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Abstract

Background

Resting state fMRI has emerged as a popular neuroimaging method for
automated recognition and classification of brain disorders. Attention Deficit
Hyperactivity Disorder (ADHD) is one of the most common brain disorders
affecting young children, yet its underlying mechanism is not completely understood
and its diagnosis is mainly dependent on behaviour analysis.

New method

In this paper, we propose an end-to-end deep learning architecture to diagnose
ADHD. Our aim is to (1) automatically classify a subject as ADHD or healthy
control, and (2) demonstrate the importance of functional connectivity to increase
classification accuracy and provide interpretable results. The proposed method,
called DeepFMRI, is comprised of three sequential networks, namely (1) a
feature extractor, (2) a functional connectivity network, and (3) a classification
network. The model takes fMRI pre-processed time-series signals as input and
outputs a diagnosis, and is trained end-to-end using back-propagation.

Results

Experimental results on the publicly available ADHD-200 dataset demonstrate
that this innovative method outperforms previous state-of-the-art. Different
imaging sites contributed the data to the ADHD-200 dataset. For the New York
University imaging site, our proposed method was able to achieve classification
accuracy of 73.1% (specificity 91.6%, sensitivity 65.5%).

Comparison with Existing Methods

Preprint submitted to Deep learning methods and applications in neuroimagingNovember 5, 2019



20

In this work, we propose a novel end-to-end deep learning method incorporating
functional connectivity for the classification of ADHD. To the best of our knowledge,
this has not been explored by existing studies.

Conclusions

The results suggest that the proposed end-to-end deep learning architecture
achieves better performance as compared to the other state-of-the-art methods.
The findings suggest that the frontal lobe contains the most discriminative power
towards the classification of ADHD.

Keywords: functional MRI, Deep Learning, End-to-end network, ADHD

1. Introduction

The human brain can be perceived as a large and complex network controlling
and monitoring the systems of the body. The brain network is comprised
of multiple inter-connected brain regions. While supervising and executing
different bodily functions, the brain regions continuously coordinate with each
other in an efficient manner resulting in a complex brain connectivity pattern.
Brain connectivity is a promising source for diagnosis, characterization and
prediction of pathologies, which are linked to abnormal functional organization
of the brain. Recently, analysis of the connectivity of brain regions has gained
much research focus as it is believed that connectivity plays a key role in the
cognitive processes [IJ.

A number of different imaging modalities have been proposed to explore
the functional activity of the brain, such as Electroencephalography (EEG),
Magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI)
and Positron Emission Tomography (PET). Being non-invasive and displaying
remarkable spatial resolution, fMRI is considered most suitable towards determining
functional activity of the brain regions [2]. In recent years, fMRI has emerged as
a popular neuroimaging modality to explore brain connectivity patterns for the
classification of different neurological disorders, demonstrated in several studies

[3, 4, 5] with promising outcomes by studying brain functional networks in
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resting state fMRI.

fMRI data can be viewed as a 4D tensor such that the 3D volume of the brain
is divided into small voxels or regions and the activity of each region is recorded
for a certain duration. Two brain regions that show synchronous functional
activity are assumed to be functionally connected. Functional connectivity is
viewed as the relationship between the temporal activity patterns of anatomically
separated brain regions, depicting the strength of functional communication
between regions [I].

Recently, functional connectivity has been shown to be an important biomarker
towards discrimination of different brain disorders [6] [7, [§]. Research studies
have shown that brain disorders such as Alzheimer's disease, epilepsy and
ADHD can alter the functional connectivity of the brain network [9]. Accurate
identification of the altered functional connectivity induced by a particular
disorder is considered an important task that may highlight the underlying
mechanisms of the disorder. Recently, resting state fMRI has emerged as a
promising neuroimaging tool to investigate functional activity of brain regions
[6, [7, 1Ol 11l 4, M2]. In particular, fMRI has been employed to identify the
connectivity alterations induced by disorders such as epilepsy [0} [7], schizophrenia
[10, 11], ADHD [4, [12] 8, 3], Alzheimer’s disease [14] and Parkinson’s disease
[15, [16].

ADHD is one of the most common neuro-developmental and mental disorders
affecting 5-10% of young children [4], contributing to lifetime impairment [17],
poor quality of life [I§] and long-term burden on affected families [I7, [I§]. Like
many other neurological disorders, the underlying mechanisms of ADHD are
still unknown [4]. There is no single confirmed diagnostic method available for
diagnosing ADHD, which may take up to several months to complete and is
dependent on observations conducted by healthcare practitioners or parents.

In this work, we propose a deep learning architecture for diagnosing ADHD.
The proposed method consists of an end-to-end trainable network that takes
pre-processed time-series signals as input and produces predicted label as its

output. The proposed architecture incorporates a functional connectivity network
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which is designed to capture pair-wise region connectivity. The last component
is a classifier that takes functional connectivity measures computed from pairs
of brain regions as input, and produces a final prediction. The contributions
of the work include 1) a deep learning architecture, trained end-to-end, for
the classification of ADHD, 2) demonstration of the importance of functional
connectivity for improved results and, 3) a new state-of-the-art classification
accuracy on the ADHD-200 dataset.

It should be noted that a preliminary version of this work was published in a
peer review conference [I9]. Compared to the earlier version of this manuscript,
we have extended our work by 1) performing and including additional experimental
results, 2) exploring the impact of functional connectivity in an end-to-end deep
network and, 3) performing anatomical analysis of our results. In this paper,
we have applied our framework to ADHD data only, however, the proposed
method can also be applied to other neurological disorders like schizophrenia
and epilepsy.

The rest of the paper is structured as follows. Related work is introduced
in Section 2. We present an overview of the fMRI data used in this work and
preprocessing steps in Section 3. Our proposed multi-stage network is detailed
in Section 4. Section 5 shows the experimental validation and results. The

anatomical analysis is discussed in Section 6. Section 7 concludes the paper.

2. Related work

ADHD has received significant research focus, including studies employing
machine learning using fMRI data to investigate functional connectivity alterations
in ADHD [20] 211, [4] 9] 22]. In the following subsections, we review the related
work categorised as correlation methods, dimensionality reduction methods,

graph based methods, clustering based methods, and deep learning methods.

2.1. Correlation methods
Correlation is a widely used method calculating functional connectivity where

the regions with high correlation are considered strongly functionally connected.
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Dai et al. [23] segmented the brain into 351 Regions of Interest (ROISs) using a
template provided by [24] and calculated functional connectivity using Pearson’s
correlation. Bohland et al. [25] applied the Automated Anatomical Labeling
(AAL) atlas [26] to segment the brain into 116 ROIs and computed functional

connectivity using three correlation variants: Pearson’s correlation, sparse regularized

inverse covariance [27] and Patel’s Kappa [28]. Eloyan et al. [29] extracted five
ROIs belonging to the motor network with 264 voxels as nodes and computed
functional connectivity using Pearson’s correlation coefficient which was later
used for classification. Similarly Cheng et al. [30] employed Pearson’s correlation
and partial correlation to calculate functional connectivity on 90 brain regions

extracted from the AAL template [26]. Multiple measures including Regional

Homogeneity (ReHo), functional connectivity and fractional amplitude of low-frequency

fluctuation (fALFF) were employed for classification.

Most of these studies rely on correlation-based approaches for calculation
of functional connectivity. However, the correlation-based approach does not
characterize the network structure of different brain regions, i.e. whether two
brain regions belong to the same functional cluster or not [3I]. Moreover,
the network obtained by correlation is quite dense, which may degrade the
performance of a classifier [31], 6]. We also note that these studies highlight the
lack of consensus in using a common brain atlas for specifying brain regions in

fMRI analysis.

2.2. Dimensionality reduction methods

Dimensionality reduction methods such as Independent Component Analysis
(ICA) are commonly used with fMRI data. Garcia et al. [20] proposed an ICA
based functional-anatomical discriminative region model for pattern classification
of ADHD. This approach applied ICA to extract brain functional connectivity
networks. Similarly, Tabas et al. [22] proposed a variant of ICA to characterize
the differences between a healthy control group and an ADHD group. This
study used 20 independent components and combined ICA and a spatial variant

of Fisher's linear discriminant. ICA-based methods are considered a natural
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choice for fMRI studies as these methods do not require any prior information

about the spatial or temporal patterns of source signals.

In another study [32], the authors have proposed a framework for the classification

of Autism and ADHD. The authors have used multiple imaging modalities,

namely MRI and fMRI for classification of disorders. Also, personal characteristic
data such as age, gender has been explored for the classification. In this

work, a histogram of oriented gradients have been calculated from the imaging

modalities and the minimum redundancy maximum relevance (MRMR) is applied
as the feature selection strategy. The selected features are presented to a support

vector machine classifier for the final prediction. Similarly, in another study

[33], the authors have also used multiple imaging modalities (MRI and fMRI)

for the classification of ADHD and Autism. In this study, the structural features

from MRI are extracted through a sparse auto-encoder and principal component

analysis (PCA) is applied to the fMRI data to decompose to extract principal

components. Finally, an SVM classifier is used for final prediction. Both of these

studies rely on multiple imaging modalities and do not incorporate functional

connectivity in their work, which is an important characteristic of fMRI data.

The focus in this proposed work is to utilise a single imaging modality (fMRI)

and exploit functional connectivity for prediction of ADHD. We note that the

proposed method produces comparable results to [32,[33], but using only a single

imaging modality.

ICA-based approaches have shown success in classification tasks, however,
there are limitations to these methods. First, independent components are often
perceived as difficult to understand [I]. ICA is based on the assumption that
components (signal sources) are independent, whether spatially or temporally.
Violation of the assumption degrades performance. Moreover, selection of the
number of independent components and a threshold value for the independent
component maps are considered as a drawback [2], especially in the case of fIMRI,

where there is no prior information of the number of components available.



w 2.3. Graph based methods

A number of graph based approaches have been applied to model brain
networks. Dey et al. [4] proposed a graph-based solution for the classification of
ADHD. They modelled the brain connectivity network as a graph and represented
each node of the network as a set of attributes which was termed as the signature

us  of a node. The correlation was applied for functional network construction
and a threshold was applied to construct the network. The threshold value
was arbitrarily chosen and different values were employed for different imaging
datasets. Similarly, Siqueira et al. [9] investigated different graph-based measures

for the classification of ADHD.

1o 2.4. Clustering based methods

Clustering is another popular approach for the evaluation of functional connectivity,
where regions belonging to the same cluster are assumed to be functionally
connected. Studies have shown that a clustering-based approach is more sophisticated
as compared to correlation-based approaches, as the network obtained by clustering

s is sparse [7) 2]. Recently, a few studies have applied clustering to the ADHD-200
dataset for functional connectivity analysis [8, B]. Zhang et al. [31I] applied
k-means clustering to calculate functional connectivity. However, in k-means,
random initialization of clusters and priori information on the number of clusters
emerges as a major drawback, as these are unknown in the case of fMRI.

10 Hierarchical clustering can also be applied to calculate functional connectivity
[34], however the selection of the thresholding and the number of clusters are
not known in advance in the case of fMRI. Other studies (e.g., [7, [8, B]) have
applied affinity propagation (AP) [35] clustering for the classification of brain
disorders. AP clustering does not require an initial number of clusters, which

s is a good choice for fMRI data. However, AP requires a similarity measure
between data points as the input and output of the algorithm are affected by
this measure. Selection of the distance measure presents a limitation of these

methods.
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2.5. Deep learning based methods

End-to-end deep learning networks have been shown to outperform existing
classical machine learning models in a number of domains like image classification,
image segmentation and object recognition [36]. Generally speaking, an end-to-end
trainable network refers to a single learning system where the predicted label
of a neural network model is predicted directly from the input, with all weights
learned through back-propagation. In the domain of fMRI, there is very limited
work exploring deep learning based functional connectivity for classification of
neurological disorders [13].

Many studies have applied deep learning to MRI data. In [37], the authors
have applied a three-dimensional convolutional neural network for the classification
of Alzheimer’s disease using MRI data. The method used an auto-encoder
for pre-training the CNN filters. The study suggested that a CNN performs
better than other classifiers for prediction of Alzheimer’s disease. In [38], the
authors have applied a CNN for the classification of ADHD using combined
features of MRI and fMRI. Instead of applying a CNN directly on the temporal
data of brain regions, the CNN was applied to the features extracted from the
fMRI data. These features include regional homogeneity (ReHo), the normalized
amplitude of low-frequency fluctuations (FALFF) and voxel-mirrored homotopic
connectivity (VMHC). These features are calculated using conventional hand-crafted
statistical measures and might not able to capture the inherent characteristics
of temporal fMRI signals. Also, functional connectivity is not explored. In [39],
the authors have applied an auto-encoder for the classification of Alzheimer’s
disease. Functional connectivity was calculated through correlation and then
fed to an auto-encoder network followed by a softmax layer for the classification.
The method uses a deep network, however, still relies on correlation for functional
connectivity.

The use of an artificial neural network for classification of ADHD has been
explored in [40]. However, this method relied on a classical machine learning
model for the extraction of multiple features, which are passed to a fully connected

neural network for classification. Similarly, the study in [41] addressed the
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problem of classification of mild cognitive impairment (MCI) from fMRI data.

The authors applied a deep autoencoder for dimensionality reduction of pre-processed

fMRI signals. The representation encoded by the autoencoder was fed into
a hidden Markov model to estimate the likelihood of a subject belonging to
the healthy control group or the MCI group to identify its predicted label.
Recently, a deep learning method, namely FCNet [I3], has been proposed for
the classification of ADHD from fMRI data. The method applies a convolutional
neural network (CNN) to predict functional connectivity of brain regions. However,
after predicting functional connectivity using deep learning, the method applies
classical machine learning methods to extract discriminant features and an SVM
classifier to predict classification labels. These approaches rely on classical
machine learning models for prediction of a disorder. In a non peer reviewed
work [42], a CNN was proposed for classification of Alzheimer’s disease using
fMRI data. The study applied a 2D CNN where the 4D fMRI data was converted
to a stack of 2D images and classification was evaluated on the individual 2D
images. The study does not incorporate the temporal information in the work,
which is the most important aspect of the fMRI time-series data. Being a 2D
CNN model, the prediction results are evaluated for individual images instead
of per subject. For prediction of a subject, the results of individual 2D images
are accumulated. A recent study [43] applied a 3D CNN for classification of
autism spectrum disorder. The fMRI 3D volume was downsampled and the 3D
CNN was applied on the downsampled data. The study does not incorporate
functional connectivity which is an important characteristic in brain studies.
Many of the studies describe above highlight the importance of functional
connectivity towards the classification of a disorder. However, most existing
techniques employ classical machine learning methods for classification, typically
relying solely on hand-crafted features. Discriminant features are selected and
presented to a classifier for the final prediction. More importantly, all the
different processing steps in a classical machine learning method are independent
of each other. However, in the machine learning literature, deep learning has

proved to be a powerful paradigm to simultaneously learn discriminant features
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and a classifier [36].

We propose a deep neural network for diagnosis of ADHD. The network is
learned end-to-end, taking pre-processed fMRI time-series as input and producing
a classification (healthy or ADHD) as output. Our proposed network does not
involve hand-crafted features or independent modules for feature extraction,
feature selection and classification. Rather, all these modules are incorporated
in a single network and the weights are learnt itself by the model during the
training. To the best of our knowledge, this is the first study to propose a
fully end-to-end deep learning method incorporating functional connectivity for
the classification of a neurological disorder based on fMRI. Particularly, we
are interested to explore if a deep network-based model can be designed for the
classification of ADHD, and if it is able to outperform classical machine learning
methods or a combination of deep learning and existing classical machine learning
methods. The strength of deep learning comes from its representation learning
capabilities, where the most discriminative features are learned during training.
A deep network is composed of multiple modules, where each module learns the

representation from one lower level to a higher, more abstract level.

3. Data and preprocessing

The resting state fMRI data used in this study is from the NeuroBureau
ADHD-200 competition [44]. The data provided by the competition consists of
MRI and resting state fMRI data as well as different phenotypic information
(non-imaging data) such as age, gender and 1Q, for each subject. There was a
global competition held for classification of ADHD subjects, and the consortium
has provided the training and independent test dataset for each imaging site.
The dataset was collected and contributed by eight different imaging sites. For
the development and evaluation of our proposed network, we used datasets from
three imaging sites: Neurolmage (NI), New York University Medical Center
(NYU), and Peking University (Peking). Our approach is designed to accept

time-series signals of length 172, therefore, we discarded the imaging sites with
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Table 1: Overview of the dataset used in the study.

Train dataset Test dataset

Healthy controls ADHD | Healthy controls ~ ADHD

NYU 98 118 12 29
NI 23 25 14 11
Peking 61 24 24 27

signal length less than 172. All the imaging sites have a different number of
subjects. Table [I| describes the overview of the data used in this study. The
imaging sites have different lengths of time-series signals. The deep learning
methodology employed in this work requires a fixed length of input signal and
can not accept input with different input lengths. To decide the supported input
length, we selected the imaging site with highest number of subjects. The site
with maximum number of subjects was NYU with 226 subjects and its length
of time-series signals was 172. Therefore, we designed our network to accept
input length of 172. We discarded the imaging sites with length of time-series
smaller than this number. Also, the time-series of length greater than 172 were
truncated at the beginning to make fixed length of input signals suitable for
input to the method.

The scan parameters and the equipment used were varied across different
imaging sites. Some of important parameters used by different imaging sites
are presented in Table 2] Additionally, the imaging sites employ different
data acquisition parameters, for example Neurolmage scanned the data while
subjects were asked to close their eyes, whereas in Peking, subjects were asked
to keep their eyes open or close. The variations in the parameters of scan and
data acquisition increase the complexity and diversity of the data.

For all our experiments, we used the pre-processed data released for the
competition. This data has been pre-processed as part of the connectome project

[45]. The preprocessing is performed using AFNI [46] and FSL [47] tools on

11
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Table 2: Scan parameters per imaging sites.

NYU NI Peking

Slices 33 37 33

TR (ms) 2000 1960 2000
TE (ms) 15 40 30
Thickness (mm) 4.0 3.0 3.5
FoV read (mm) 240 224 200
FoV phase (%) 80 100 100
Flip angle (degree) 90 80 90

Athena computer clusters at the Virginia Tech advanced research computing
centre. The preprocessing steps include: removing of the first four time points,
slice time correction, motion correction (first image taken as the reference),
registration on 4 x4 x4 voxel resolution using the Montreal Neurological Institute
(MNTI) space, filtration (bandpass filter 0.009Hz < f < 0.08Hz) and smoothing
using a 6mm FWHM Gaussian filter. The brain is segmented into 90 regions
using the well established AAL template. Although some other atlases like
Craddoc et al. [24] segment the brain into 351 regions can be used here, they
will yield very high dimensionality of data, so the AAL template is preferred.
A number of studies [7], 8, 8, I3} B0 25] have also employed the AAL template
for brain parcellation. Interested readers may refer to the competition website

for further details on the data and preprocessing [45].

4. Methods

4.1. End-to-end model

In this paper, we propose an end-to-end deep learning model for the classification
of ADHD that takes pre-processed fMRI time-series signals as input and predicts
a label (1 for ADHD subject and 0 for healthy control) as output. The proposed

work is motivated by FCNet [13]. FCNet is used to extract functional connectivity

12
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from fMRI time-series signals, however it combines deep learning and classical
machine learning and is not trained end-to-end. For ease of understanding, our
proposed architecture can be divided into three modules: 1) feature extractor
network, 2) functional connectivity network, and 3) classification network. The
feature extractor network is applied to a pre-processed time-series signal of
individual brain region and it produces an abstracted feature as its output.
These features are learned during the training. The functional connectivity
network takes the abstracted features as input and produces the strength of
similarity between any two brain regions. Finally, the classification network
produces the final prediction label based on the functional connectivity values

of all brain regions. We describe the details of each individual network below.

4.1.1. The feature extractor network

This convolutional neural network (CNN) extracts features from individual
brain region pre-processed time-series signals and is comprised of multiple layers
that are common in CNN models to learn abstract representations of data. The
network is designed to accept signals of length 172 as the input and produces
an abstract representation (vector of size 32). The network hyperparameters
were not tuned using a validation dataset, instead, the network architecture
and hyper-parameters are inspired by [48]. We use parametric ReLU and its
slope is learned during the training phase. The parametric ReLU is presented

as:

foy={ 70 )

ar, <0

where a is a non-negative scalar subject to learning. Instead of three consecutive
convolutional layers proposed in the network of [48], we have two convolutional
layers next to each other (Layer 12 and 13). The network is presented in Figure
and is comprised of 15 layers (Figure ) All convolutional layers are one
dimensional with a kernel size of 3, stride of 1 and the numbers of filters are 32,

64, 96, 64, 64 for the respective layers as presented in Figure[I] All max pooling
layers pool temporally with pool length of 2 with stride 1 as proposed by [48].

13
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a) Feature extractor b) Functional connectivity c) Classification network
network network

Region 2 VJV\,\//\/_
/Region 3 [/\/\/\A/\_

Prediction

AAL brain atlas

Region HW —
Region 9C f/\/\/\/\’\_

<
/
\
\
><

ngm 2
vector

d) Feature extractor network e) Similarity measure ®
network

Figure 1: The DeepFMRI architecture. a) represents a set of 90 feature extractor networks
where each network is applied on each individual region R. All networks share the same
weights. b) represents a functional connectivity network comprising a set of 4005 similarity
measure networks. Each network’s input contains abstracted features of two brain regions. All
networks share the same weights. c) is the classification network comprising of fully connected
layers and a softmax layer. d) represents the layers in the feature extractor network, where
Convolutional (c) represents a convolutional layer with ¢ filters, Pool (p) represents a max
pooling layer with pool length of p and Fully connected (f) represents a fully connected layer
with f nodes. Similarly, e) represents layer architecture of similarity measure network, and f)
represents the layers of an individual block in the classification network (each block has two

layers, as shown above).
The last fully connected layer in the network has 32 nodes. The total number
of weights in the feature extractor network are 90947.

In the proposed work, the same feature extraction steps are applied to
individual brain regions. This is implemented by employing n s feature extractor.
Each feature extractor network is applied to an individual brain region (ny =
90), converting individual time-series data into an abstract representation. All
the feature extractor networks share the same parameters and updates are

applied to these shared parameters during training.
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4.1.2. The functional connectivity network

The functional connectivity network determines the functional connectivity
between the brain regions and is presented in Figure [Ib. The network is
comprised of multiple similarity measure networks where the architecture of each
similarity network is presented in Figure [lp. This Siamese-inspired similarity
measure network determines the similarity between pairs of extracted features
from two brain regions. Here, the calculated similarity measure serves as the
degree of functional connectivity between the two regions. Each similarity
measure network operates on two brain regions, where the input to each network
are the abstracted features of the two brain regions from the feature extractor
network. The neural network learns to identify functionally connected regions
using a non-linear function. This function is learned from the data and is
specific to this problem as compared to other commonly used generic measures
like correlation. The similarity measure network is comprised of three fully
connected layers, where the last layer is connected to a softmax layer with
dense connections. These layers are presented in Figure [lp, where the number
of nodes in these layers are 32, 32, and 2 respectively. The total number of
weights in the network is 3202. The output of the similarity measure network is
a length two vector, and can be interpreted as the probability the two regions
are functionally connected, and the complement of the probability.

In the proposed work, all pairs of brain regions are passed through the same
similarity measure network. This is implemented by employing ns similarity
measure networks. The similarity measure network is applied to all combinations
of pairs of brain regions, so ns = 4005 (nyx(ny—1)/2). There are 4005 similarity
measure networks and all the similarity measure networks are implemented
with the constraint that the networks share the same parameters and updates
are applied to these shared parameters. The approach is similar to a Siamese
network [49)].

The output of the functional connectivity network is fed to a mapping layer

15
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using the following operation:
M (i) = wyv} + wavd, (2)

where v} and v are the scalar outputs of the i** similarity measure network,
wy and wq are the weights such that wy + we = 1. In order to reduce training
parameters, we use w; = 1 and wy = 0. Moreover, the parameters enforce
passing the functional connectivity to the classification network. The output of
this network can be assumed to be the functional connectivity mapping of all the
brain regions, and uses deep learning-based features from the feature extractor
network. Instead of initializing weights of the feature extractor network and the
similarity measure network randomly, we use weights of a pre-trained FCNet
[13].

The architecture of the feature extractor network in the proposed network
is the same as in the feature extractor network in FCNet [I3]. Similarly, the
architecture of the similarity measure network is the same in both in FCNet and
the proposed network. We extracted weights of both of these networks from the
pre-trained FCNet and used them to initialize the weights of the corresponding
networks of the proposed network. During the training of the network, a
small learning rate (107°)is used for the functional connectivity network. The
small learning rate allows smaller updates of weights and its advantages are
two-fold: it encourages maintenance of the original characteristics of the network
(i.e. to extract functional connectivity of brain regions), and at the same time
adapts the network according to the end-to-end classification task. In order
to evaluate whether the original characteristics of the functional connectivity
network are maintained or not, we have compared the weights of the pre-trained
functional connectivity network with the weights of the same network after
final training of the DeepFMRI. The percentage difference in the weights is not
greater than 5% for three sites, showing that the network is maintaining its
original characteristics. FCNet is pre-trained using the training data and its

training does not include any test data.
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4.1.8. Classification network

This neural network produces the final classification results. The input to
this network is the output of the mapping layer features (M) representing the
functional connectivity of brain regions. The network is comprised of four fully
connected layers where the last layer is connected to a softmax classifier with
fully connected layers. The network is presented in Figure[I, where the number
of nodes in the fully connected layers are 100, 50, 50 and 2 respectively. The
total number of weights in the network is 408602. The weights were initialized

randomly.

5. Experimental settings and results

In this section, we evaluate the effectiveness of the proposed method for
ADHD classification employing resting state fMRI and by comparing our results

with those of the state-of-the-art methods in the literature.

5.1. Ezperimental settings

The proposed model is evaluated on the ADHD-200 dataset. This publicly
available dataset was contributed by different imaging sites. Each imaging site
provided separate training and testing datasets and we followed the split in
accordance with the consortium. This also makes it possible to compare to other
methods as they also tested on the independent test data. Doing cross-validation
within the original training/test was not advised due to the smaller dataset. For
the evaluation of our method on individual site, we train our end-to-end model
on the training dataset of each imaging site and test it on the corresponding
test dataset of that individual site. There are four categories of subjects in the
dataset: healthy control, ADHD combined, ADHD hyperactive-impulsive and
ADHD inattentive. Here, we combine all ADHD types in one category as we are
interested to investigate the classification between healthy control and ADHD
only.

The proposed model is created in the python programming language using

the tensorflow deep learning library. The network is trained end-to-end. The
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Adam optimizer [50] is used to optimize the network and the number of epochs
is set to 50. After 50 epochs, the training loss converges and becomes stable.

For the initialization of the feature extractor and similarity measure networks,
we use weights from a pre-trained FCNet [13] in our work, and these weights are
updated through fine-tuning. The full deep network is trained the end-to-end
model with the cross-entropy loss:

n

L= _% > lyilog(iis) + (1 — yi)log(1 — 4)], (3)

where n is the number of training samples, y; is the ground truth label of the
subject (1 for ADHD subject and 0 for healthy control) and g; is the prediction
by the proposed network.

As the feature extraction and similarity measure networks are initialized
with a pre-trained FCNet, we employ different learning rates for i) feature
extraction and similarity measure networks (107°), and ii) the classification
network (10=%). In our experiments, we use the Adam optimizer [50] to optimize

the network.

5.2. Comparison methods

To validate the effectiveness of the proposed method, we compare it with
different network architectures and state-of-the-art methods namely, an end-to-end
network without functional connectivity, FCNet, a clustering method and a

correlation method.

5.2.1. End-to-end model without functional connectivity

A number of studies have shown that functional connectivity plays a key
role in cognitive processes of the brain [I]. Recently, studies have shown that
altered functional connectivity can serve as an important biomarker towards
the identification and classification of different brain disorders [6] [7], [10] [IT] 4]
12], [§]. Inspired by the findings of such studies, we have integrated functional
connectivity network in the proposed method architecture. In order to evaluate

the importance of functional connectivity in our proposed work towards the
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Figure 2: The end-to-end model without the functional connectivity network. a) represents a
set of 90 feature extractor networks where each network is applied to each individual region
R. b) is the classification network.
classification of ADHD, we have evaluated our end-to-end network without the
functional connectivity network. The model without the functional connectivity
network is presented in Figure

In this model, the abstracted features calculated through the feature extraction
network are merged and passed directly to the classification network and there
is no functional connectivity network. Due to the exclusion of the functional
connectivity network, there are fewer overall parameters than in the proposed
model. The weights and parameters of the feature extraction network are the

same as in the proposed network.

5.2.2. FCNet

The FCNet method [13] uses a CNN-based deep learning model to extract
functional connectivity from the pre-processed fMRI signals. An Elastic net
[21] is applied to extract the discriminant features from the calculated functional
connectivity and finally an SVM classifier is applied to evaluate the classification
results. This is the first method that applies a CNN-based deep learning model
for the classification of ADHD.
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5.2.8. Correlation method

Correlation is a popular method for calculating functional connectivity. In
order to compare the proposed method with correlation, we performed correlation
on pre-processed fMRI signals to calculate the functional connectivity between
the brain regions. We applied an Elastic Net based feature selection to extract

discriminant features. Finally, an SVM classifier was applied for classification.

5.2.4. Clustering method

A clustering-based approach for calculating functional connectivity of brain
regions was used in [3]. Clustering is considered a more sophisticated technique
than correlation-based techniques for calculating functional connectivity [§] as
the network obtained by clustering is sparse [7}[2]. In this study, authors applied
Synthetic Minority Over sampling TEchnique (SMOTE) [5I] to address the
problem of dataset imbalance. An Elastic Net [2I] was applied to functional
connectivity to extract discriminant features. Finally an SVM classifier was

utilized to classify healthy vs ADHD subjects.

5.8. Feature importance of functional connectivity

A common criticism of deep networks is that they are a ‘black box’, mapping
inputs to outputs and lacking interpretability. In a clinical context, it is of
keen interest to not just produce diagnoses, but also draw some insights from
network itself, particularly looking for differences between healthy control and
patient groups to characterise the neurological condition. A key advantage of
the proposed method is that due to the functional connectivity network, once
the model is trained, we can analyse the functional connectivity of brain regions
for patients and control, leading to interpretable results. As a demonstration,
we carried out an experiment to rank the contribution of individual functional
connectivity values towards prediction of a particular class label (in our case,
class labels are healthy control and ADHD). This weighted rank can be viewed as

feature importance of functional connectivity and represents the strength of the
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functional connectivity of two brain regions towards calculating the assignment
of a class label.

In our end-to-end network, the final prediction is calculated through the
classification network. The classification network is comprised of multiple layers
where it gets the functional connectivity from the mapping layer as input and
produces the final prediction of the network (i.e. control or ADHD) through a
softmax layer. During the training step, the network optimizes the parameters
with respect to the individual class label. The network back-propagates the error
from the last layer to the mapping layer (reminiscent of functional connectivity
in our network) during the training phase. Thus the learned weights of this
network carry important information towards determining the feature importance

of the functional connectivity for each of the 4005 pairs of brain regions.

Specifically, we are interested to explore the weights assigned by the classification

network to the mapping layer M in Equation Deep neural networks have
been applied to visualize feature importance on images [52] and videos [53]. To
explore the importance of features assigned by the classification network, we
carried work similar to [5]. The main idea of the approach is: given a learned
neural network and a class of interest, we trace back to the original input by
a backward pass with which we can determine how each input entity affects
the final detection score for a specific class. In our model, we have two classes
(healthy control and ADHD) and we trace back to the mapping layer values to
find how each mapping layer value affects the prediction of a particular class.
Given a particular output value of mapping layer My, a class ¢ and the class
score function S.(M), we would like to rank the elements of My based upon
their influence on the score S.(My). Consider the linear score model for the

class c:

S.(M) = w.M +b,, (4)

where M is the one-dimensional vector, calculated from Equation [2| and is

reminiscent of the functional connectivity in our network. The w, is the weight
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and b, is the bias of the model. Here, it is clear that the magnitude of the
elements of the weight vector w, specifies the importance of the corresponding
element of M for the class c.

In the case of a deep neural network, the class score is a non-linear function of
the input values, so the above assumption cannot be applied directly. However,
given a vector My, we can approximate S, with a linear function in the neighbourhood

of My by a first-order Taylor expansion [52]:
Se(M) = wM +b. (5)

where w is the derivative of S, with respect to the vector M at the point
My:
w= 0%, (©
Another justification of the network-learned weight using the class score derivative
from Equation[f]is that the magnitude of the derivative indicates which elements
need to be changed the least to affect the class score the most. One can expect
such elements to be more discriminative for a particular class. The derivative
w in Equation [f] is calculated through back-propagation during the training of

the network. We define feature importance of a node i at layer d as:

d
THOESD DI s A (O] (7)
I=L—1 k
where L is the total number of layers in our classification network, k is the

number of nodes and fF is the output of the classification network. We define

I as the feature importance map for the class ¢, where each element is given by:
I(z) = [ (x). (8)
The I, defines the feature importance of a particular class c.

5.4. Results

We evaluate the proposed network with the data from three imaging sites

(NYU, NI and Peking) from the ADHD-200 dataset. The number of training
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Table 3: Results from the proposed end-to-end network showing classification accuracy,

specificity and sensitivity for individual imaging sites.

Classification
Specificity Sensitivity
accuracy
NYU 73.1% 91.6% 65.5%
NI 67.9% 71.4% 63.6%
Peking 62.7% 79.1% 48.1%

subjects in each site is 226, 48 and 85 respectively. ADHD-200 [44] has provided
separate train and test dataset for individual imaging site. To evaluate the
performance of the proposed work on the individual imaging site, the proposed
end-to-end model is trained on the training dataset of each imaging site and
the corresponding test dataset of the individual site is used for testing. Please
note, the data used to test the method is completely independent of the data
used to train. Let TP, TN, F'P and F'N denote true positive, true negative, false
positive and false negative respectively. Sensitivity and specificity are defined as
sensitivity = TP/(TP+ FN) and specificity = TN/(T N+ FP). The calculated
results are presented in Table The highest accuracy is achieved with our
method for NYU with a classification accuracy of 73.1%. The classification
accuracy for the NI and Peking are 67.9% and 62.7%. One concern could be that
the number of subjects is very small to train a deep neural network. However,
the performance of the proposed method on independent test datasets shows
that the model is able to achieve generalization despite the small dataset. Recent
literature [54, [5] has argued that deep neural networks ar effective to generalize

well on small datasets.

5.4.1. Comparison with other methods
In order to evaluate the performance of the proposed method, we have
evaluated and compared results with state-of-the-art methods as described in

the previous section. The results are presented in Table [d] They show that the

23



565

570

575

580

585

590

proposed method outperforms the average accuracy results of the competition
teams (data from the competition website [44]), the highest accuracy of competition
for any individual site (from [20]), correlation-based functional connectivity
results and clustering based results. Our method also performs well in comparison
with the state-of-the-art FCNet method [I3]. Table[I]highlights that the distribution
of healthy control and ADHD class in train and test splits are different. However,
in order to achieve better performance by any classifier, the training and testing
data should follow a similar class-distribution. The performance of any classifier
depends on the distribution of the training data. If the majority class is changed
for the testing data, the classifier performance would drop badly. For the
calculation of the baseline classifier accuracy, it can be assumed that a simple
classifier would predict the majority class of the training dataset for all testing
subjects. In the case of Peking, the majority class in the training dataset is
healthy control, so the baseline accuracy for Peking on testing dataset is 47.1%
(24/(24 + 27)). Similarly for NYU, with ADHD as majority class in training
data set, is 70.7% (29/(29 + 12)), and for NI, with ADHD as majority class
in training dataset, is 44.0% (11/(11 + 14)). The baseline accuracy for three
imaging sites are presented in Table [4] where the DeepFMRI performs much
better than baseline accuracy for the Peking and NYU and slightly better for
the NYU.

The results show that the proposed method shows the improved results for
NI and NYU and the classification accuracy is highest in all three imaging sites.
For Peking, results for both the FCNet [I3] and proposed method are the same.

One interesting point about the ADHD dataset is that the studies employing
the dataset were not able to achieve high classification accuracy. The average
and highest accuracy achieved by competing studies is presented in Table [4]
where the accuracy results are around 50%. Omne possible reason for lower
accuracy could be the heterogeneous nature of the data and the scan parameters.
For example, for NI imaging site data acquisition, the subjects were asked
to keep their eyes closed. No visual stimulus was presented during the scan.

For NYU, the participants were asked to close their eyes, think of nothing
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Table 4: Comparison of the proposed method with the baseline accuracy, average results
of competition teams, highest accuracy achieved for individual site, correlation method,
clustering based results [3] and state-of-the-art FCNet method [I3]. The highest accuracy
for NI was not quoted by [20].

NI Peking NYU

Baseline accuracy 44.0% 47.1% 70.7%
Average accuracy [44] 56.9% 51.0% 35.1%
Highest accuracy [20] - 58% 56%

Clustering method 3] 44% 58.8% 24.3%
Correlation method 52.0% 52.9% 56.1%
FCNet [13] 60.0% 62.7%  58.5%
Proposed method 67.9% 62.7% 73.1%

systematically and not fall asleep. However, a black screen was presented to
them. In Peking, the participants were asked to stay still, and either keep their
eyes open or closed. A black screen with a white fixation cross was displayed
during the scan. Some other parameters were also not consistent across different
sites, making the dataset difficult to train any single machine learning model. In
order to evaluate the performance of the single model on all three imaging sites,
we performed an experiment where the DeepFMRI method was trained on the
combined training dataset from all three imaging sites and was evaluated on the
test dataset of each individual imaging site. The results are presented in Table
The results show that a single model is not able to perform as well, since the
data is very heterogeneous, as discussed above. The number of subjects in the
NYU dataset are higher, which may account for the better accuracy for NYU,
whereas the training data for Peking is very imbalanced, possibly causing lower

accuracy for this site.
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Table 5: Comparison of accuracies of i) trained and tested on each individual imaging site ii)
trained once on the combined training data set of three imaging sites (NI, Peking and NYU)

and tested individually on the three imaging sites.

Accuracy when Accuracy when trained
Test data set trained on each on the combined training

individual imaging site data set

NYU 73.1% 65.8%
NI 67.9% 60.0%
Peking 62.7% 43.1%

5.5. Performance comparison

Based on the results in Tables |3| and |4, the proposed end-to-end method
comprising the feature extractor, functional connectivity and the classification
network to classify ADHD presents better performance than state-of-the-art
methods. Although it would be helpful to conduct a statistical significance test,
unfortunately, we could not conduct such a test due to very small number of
available subjects in the imaging sites. However, from a methodological point of
view, we are mainly interested in investigating how important each subnetwork
is to produce accurate results. To this end, we additionally performed some

experiments by replacing different combinations of the networks.

5.5.1. Comparison Methods

For comparison, we conducted additional experiments, namely, the effect of

functional connectivity, end-to-end model without classification network, clustering

+ classification network and correlation + classification network which are

detailed below and the results are presented in Figure [

Effect of functional connectivity
We evaluated an end-to-end model without the functional connectivity network
(presented in Figure [2)). The comparison of the performance of the end-to-end

model with and without functional connectivity is presented in Figure [3]
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Figure 3: Comparison of the performance of i) Proposed method and ii) the model without
the functional connectivity network for the three imaging sites. The proposed model shows

better performance as compared to the model without functional connectivity.
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It is important to note that for the end-to-end model without functional
connectivity, the number of parameters are less as compared to the end-to-end
model with the functional connectivity network. The number of trainable
parameters for end-to-end model with functional connectivity is 502,751 vs
386,665 for end-to-end model without functional connectivity. However, the
end-to-end model with functional connectivity yields better performance than
the model without functional connectivity. These findings show that functional

connectivity serves as an important biomarker towards classification of ADHD.

End-to-end model without classification network

In this experiment, we are interested to determine the importance of the
classification network towards diagnosis. Therefore, we use the pre-trained
feature extractor and functional connectivity network to calculate functional
connectivity. The proposed classification network was not used in this experiment.
An Elastic Net was applied to extract discriminant features from functional
connectivity and finally, an SVM classifier was applied to evaluate the classification

accuracy as proposed by [13].

Clustering + classification network

We wanted also to check the importance of the functional connectivity
network in our method. In this experiment, we apply clustering to calculate
functional connectivity between the brain regions as proposed by [3, [8]. The
calculated functional connectivity is passed to the proposed classification network

to evaluate the performance of the network.

Correlation + classification network

Correlation is a popular method to calculate functional connectivity between
brain regions. We employ correlation to calculate functional connectivity. Similar
to the previous experiment, a classification network was employed on the calculated

functional connectivity.
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Figure 4: Comparisons of classification accuracy of different methods. The results suggest
that the proposed method outperforms all other evaluated methods. The proposed method
is able to achieve the highest accuracy on all three imaging sites where it outperforms in NI

and NYU imaging dataset.

5.5.2. Comparison Results

We performed the comparison of these four methods and the results are
presented in Figure 4] From the results, it is apparent that the proposed
method outperforms all other evaluated methods or combinations. Comparison
of ‘clustering + classification network’ and ‘correlation + classification network’
supports the findings of [3] that clustering is a better method to calculate
functional connectivity as compared to correlation-based techniques. However,

our proposed end-to-end model yields better performance.

6. Discussion

In this section, we discuss the performance comparison of networks of our

proposed method and analyse the features learned by the method.
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Figure 5: Visualization of the feature importance map (I) for the healthy and the ADHD
classes for the NYU dataset. The visualization shows that a different feature importance is

assigned to a particular functional connectivity. The boxes highlight some of the differences.

6.1. Analysis of learned feature importance of functional connectivity

The feature importance map (I.) from Equation [§ is a 4005 dimensional
vector where each value corresponds to the importance of the respective functional
connectivity value in determining a particular class. We were interested to
explore the learnt feature importance values. Towards this goal, we have selected
feature importance values for NYU dataset as, i) NYU has the largest number of
subjects compared to other imaging sites, and ii) NYU has highest classification
accuracy. We have visualized the feature importance map for both the healthy

and the ADHD classes for the NYU dataset and present the result in Figure

675 It should be noted that these are the feature importance values assigned by

680

the network to the individual features (functional connectivity) for a particular
class, and it is not the functional connectivity value itself. The figure highlights
the differences in feature importance learned by our method for both classes.
Our method assigns different weights to an individual feature with respect to
its importance towards prediction of a subject. This is in contrast to the most
classical machine learning methods [8, [3], which typically employ a feature
selection that assigns a single weight to a functional connectivity regardless

of the class.
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Next, in order to study the differences in the two classes, we have plotted
the feature importance map for both classes in Figure[f] For the sake of clarity,
we have plotted the top 100 feature maps for both classes. The figure highlights
the differences in the feature maps of both classes.

To explore further, we have plotted the feature importance values on the
brain map. The visualization of the healthy and the ADHD classes are visualized
in Figure [7] and Figure [8| respectively. The figures show that in most of the
cases, the importance value assigned by our network to a particular functional
connectivity is different for both classes. We performed an experiment for the
quantitative analysis of the feature maps of both classes. Our motivation was
to compare the top 100 feature maps of both classes. The top 100 feature maps
values were extracted from the healthy class and a lookup was performed in the
ADHD feature maps. The result is presented in Figure[9] The figure shows that
out of top 100 feature maps of healthy class, less than 10% fall in the top 500
feature maps in the ADHD class. Similarly, we extracted top 100 feature maps
from the ADHD class and computed the lookup in the healthy class and the
results are presented in Figure [I0] As in the previous inference, out of the top
100 feature maps of the ADHD class, less than 10% fall in the top 500 feature
maps in the healthy class. Our findings suggest that the altered functional
connectivity between healthy control and ADHD may relate to functional brain
network differences. In particular, the proposed method appears to weight
different brain network structures depending on the particular class (control
or ADHD).

Finally, we are interested in analyzing the learned feature importance map
for both classes with respect to the inter-lobe and intra-lobe distribution. We
have categorized the learned feature importance map with respect to their
respective lobes and the results are visualized in Figure The results suggest
that for both classes, the frontal lobe carries a higher number of discriminant
features in terms of both inter and intra-lobe features. The figure shows a
different distribution for all of the lobes in both classes. The distribution is

highlighted by the different shape of an individual lobe when comparing the two
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classes. The frontal lobe is known to be involved with cognitive functioning [55].
This includes attention, the executive function that includes planning, selection,
sequential organization and self-monitoring of actions, affect and mood, memory,
self-awareness and personality [55]. The alterations in frontal lobe might cause
abnormal behaviours in these functions including attention and mood. Studies
have shown connectivity alterations in frontal, temporal, and occipital cortices
locally as well as with the rest of the brain in individuals with ADHD [56]. Our
findings about the frontal lobe alterations in ADHD support the results found
in earlier studies [57, 68, [59].
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Figure 6: Visualization of the learned feature importance map for a) healthy and, b) ADHD
classes for the NYU dataset. For the sake of clarity, only top 100 values for an individual class

are visualized. The visualization shows the differences in the feature maps of both classes.

7. Conclusions

In this paper, we have proposed an innovative end-to-end deep neural network
for classification of ADHD from fMRI data. The proposed model takes pre-processed
time-series signals of fMRI as input and learns to predict the classification label.

We were interested to see if the classification task in fMRI can be solved by an
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Figure 7: Visualization of the learned feature importance map for the healthy class on the
brain volume. For the sake of clarity, only top 50 values are visualized. (Data visualized

through the BrainNet viewer software [60]).

L

Figure 8: Visualization of the learned feature importance map for the ADHD class on the
brain volume. For the sake of clarity, only top 50 values are visualized. Visualization through

the BrainNet viewer software [60].
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Figure 9: Plot of matching the top 100 healthy feature maps in the ADHD feature maps. The
y-axis represents the top 100 feature maps in the healthy group and the x-axis represents the
index of a particular healthy feature map in the ADHD feature map. The figure shows that
out of top 100 feature maps of healthy class, less than 10% fall in top 500 feature maps in the
ADHD class.

end-to-end network. As far as we know, this is the first attempt to apply an
end-to-end network incorporating functional connectivity for classification of a
neurological disorder.

We have evaluated the importance of functional connectivity in the proposed
end-to-end network. Findings show that despite the large number of parameters
in our method, it performs better as compared to an end-to-end network without
functional connectivity with comparatively less number of trainable parameters.
This result strengthens the argument that functional connectivity is an important
biomarker towards the identification of a neurological disorder. Experimental
results on the ADHD-200 dataset demonstrate that utilizing such a model

outperforms the current state-of-the-art.
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Figure 10: Plot of matching the top 100 ADHD feature maps in the healthy feature maps.
The y-axis represents the top 100 feature maps in the ADHD group and the x-axis represents
the index of a particular ADHD feature map in the healthy feature map. The figure shows
that out of top 100 feature maps of the ADHD class, less than 10% fall in top 500 feature
maps in the healthy class.
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Figure 11: Distribution of the top 100 features maps in the healthy and the ADHD classes.

35



745

750

755

760

765

770

Our proposed method is able to associate different weights to an individual
functional connectivity with respect to its importance in predicting a class label
(healthy control and ADHD). The proposed method appears to assign weight
to different brain networks with respect to a particular class.

Our results suggest that the frontal lobe carries most discriminant power in
classifying ADHD. The frontal lobe is known to be associated with cognitive
functions like attention, memory, planning and mood. Our findings of the
frontal lobe anomalies in ADHD concur with earlier studies results. One of
the limitations of the proposed work is the small data size being evaluated.
There is a smaller number of subjects in the individual imaging sites. Also, the
data is very heterogeneous across different sites requiring training the network
separately for each institution. The distribution of classes (healthy control
and ADHD) in training and testing splits in the imaging sites is different,
which makes the dataset very challenging for any classifier to achieve decent
results. Due to these facts, the classification accuracy achieved by studies on
this dataset is low and has room for improvement. We have compared results of
the DeepFMRI and existing studies with a baseline classifier that simply chooses
the majority class based on the testing data distribution. In the case of NYU,
the baseline classifier accuracy is high (70.7%) and accuracy achieved by other
studies are comparatively lower. However, the DeepFMRI method was able to
achieve a slightly higher accuracy than the baseline, and was able to achieve
much better accuracy than the baseline for the Peking and NI dataset.

In future work, we are interested to apply the proposed network to study
ADHD sub-groups. The study might be based on treatment response, clinical
scores, disorder outcomes etc. However, it will not require redesigning the
proposed network. If the output variable is discrete, a classifier can be used
as presented in this paper. If the output variable is continuous, instead a
regressor can be used. We are curious to evaluate the proposed method on
other disorders like epilepsy and Alzheimer’s with a large number of subjects.
We are also interested to explore whether the proposed method can be used

to overcome variations in different imaging sites. One interesting experiment
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could be to re-train the feature extractor network separately for each imaging

site, keeping the parameters of the classification network and similarity measure

network fixed. By this way possibly the proposed network could be adopted to

different imaging sites.
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