss with an innovative content loss. In addition, we
incorporate frequency domain information to enforce similarity
in both the image and frequency domains. We have performed
comprehensive comparison studies with both conventional CS-
MRI reconstruction methods and newly investigated deep learn-
ing approaches. Compared to these methods, our DAGAN method
provides superior reconstruction with preserved perceptual image
details. Furthermore, each image is reconstructed in about 5 ms,
which is suitable for real-time processing.

Index Terms—Compressed Sensing; Magnetic Resonance
Imaging (MRI); Fast MRI; Deep Learning; Generative Adver-
sarial Networks (GAN); De-aliasing; Inverse Problems.
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I. INTRODUCTION

AGNETIC Resonance Imaging (MRI) is a widely ap-
Mplied medical imaging modality for numerous clinical
applications. MRI can provide reproducible, non-invasive,
and quantitative measurements of tissue, including structural,
anatomical and functional information. However, one major
drawback of MRI is the prolonged acquisition time. MRI is
associated with an inherently slow acquisition speed that is
due to data samples not being collected directly in the image
space but rather in k-space. K-space contains spatial-frequency
information that is acquired line-by-line and anywhere from
64 to 512 lines of data are needed for a high quality re-
construction. This relatively slow acquisition could result in
significant artefacts due to patient movement and physiological
motion, e.g., cardiac pulsation, respiratory excursion, and gas-
trointestinal peristalsis. Prolonged acquisition times also limit
the usage of MRI due to expensive cost and considerations of
patient comfort and compliance [1]. Moreover, for protocols
that require contrast agent injection, lengthy acquisition can
result in contrast washout that may lead to poor quality or non-
diagnostic images. Due to limitations of the scanning speed,
patient throughput using MRI is slow compared with other
medical imaging modalities.

The MRI raw data samples are acquired sequentially in k-
space and the speed at which k-space can be traversed is lim-
ited by physiological and hardware constraints [2]]. Once the
desired field-of-view and spatial resolution of the MRI images
are prescribed, the required k-space raw data is conventionally
determined by the Nyquist-Shannon sampling criteria [3].
Some early research on fast MRI proposed acquiring several
lines in k-space from a single radio frequency (RF) excitation
by implementing multiple RF [4] or gradient [5] refocussings.
Since these acceleration techniques acquire the full k-space
coverage demanded by the Nyquist-Shannon sampling criteria,
they are still categorised as fully sampled methods [1].

One possible fast MRI approach is to undersample k-
space, resulting in an acceleration rate proportional to the
undersampling ratio. Partial Fourier imaging (PFI) [6] is an
undersampled technique based on the principle that in theory,
only half of the k-space in the phase encoding direction is
required according to the property that the Fourier transforma-
tion of a purely real function has complex conjugate symmetry
in k-space [7]. However, in practice, more than half of the
phase encoding is acquired to provide a robust phase correction
[1]; therefore, the acceleration factor using PFI is limited to
<2 and it is associated with a drop of signal to noise ratio
(SNR). Alternatively, parallel imaging is a fast MRI method
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using multiple independent receiver channels. Each indepen-
dent channel is most sensitive to the tissue nearest to that
coil. The raw data acquired from these independent channels
can be combined using either a sensitivity encoding (SENSE)
technique [8] or a generalised auto-calibrating (GRAPPA)
method [9]. The acceleration factor of parallel imaging is
limited by the number and arrangement of the receiver coils,
which potentially introduce some imaging artefacts [10] and
increase the manufacturing cost of the MRI scanner.

On the other hand, Compressed Sensing [11] based MRI
(CS-MRI) allows fast acquisition that bypasses the Nyquist-
Shannon sampling criteria with more aggressive undersam-
pling. In theory, it can achieve a reconstruction without deteri-
oration of image quality by performing nonlinear optimisation
on randomly undersampled raw data, assuming the data is
compressible. The main challenge for CS-MRI is to find an
algorithm that can reconstruct an uncorrupted or de-aliased
image from randomly highly undersampled k-space data.

II. RELATED WORK AND OUR CONTRIBUTIONS
A. Classic Model-Based CS-MRI

CS-MRI research has been focused on three major direc-
tions. First, investigations have sought the best undersampling
scheme, which should be as random as possible to create
incoherent undersampling artefacts so that a proper nonlinear
reconstruction can be applied to suppress noise-like artefacts
without degrading image quality of the reconstruction [12],
[13], [14]. The sparsity of the random undersampling deter-
mines the acceleration rate. More importantly, the random
undersampling scheme must be feasible to implement on
the MRI scanner and compatible with particular scanning
sequences. Currently, most studies using 2D MRI have relied
on 1D random undersampling to produce a sampling pattern
that follows a 1D Gaussian distribution. This gives a higher
level of undersampling in the high frequency regions while low
frequencies are retained to preserve overall image structure.
Only 1D undersampling is used because the sampling along
the frequency encoding direction is fast, and only the phase
encoding direction limits the acquisition time [2]. Considering
3D reconstruction, 2D Gaussian and Poisson disc masks are
commonly used to accelerate phase and slice encoding [1].

Second, in general, medical imagery acquired by MRI is
naturally compressible. CS-MRI utilises the implicit sparsity
to reconstruct accelerated acquisitions [15]. Here the term
sparsity describes a matrix of image pixels or raw data points
which are predominately zero valued or namely compressible.
Such sparseness may exist either in the image domain or
more commonly via a suitable mathematical representation in
a transform domain. Sparse representation can be explored in
a specific transform domain or generally in a dictionary-based
subspace [16]. Classic fast CS-MRI uses predefined and fixed
sparsifying transforms, e.g., total variation (TV) [17], [18I,
[19], discrete cosine transforms [20]], [21]], [22]] and discrete
wavelet transforms [23]], [24], [25)]. In addition, this has been
extended to a more flexible sparse representation learnt directly
from data using dictionary learning [26], [27], [28].

Finally, nonlinear optimisation algorithms ensure the
achievement of efficient, stable and accurate reconstruction

(L6, [18], [29], [30]. Comprehensive reviews on classic CS-
MRI methods and clinical applications can be found else-
where, e.g., [L], [31].

Although there are promising studies applying fast CS-MRI
in clinical environments [31], [32], [33]], most routine clinical
MRI scanning is still based on standard fully-sampled Carte-
sian sequences or is accelerated only using parallel imaging.
The main challenges are: (1) satisfying the incoherence criteria
required by CS-MRI [1]; (2) the widely applied sparsifying
transforms might be too simple to capture complex image
details associated with subtle differences of biological tissues,
e.g., TV based sparsifying transform penalises local variation
in the reconstructed images but can introduce staircase arte-
facts and the wavelet transform enforces point singularities
and isotropic features but orthogonal wavelets may lead to
blocky artefacts [34], [35], [36]; (3) nonlinear optimisation
solvers usually involve iterative computation that may result in
relatively long reconstruction time [[1]; (4) inappropriate hyper-
parameters predicted in current CS-MRI methods can cause
over-regularisation that will yield overly smooth and unnatural
looking reconstructions or images with residual undersampling
artefacts [1]. Due to these challenges and limitations, the
acceleration rate using CS-MRI alone is still limited (2x to
6% acceleration).

B. Deep Learning-Based CS-MRI

Recently, deep learning has received great attention in
computer vision studies and has generally returned dividends
in performance. Shen et al. [37] surveyed the most recent
research in deep learning for medical image analysis and Wang
[38] provided an insightful perspective on deep imaging that
proposed to incorporate deep learning into tomographic image
reconstruction. Essentially, CS-MRI reconstruction solves a
generalised inverse problem that is analogous to image super-
resolution (SR) [39]], de-noising and inpainting [40]], [41] that
have been successfully solved using deep neural network ar-
chitectures, e.g., using convolutional neural networks (CNN).

Currently, there are only preliminary studies on deep learn-
ing based CS-MRI reconstruction. Wang et al. [42] introduced
a CNN-based CS-MRI method, in which the learnt network
was used to initialise the classic CS-MRI in a two-phase
reconstruction, or integrated into the CS-MRI directly as an
additional regularisation term. Despite preliminary qualitative
visualisation that showed some promise, the applicability of
this method for CS-MRI reconstruction is yet to be quan-
titatively assessed in detail. In [36], a deep network was
trained for solving CS-MRI using an Alternating Direction
Method of Multipliers [18] framework, i.e., ADMM-Net. The
reconstruction, de-noising and Lagrangian multiplier updates
were implemented in a data flow graph and optimised through
cascaded deep network layers. The method achieved simi-
lar reconstruction results as classic CS-MRI reconstruction
methods but dramatically reduced reconstruction time. There
are also three preprints describing deep learning based CS-
MRI: Schlemper et al. [43] proposed cascaded CNN incor-
porating a data consistency layer, Hammernik et al. [44]
trained a variational network to solve CS-MRI and Lee et
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al. [45] combined CNN based CS-MRI with parallel imaging
to estimate and remove the aliasing artefacts. Although deep
learning has shown great potential in solving CS-MRI with
much faster reconstruction, to date improvement was not found
significantly different from what classic CS-MRI can achieve.
Moreover, similar to other deep learning applications, it is not
trivial to define the network architecture and convergence of
the deep network training might be difficult to achieve unless
comprehensive parameter tuning is performed.

C. Our Contributions

In this study, we proposed a novel conditional Generative
Adversarial Networks (GAN) based deep learning architecture
(dubbed DAGAN) for de-aliasing and fast CS-MRI by a com-
prehensive extension of our initial proof-of-concept study [46]]
in both method and simulation settings. Our main contributions
are:

o« We propose a U-Net architecture [47], [48] with skip

connections for the generator network;

o A refinement learning approach is designed to stabilise
the training of GAN for fast convergence and less param-
eter tuning;

o The adversarial loss is coupled with a novel content loss
considering both pixel-wise mean square error (MSE) and
perceptual loss defined by pretrained deep convolutional
networks from the Visual Geometry Group at Oxford
University (in short VGG networks [49]) to achieve better
reconstruction details;

o Frequency domain information of the CS-MRI has been
incorporated as additional constraints for the data consis-
tency, which is formed as an extra loss term;

¢ We perform comprehensive experiments and compare our
proposed models with both classic CS-MRI and newly
developed deep learning based methods.

Compared to the state-of-the-art CS-MRI methods, we can

achieve high acceleration factors with superior results and
faster processing time.

III. METHOD
A. General CS-MRI

Forward Model The observation or data acquisition for-
ward model of image restoration or reconstruction can be
approximated as a discretised linear system [S0],

Fx+e =y, (D)

in which x € C¥ represents the desired image to be recon-
structed, which consists of VN x v N pixels formatted as
a column vector. The observation is denoted as y € CM.
The forward model of image acquisition can be described
using a linear operator F : CV +— CM that different matrices
F € CM*N represent various image restoration or reconstruc-
tion problems, e.g., an identity operator for image de-noising,
convolution operators for de-blurring, filtered subsampling
operators for SR and k-space random undersampling operators
for CS-MRI reconstruction [50]].

Inverse Model The inverse estimation of Eq. |1|is usually
ill-posed because the problem is normally underdetermined

with M << N. Moreover, the inverse model is unstable due
to a numerically ill-conditioned operator F' and the presence
of noise (¢ in Eq.[T) [30].

Classic Model-Based CS-MRI In order to solve this
underdetermined and ill-posed system of CS-MRI, one must
exploit a-priori knowledge of x that can be formulated as an
unconstrained optimisation problem, that is

min 5{[Fux = 3113 + AR(), @
where 1||F,x—yl||3 is the data fidelity term and F,, € CM*N
is the undersampled Fourier encoding matrix. R expresses reg-
ularisation terms on x and A is a regularisation parameter. The
regularisation terms R typically involve [,-norms (0 < ¢ < 1)
in the sparsifying domain of x [2].
Deep Learning-Based CS-MRI Deep learning based
studies [42], [43] propose to incorporate a CNN into CS-MRI
reconstruction, that is

1 .
min §||FUX_Y||§+/\R(X)+<||X_fcnn(xu|9)||g’ )

in which f.,, is the forward propagation of data through
the CNN parametrised by 6, and ( is another regularisation
parameter. The image generated by the CNN (i.e., fenn(x,|6))
is used as a reference image and as an additional regularisation
term, in which 6 represents the optimised parameters of the
trained CNN. In addition, x, = ny is the reconstruc-
tion from the zero-filled undersampled k-space measurements,
where H represents the Hermitian transpose operation. MRI
data naturally encodes magnitude and phase information in
complex number format. There are at least two strategies for
a deep learning based method to handle complex numbers:
(1) real-valued information can be embedded into the com-
plex space using an operator Re* : RN — C such that
Re*(x) = x+ 0i, and therefore the MRI forward operator can
be expressed as F : RN 25 oV L oV Y CM that F,
combines the Fourier transform F and random undersampling
U operators [31]; (2) the real and imaginary data can be learnt
as separate channels in the training of the CNN, in other words,
the C¥ is replaced as R?" [43]. In our simulation based study,
the first strategy was employed to avoid extra computational
burden.

B. General GAN

Generative Adversarial Networks [52]] consist of a gen-
erator network GG and a discriminator network D. The goal
of the generator G' is to map a latent variable z, e.g., an
input vector of random numbers, to the distribution of the
given true data a that we are interested in imitating in
order to fool the discriminator D. The discriminator aims to
distinguish the true data x from the synthesized fake data
Gy (z). GAN can be formulated mathematically as a minimax
game between the generator Gy,(z) : z +— « and the
discriminator Dy, (x) :  — [0,1], and this training process
is parameterised by 5 and 6p as following

min II;&X E(GD, 9@) = EIBNPdaca(OC) [lOg DQD (.’1))]
D

o )
+ ]Ezrvpz(z) [log(l - D9D (G9G (Z)))]



VOL. XX, NO. XX, DEC 2017

where latent variable z is sampled from a fixed latent dis-
tribution p,(z) and real samples & come from a real data
distribution pgata(x). The GAN model can be solved by
alternating gradient optimisation between the discriminator
and the generator. Let pi(x) be the distribution induced by
the generator, for a fixed G, the optimal discriminator is

* pdata(w)
) = @) + pel@)
when the generator distribution exactly matches the data distri-
bution pgata () = pe(x) [52]. To avoid the vanishing gradient
problem, when initially the discriminator is very confident and
almost always outputs 0, in practice the gradient step for the
generator is replaced by

Abg = VosEznp, (z)[—log Doy, (Go (2))]- (6)

In so doing, the gradient signals are enhanced, but this is
no longer a zero-sum game [53]. When the discriminator is
optimal, the minimax game is reduced into a minimisation
over the generator only and is equal to

min L(0D,0c) = JSD(paatallpa) — log(2) (7
G

®)

using the Jensen-Shannon divergence [53]]. In practice, optimal
0%, is rarely known; thus, minimisation of £(fp,60q) yields
only a lower bound [52], [S3].

C. Proposed Method

A GAN can be extended to a conditional model if extra
prior information is included to constrain the generator and
discriminator; this is known as a conditional GAN [54].
Additional prior information can be discrete labels, text and
images [53[], [56]. In this study, a GAN conditioned on images
was used and Figure [l| shows the overall framework of our
conditional GAN-based CS-MRI architecture.

Conditional GAN Loss First, instead of using a CNN,
we incorporated the conditional GAN loss into our CS-MRI
reconstruction, that is

min n;ax LCGAN(9D7 (9@) = Ext"‘ptrain(xt) [10g DgD (Xt)]—|—
D

Oc
Ex,~pa(xa) [ 108(Dop (Gog (xu)))] ®)

in which there is one input for the generator, i.e., zero-filling
reconstruction x, with aliasing artefacts. After learning, the
generator yielded the corresponding de-aliased reconstruction
X4, Which was fed to the discriminator. The aim is to keep
training until the discriminator cannot distinguish a de-aliased
reconstruction %, from the fully-sampled ground truth re-
construction x;. Here x; and x, are our input training data
or in other words we input x, conditioned on the given
x¢, and output the de-aliased reconstruction %,. Compared
to the original conditional GAN [54], in which both the
generator and discriminator are conditioned on some extra
information, in our DAGAN model only the generator receives
the undersampled image input as the conditional information.

DAGAN Architecture Our DAGAN architecture was
loosely inspired by [S5], [S7]. We proposed to use a U-

Net based architecture [47] to construct the generator G that
consisted of 8 convolutional layers (encoder layers) and corre-
sponding 8 deconvolutional layers (decoder layers), and each
was followed by batch normalisation [58] and leaky ReLU
layers. In addition, skip connections were applied to connect
mirrored layers between the encoder and decoder paths in
order to feed different levels of features to the decoder to gain
superior reconstruction details. A hyperbolic tangent function
was used as the output activation function for the generator. On
the other hand, the discriminator D undertook a classification
task to differentiate the de-aliased reconstruction X, from the
fully-sampled ground truth reconstruction x;. It was formed
using a standard CNN architecture with 11 convolutional
layers, and each was also followed by batch normalisation
and leaky ReLU layers. Finally a dense convolutional layer
was cascaded and the sigmoid activation function output the
classification results (more detail in Supplementary Material).

Content Loss In order to improve the perceptual quality of
our reconstruction, a content loss was designed for the training
of the generator. This loss consisted of three parts, i.e., a pixel-
wise image domain mean square error (MSE) loss, a frequency
domain MSE loss and a perceptual VGG loss. First, the MSE
based loss functions can be represented as

. 1 )
min Livse (0c) = =[xt — %u|3; 9)
Oc 2

) 1 .
min Levse(0c) = = ||yt — Full3: (10)
0c 2

in which y; and y, are the corresponding frequency domain
data of x; and X,. The VGG loss is defined as

1

min Lvaa (0a) = 5l fves(x0) = frag (Rl (1D
Together with the adversarial loss of the generator
rgicn Lcen(0c) = —log(Dg, (Go, (x4))), (12)
the total loss function can be denoted as
Lrorar = aLivsk + BLmse + 7Lvee + Leen.  (13)

In this study, normalised MSE (NMSE) was used as the
optimisation cost function for the fast CS-MRI reconstruction.
However, the solution solely based on the optimisation of
the NMSE, which is defined on pixel-wise image difference
(Limsg), could result in perceptually nonsmooth reconstruc-
tions that often lack coherent image details. Therefore, we
added NMSE of the frequency domain data as additional
constraints (Lgyse) and also an additional VGG loss (Lvaa)
to take the perceptual similarity into account [59]. Once the
generator has been trained based on the L1oTaL, We can apply
it to any new inputs (i.e., initial aliased reconstructions after
filling zeros into the undersampled k-space), and it will result
in the de-aliased reconstruction.

Refinement Learning It is well known that a deep learning
based method might be hard to train due to vanishing or ex-
ploding gradient problems, however comprehensive parameter
tuning may alleviate the problems but subject to large variance
of performance with different parameter settings. The original
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Fig. 1: Schema for our proposed conditional GAN-based de-aliasing for fast CS-MRI (DAGAN).

GAN model is also difficult to train [57] due to the alternating
training on the adversarial components. In this study, we
proposed a refinement learning to stabilise the training of our
DAGAN model, which can yield faster convergence. Essen-
tially, we proposed to use %, = Gy, (x,) +x,, instead of using
%y = Gy, (xy). In so doing, we transferred the generator from
a conditional generative function to a refinement function, i.e.,
only generate the missing information, which can dramatically
reduce the complexity of the model learning. In addition, in
order to ensure that the de-aliased reconstruction X, is in an
appropriate intensity scale as the ground truth, we applied a
simple ramp function to rescale the image.

Networks and Training Settings The VGG network [49]
in this work was pretrained on ImageNet [60]]. In particular,
we used the conv4 output of the VGG16 as the encoded
embedding of the de-aliased output and the ground truth,
and computed the MSE between them. We trained separate
networks for different undersampling ratios with the following
fixed mutual hyperparameters: o = 15, 8 = 0.1, v = 0.0025,
initial learning rate of 0.0001, batch size of 25. It is of
note that the hyperparameters: «, $ and  are the weights
associated with different loss terms. According to previous
research [61] and in practice, we found that it is adequate
to set these weights such that the magnitude of different
loss terms is balanced into similar scales. We adopted Adam
optimisation [62] with momentum of 0.5. Each model was
learnt by employing early stopping and the learning rate was
halved every 5 epochs. Here we want to emphasise that our
DAGAN models are robust with minimal parameter tuning
so that the same set of hyperparmeters were used for our
following experiments using different undersampling ratios,
various undersampling masks and with and without noises.

Data Augmentation In order to boost the network per-
formance, in addition to conventional data augmentation (e.g.,
image flipping, rotating, shifting, brightness adjustment and
zooming), elastic distortion [63] was also applied to account
non-rigid deformation of the imaged organs.

D. Implementation Details and Evaluation Methods

Implementation The implementation of our DAGAN
models ['| has been done using a high-level Python wrapper

Uhttps://github.com/nebulaV/DAGAN

(TensorLayer E]) [64] of the TensorFlow E] library.

Evaluation Methods We report the NMSE, the Peak
Signal-to-Noise Ratio (PSNR in dB) and the Structural Sim-
ilarity Index (SSIM) [59]. The reconstructed fully sampled
k-space data was used as ground truth (GT) for validation. In
addition to quantitative metrics, we also evaluated our method
using qualitative visualisation of the reconstructed MRI images
and the error with respect to the GT.

IV. SIMULATION SETTINGS AND RESULTS
A. Simulation Settings

Datasets First, we trained and tested our model using
a MICCAI 2013 grand challenge dataset E} We randomly
included 100 T;-weighted MRI datasets for training (70%)
and validation (30%) that contained 16095 and 5033 valid
2D images including brain tissues. Independent testing was
performed on 50 datasets (contained 9854 2D images). In
order to compare with other conventional CS-MRI methods,
we randomly chose 50 2D images for comparison. Second,
in order to test the diagnostic value of our DAGAN based
CS-MRI model, we used the trained model to infer the
pathological MRI images, i.e., brain lesion MRI images E] and
cardiac MRI images with atrial scarring.

Masks Three different types of undersampling patterns
were tested, i.e., 1D Gaussian (G1D), 2D Gaussian (G2D) and
2D Poisson disc (P2D). For the 1D Gaussian mask, 10%, 20%,
30%, 40% and 50% retained raw k-space data were simulated
representing 10x, 5%, 3.3, 2.5%x and 2x accelerations. For
2D Gaussian and 2D Poisson disc masks, 30% retained k-
space data was simulated, respectively (For details refer to
Supplementary Material).

DAGAN Variations In order to test the effectiveness
of different loss components in our cost function, we com-
pared the following DAGAN variations: (1) Pixel-Frequency-
Perceptual-GAN-Refinement (PFPGR): the full model using
the GAN architecture with pixel-wise MSE, frequency domain
data MSE, VGG loss, and refinement learning; (2) Pixel-
Perceptual-GAN-Refinement (PPGR): the model without fre-
quency domain data constraints; (3) Pixel-Perceptual-GAN

Zhttp://tensorlayer.readthedocs.io

3https://www.tensorflow.org
4http://masiweb.vuse.vanderbilt.edu/workshop2013/index.php/
Shttp://www.brainlesion-workshop.org/
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(PPG): the model without refinement learning; (4) Pixel-
GAN (PG): the method with pixel-wise MSE only and GAN
architecture.

Comparison Methods We compared our DAGAN model
with conventional CS-MRI methods including TV [16],
SIDWT [65] and RecPF [18], and the state-of-the-art ap-
proaches including DLMRI [26], PBDW [23], PANO [66],
Noiselet [67], BM3D [50] and DeepADMM [36]. It is worth
noticing that all the comparison methods and our DAGAN
models were initialised using the baseline zero-filling (ZF)
reconstruction to achieve a fair comparison study. The initial-
isation using a prior reconstructed image (e.g., using SIDWT)
may boost the performance of some methods, but can obvi-
ously suffer from much longer reconstruction. In addition, we
only performed minimum parameter tuning for all the meth-
ods. For most of these comparison algorithms (TV, SIDWT,
RecPF, PBDW and Noiselet), we used two generic stopping
criteria: the number of maximum iterations (800) and the
improvement tolerance (0.00001), and the reconstruction stops
when either criterion is satisfied. However, the fundamental
mechanism of these algorithms are different; therefore, they
may have different definitions for the number of iterations. For
the DLMRI method, we used the recommended setting, i.e., 40
outer loop iterations with 20 iterations for the K-singular value
decomposition algorithm. Similarly, for the BM3D method, we
used some recommended number of iterations, e.g., 100. For
the PANO method, there is no open source implementation;
therefore, we only used the provided executable file to perform
the reconstruction (the pre-defined inner loop improvement
tolerance is 0.05 [66]). For the DeepADMM method, we
performed 500 iterations for the training procedure to avoid
possible overfitting and also considered the relatively pro-
longed training time per iteration. For our DAGAN method we
applied the early stopping strategy, which can be considered
as an additional and efficient regularisation technique to avoid
overfitting [68]]. To test the noise tolerance of the CS-MRI
methods, we synthesised additive white Gaussian noise, which
was added to the k-space before applying the undersampling.
Although we assumed that the MRI images before adding
noise were clean, the actual data were acquired from MRI
scanner that may contain certain amount of noise. In this study,
the baseline noise level (5.5% =+ 13%) was calculated using
the method described in [69]]. It is of note that although the
noise model of magnitude MRI images should follow Rician
distribution, the additive Gaussian white noise assumption still
holds for the k-space components [70].

B. Results

Comparison of DAGAN Variations Table [l tabulates the
quantitative comparison results of DAGAN variations (i.e.,
PG, PPG, PPGR and PFPGR). Overall, the results using 1D
Gaussian masks presented in Table [[] show that adding the
refinement learning and frequency domain constraint (PFPGR)
improved the average NMSE and PSNR. For all our DAGAN
models, we obtained compelling de-aliasing results compared
to the ZF reconstruction that contained significant aliasing
artefacts. Figure [2] shows example PFPGR reconstructions by

different undersampling ratios (1D Gaussian mask). Quali-
tatively, there is little difference between the reconstructed
images and the GT when the undersampling ratio is >20%.
For 10% retained data, most of the aliasing artefacts have
still been suppressed effectively and we can still obtain an
average PSNR > 31dB, but there is obvious loss of structural
details (e.g., organ edges). This is because the k-space is highly
undersampled and there is significant information loss in the
low frequency regions.

Compared to using pixel-wise MSE only (PG), adding the
perceptual loss (PPG) produced similar quantitative results;
however, qualitative visualisation showed finer reconstruction
details without unrealistic jagged artefacts (Figure [3] (I) vs.
(m), (n) and (0)). In addition, a horizontal line profile across
a randomly selected case (Figure {) showed that ZF re-
construction still contained a significant amount of artefacts.
PG and PPG clearly reduced the aliasing artefacts, and with
refinement learning both PPGR and PFPGR achieve more
accurate reconstructed line profile compared to the GT (Figure
4.

Comparison with Other Methods Table[[]also summarises
the comparison results of conventional CS-MRI and some
representative state-of-the-art methods. Conventional CS-MRI
approaches (TV, SIDWT and RecPF) reconstructed images
with limited de-aliasing effect, for example, significant re-
maining aliasing artefacts can be seen in Figure [3] (c), (d) and
(e). Dictionary learning (DLMRI) and patch based methods
(PBDW and PANO) obtained better de-aliasing, but with
clearly over-smoothed reconstruction details (Figure E] ®), (&)
and (h)). Moreover, there are visible aliasing artefacts in the
reconstructed images using the Noiselet method (e.g., in Figure
[] (). Although both BM3D and DeepADMM worked quite
well (Figure [3] (j) and (k)), all our DAGAN models produced
visually more convincing reconstructions with much higher
SSIM (Figure [3] (1), (m), (n) and (0)).

Study on Noise and Masks Figures [ and [6] show
the PSNR with respect to different noise levels and various
undersampling patterns. Our DAGAN models demonstrated
certain tolerance to the noise, e.g., our DAGAN models
achieved > 30dB PSNR when the noise level is <20%. In
contrast, other methods were dramatically affected by the noise
(Figure[5). For various sampling patterns, our DAGAN models
performed better with 2D undersampling masks, and produced
superior or comparable reconstruction results with other CS-
MRI methods using the same sampling pattern (Figure [6).

Zero-Shot Inference on Pathological Cases Figures|/|and
[8] show the reconstruction results using our PFPGR model on
example pathological MRI images. It is of note that these
results were obtained by using the trained PFPGR model
on normal brain MRI images (i.e., randomly selected Ti-
weighted MRI data), and there was no pathological MRI
image used for training. This can also be referred as a
zero-shot inference problem [71]. In general, our DAGAN
(PFPGR) model achieved faithful reconstruction with clear
pathological patterns been preserved, for example, compared
to the ZF reconstruction, our PFPGR model demonstrated
superior reconstructed details and better defined brain tumour
textures and boundaries (green arrows in Figure [/| (a-c)).
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Table I: Quantitative results (NMSE and PSNR) of the comparison study using different random undersampling ratios of the 1D Gaussian mask.

Method 10% 20% 30% 40% 50% Testing Time (30%)
NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR CPU (sec) / GPU (ms)
ZF 0.374£0.09 28.22+4.30 0.21£0.06 34.04+£4.58 0.16£0.04 35.61£4.79 0.14£0.04 37.65+£4.92 0.10+£0.03  40.65+4.95 0.00210.003 / —
TV 0.37£0.09 28.23+4.30 0.20£0.06 34.09+4.57 0.16+0.04 35.68+4.79 0.13+0.04 37.81+£4.92 0.09+0.03 40.90£4.95 10.5+1.2/—
SIDWT 0.364+0.10 28.96+4.79 0.15+0.04 36.99+£5.34 0.11£0.03 38.93+5.45 0.10+£0.03 40.51+£6.31 0.07+£0.02 43.53+6.26 126.0+22.7 / —
RecPF 0.364+0.08 28.62+4.46 0.13+0.02 36.21£5.57 0.11+£0.02 37.88+4.90 0.09+£0.03 41.37+5.88 0.06+0.02 44.78+6.12 35.94+0.8 / —
DLMRI 0.39+£0.10 28.25+4.24 0.16+£0.03 36.54+4.21 0.124+0.02 38.24+4.29 0.094+0.02 42.11+£4.17 0.06+0.01 45.40+4.08 49.1+9.8 / —
PBDW 0.21£0.05 31.14+3.65 0.11£0.04 37.56+3.07 0.10+0.04 38.07£3.02 0.07+0.02 41.91£2.95 0.04+0.01 46.05£3.05 223.5+45.5/—
PANO 0.2240.05 30.84+4.48 0.09+£0.02 38.54+£4.04 0.08+£0.02 39.16+4.02 0.05+£0.01 43.05+£3.64 0.04+0.01 45.44+3.42 108.6+17.4/ —
Noiselet 0.25£0.07 30.19+5.40 0.13£0.04 36.97+£594 0.10£0.03 39.01+£5.96 0.084+0.03 41.51+£6.84 0.06+0.02 44.44+6.79 31.1+0.5/—
BM3D 0.204+0.05 31.724+5.23 0.10+£0.02 39.40+£4.58 0.09+£0.02 39.93+4.59 0.07+£0.01 43.66+4.48 0.05+0.01 45.89+4.41 87.5+3.0/ —
DeepADMM  0.2440.03  30.70+4.78 0.16£0.09 37.31£3.07 0.15£0.04 37.36£3.27 0.10£0.06 42.36+2.41 0.09+£0.04 42.60+£2.60 3.2+£0.2/—
PG 0.1940.04 32.82+3.80 0.09+£0.02 39.10£3.84 0.09+£0.02 39.72+4.30 0.06+£0.01 43.28+4.17 0.05+0.01 44.39+4.18 0.2+0.1 / 5.4+0.1
PPG 0.23£0.06 31.33+2.81 0.10£0.03 38.88+3.41 0.09+0.02 39.78+£3.95 0.07+0.03 42.31+£2.98 0.05+0.01 45.61£3.73 0.2+0.1 / 5.4£0.1
PPGR 0.1940.04 32.84+4.46 0.10£0.02 39.05£3.82 0.09+£0.02 39.53+4.12 0.05+0.01 44.45+4.14 0.04+0.01 47.30+3.93 0.2+0.1 / 5.4+0.1
PFPGR 0.174+0.03  33.79+4.26  0.09+0.02 39.44+3.95 0.08+£0.02 40.20+4.07 0.05+0.01 44.83+4.16 0.04+0.01 47.83+4.10 0.2+0.1 / 5.4+0.1

SSIM=0.8707

40%

\ -‘\Q{’ﬁ’;‘

SSIM=0.9790

Fig. 2: Qualitative results of using different undersampling ratio.
Results were obtained by PFPGR and 1D Gaussian masks with 10%
(a), 20% (b), 40% (c) and 50% (d) retained data. GT and results of
30% retained data can be found in Figure[3[a) and (o), respectively.
Cyan box in (a): zoomed-in ROI; Red box in (a): zoomed-in difference
image ROI (50x) between the reconstructed image and the GT.
Corresponding zoomed-in ROIs are shown in (b-d). Colour bars for
the image (left) and the difference image (right) are shown at the
bottom.

V. DISCUSSION

In this study, we developed a novel conditional GAN
based method for fast CS-MRI reconstruction. To the best
of our knowledge, the proposed DAGAN model is the first
work that incorporates GAN based deep learning for CS-
MRI [46]. Overall, our results suggest that the DAGAN model
can outperform conventional CS-MRI methods (TV, SIDWT
and RecPF) in both qualitative visualisation and quantitative
validation. Compared to other state-of-the-art methods (e.g.,
PANO and BM3D), our DAGAN model can also obtain
comparable results. More importantly, the reconstruction time

using DAGAN is much faster than others (about 0.2 sec per
2D image on a CPU or 5 ms on a dedicated GPU) that is
feasible for a real-time reconstruction on the MRI scanner.

To emphasise a fair comparison, we initialise all the com-
parison algorithms with the ZF reconstruction and performed
minimum parameter tuning and used generic stopping criteria,
e.g., the maximum number of iterations and the improvement
tolerance. It should be stressed here that the major purpose
of this study is to present our DAGAN model for CS-
MRI reconstruction, not benchmarking various reconstruction
methods; therefore, a comprehensive comparison of different
parameter settings of the compared methods is beyond the
scope of the current study. In addition, previous studies have
demonstrated that different initialisation could affect the final
reconstruction, e.g., the PANO algorithm can perform better
with an initialisation using the SIDWT results instead of using
ZF [66], but this clearly sacrifices the reconstruction efficiency.
Schlemper et al. [43] have also shown that a cascade of
alternating CNN and a data consistency layer can achieve
superior performance. Such alternating scheme can be also
applied to combine our DAGAN model with a data consistency
layer or a conventional CS-MRI method; however, this will
dramatically reduce the reconstruction efficiency.

Classic fast CS-MRI methods try to solve the image re-
construction using nonlinear optimisation techniques assuming
the data is compressible, but normally without considering the
prior information of the expected appearance of the anatomy
or the possible structure of the undersampling artefacts. This
is significantly different from how human radiologists learn to
read and interpret MRI images. Radiologists have been trained
by reading thousands of MRI images to develop remarkable
skills to recognise certain reproducible anatomical and contex-
tual patterns in the images even with known artefacts presented
[L], [44]. Our deep learning based DAGAN method aims to
imitate this human learning procedure, and therefore shifts
the conventional online nonlinear optimisation into an offline
training procedure. In other words, our DAGAN method
bridges a substantial gap between conventional non-learning
methods solving the inverse problem using information from
only a single input, and abundant prior knowledge from
large training datasets. Compared to our DAGAN method,
dictionary learning based methods usually utilise either a fixed
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Fig. 3: Qualitative visualisation. Cyan boxes in (a): zoomed-in ROI; Red box in (b): zoomed-in difference image (50x) between the
reconstructed image and the GT of the same ROI in (a). Corresponding zoomed-in ROIs are shown in (c-o0). Results were obtained using
1D Gaussian mask with 30% retained raw data. Colour bars for the image (left) and the difference image (right) are shown at the bottom.
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Fig. 4: Comparison of horizontal line profiles.

over-complete set of basis or form a dictionary learnt directly
from data. For the former learning scheme, there is lack of
adaptivity, and for the latter one, the resulting dictionary in
sparse coding is not hierarchical as in the deep learning based
methods, which in general could provide superior results. In
addition, the performance of our DAGAN method is also im-
proved by enriching the training datasets with a comprehensive
data augmentation that has not been considered in previous
dictionary learning or deep learning based methods [26]], [42],
[36l], [43]], [44], [45]. Once a DAGAN model has been trained,
it can be used to infer any new input raw data with the
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N N
& \s\ S
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Fig. 5: PSNR with respect to different noise levels (1D Gaussian
mask was used with 30% retained raw data).

same undersampling ratio. The advantages of the DAGAN
model can be two-fold: (1) a more complex nonlinear mapping
can be learnt through a comprehensive feature extraction by
deep learning, and therefore superior reconstruction details
can be obtained; (2) the offline training procedure finishes the
labourious optimisation, and the inference avoids any online
iterative updating of the reconstruction, which is therefore
much more efficient.

In addition to the proposed application of a conditional
GAN architecture, a perceptual loss is incorporated to account
for the improvement over the reconstructed image quality in
terms of the visually more convincing anatomical or patholog-
ical details. The idea of the perceptual loss is loosely inspired
by GAN based super-resolution [39], which has demonstrated
that adding the perceptual loss can achieve better qualitative
performance. Our simulation results have also confirmed this,
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Fig. 7: Zero-Shot inference on pathological MRI images. Left: GT:
Middle: ZF; Right: PFPGR. Colour boxes show zoomed-in ROIs.
Colour bar below is used for the the difference image (50% in yellow
box).

which can be attributed to the fact that when reconstructing
highly undersampled k-space data, the PG method without
perceptual loss can only find an optimal solution to satisfy the
MSE criteria but may not perceptually resemble the real data.
In addition, our perceptual loss is formed using a pretrained
VGG network, which is used to extract high-level features
of MRI images; therefore, no natural-looking structures have
been hallucinated in the reconstructed MRI images. Compared
to the SR application, CS-MRI solves a more general inverse
problem to recover data from undersampled measurements,
in which the undersampling pattern is random and noise
and artefacts propagation is global due to the frequency
domain operation (compared to the regular downsampling
pattern and local artefacts in SR). Therefore, the CS-MRI

Fig. 8: Zero-Shot inference on pathological cardiac MRI images.
Left: GT; Middle: ZF; Right: PFPGR. Colour boxes show zoomed-in
ROIs. Colour bar below is used for the the difference image (50% in
yellow box).

is a more challenging problem to solve. Furthermore, our
DAGAN model can be generalised to solve SR and it is
also applicable for solving tomographic reconstruction of other
imaging modalities, e.g., Computed Tomography and Positron-
Emission Tomography.

Together with the perceptual loss, the content loss of our
DAGAN model incorporates also MSE loss terms considering
both pixel and frequency domain information. In a preliminary
study (results shown in Supplementary Material Section 3),
the DAGAN model without content loss (using only the
adversarial loss) could not achieve acceptable reconstruction.
Moreover, the training using only the adversarial loss with
refinement learning could not converge. This may be due to the
fact that the content loss has provided effective constraints to
regularise the generator to synthesise reasonable reconstruction
instead of arbitrary image features.

In the context of CS-MRI, one immediate question is
whether the conditional GAN architecture would synthesise
any unrealistic image details in the reconstruction. We studied
this by visually scrutinising our reconstruction results, and
by a thorough inspection we observed only residual alias-
ing artefacts when the undersampling ratio is high (<20%);
however, there were no unnatural synthesised image details
in the intermediate results and final reconstruction (Figure [9).
This may be due to the fact that the input of our DAGAN
is not totally random, and the ZF reconstruction provided
a reasonable initialisation for DAGAN to perform the de-
aliasing. In addition, the proposed refinement learning can
substantially stabilise the training of the GAN (Figure that
is known to be difficult. We noticed that in a previous study
on CS based Computed Tomography reconstruction, a similar
residual learning method was proposed [72]. It has been used
in the U-Net based architecture instead of learning the full-
view reconstruction of the Computed Tomography image. Fur-
thermore, their persistent homology analysis demonstrated that
the manifold of the full-view reconstruction is topologically
more complex than the reconstruction of the residual image,
and therefore the residual learning performed better. In our
study, a similar refinement learning technique has been applied
for training the conditional GAN model. In particular, refine-
ment learning can constrain the generator to reconstruct only
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Fig. 9: Qualitative visualisation of the intermediate results (i.e., epoch 0, 5, 10 and 15). Cyan boxes in (a) a normal brain case and (f)
a pathological case: zoomed-in ROI; Red box in (b) and (g): zoomed-in difference image (50x) between the reconstructed image and the
GT of the same ROI in (a) and (f). Corresponding zoomed-in ROIs are shown in (c-e) and (h-j). Colour bars for the image (left) and the

difference image (right) are shown at the bottom.
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Fig. 10: Convergence analysis with and without refinement learning.

the missing details, and prevent it from generating arbitrary
features that may not present in real MRI images. In fact, due
to limited network capacity and uneven real data distribution,
the discriminator might hardly differentiate these unrealistic
features, and in turn could incorrectly encourage the generator
to reconstruct such arbitrary features. Our convergence analy-
sis (Figure has demonstrated that the proposed refinement
learning can dramatically reduce the training complexity of
GAN with stabilised and fast-converging training.

In order to demonstrate that the hyperparameters tuning will
not affect the DAGAN reconstruction results significantly we
performed a robustness analysis by tuning one hyperparameter
by 0.5x, 5x and 10x of the used setting while fixing the other
two. For comparison of different hyperparameter settings,
statistical significances were given by a two-sample Wilcoxon
rank-sum test. Figure shows that only when we set /3 to
5x 3, we obtained clearly worse results (p = 0.012), but with
other parameter settings, there were no significant differences

in the reconstruction results. In addition, our DAGAN method
has shown improved tolerance to the additive noise.

Interestingly, the zero-shot inference performed well on
pathological cases. The visualisation results showed various
brain lesions clearly without any distortion of the lesions
or any new lesions being synthesised. It is of note that the
training data used for our DAGAN model were normal brain
images acquired with a T-weighted MRI sequence while the
pathological cases were acquired using different T-weighted
or FLAIR sequences. We have shown that our DAGAN model
can still reconstruct these images (Figure [7(c), (f), (i)). For
cardiac MRI images (Figure [8), the main features of cardiac
anatomy were reconstructed reasonably well, although there
were some artefacts introduced in the blood pool regions and
some loss of fine structural detail. The obvious information
loss around the peripheral regions (pink boxes in Figure [§)
may be due to the fact that our DAGAN model has been
trained using normal brain MRI, and during the inference
of cardiac MRI images, the DAGAN model enforces the
peripheral regions to be zero as for the brain MRI images.
For cardiac MRI, this peripheral information loss is clinically
unimportant.

VI. CONCLUSION

The presented study proposes a conditional GAN-based
deep learning method for fast CS-MRI reconstruction. The
proposed DAGAN method has outperformed conventional CS-
MRI approaches and also achieved comparable reconstruction
compared to newly developed methods, but the processing
time has been remarkably reduced (from seconds to millisec-
onds per 2D slice) enabling possible real-time application. By
combining with existing MRI scanning sequences and parallel
imaging, we can envisage this simulation based study to be
translated to the real clinical environment.
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