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a b s t r a c t

3D shapemodeling is a crucial component of rapid prototyping systems that customize shapes of implants
and prosthetic devices to a patient’s anatomy. In this paper, we present a solution to the problem of
customized 3D shape modeling using a statistical shape analysis framework. We design a novel method
to learn the relationship between two classes of shapes, which are related by certain operations or
transformation. The two associated shape classes are represented in a lower dimensional manifold, and
the reduced set of parameters obtained in this subspace is utilized in an estimation, which is exemplified
by a multivariate regression in this paper. We demonstrate our method with a felicitous application to
the estimation of customized hearing aid devices.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

3D shape modeling and estimation is a crucial task in custom
design of anatomical shapes. A sample shape estimation problem
in rapid prototyping of hearing aid devices is depicted in Fig. 1.
For a comfortable fit, it is important that the shape of the
hearing aid matches the patient’s ear geometry. The two classes
of shapes, here patients’ 3D raw ear impressions and the output
hearing aid shapes, are normally related by certain operations or
a transformation F . Current practice involves mainly a manual
design even with a recent transfer of this process to a CAD
environment. The goal of this work is to automate the process
of hearing aid shell design and similar other prosthetic part
design for increasing patient comfort, efficiency, repeatability, and
throughput in customized rapid prototyping systems.

1.1. Related work

Our approach to solving this problem is to resort to an arsenal
of shape learning tools from the celebrated statistical shape
theory [1–4]. The classical Bookstein shape representation entails
removing the translation, rotation, and scale, and what remains
constitute the interesting geometric properties of a shape. After
such a pre-alignment of shapes to a common coordinate space, the
structure of the shape’s variability can be investigated for instance
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through a covariance analysis, and the principal components (PCs)
can be computed to obtain the modes of variation around a mean
prototypical shape.

One of the first applications of PC analysis (PCA) to images
was presented by Turk and Pentland [5] to model faces in a
reduced PC space for face recognition. In [6], a statistical shape
model was built for the human ear canal (as point clouds), where
the correspondences were obtained by warping a template on to
shapes, which are annotated with 18 landmarks by a specialist.
In [7] a smoother dense mesh was obtained by a Markov field
regularization of the correspondence field. In these works, the
ear canal model is used for analysis of gender differences in
its shape, and for its deformation by mandibular movement [8].
Manual marking of landmarks is not suitable for rapid prototyping
systems, moreover, finding stable feature points in all shapes is
difficult due to individual variations. The correspondence problem
was alleviated in a Eulerian shape representation via signed
distance functions (SDFs) in [9] that used PCA, which we also
follow in this work. It is known that the SDFs do not form a
vector space, and the PCA will not necessarily result in SDFs in
the 3D embedding space. However, the 3D shape surfaces are
on a 2D manifold, and only the zero level sets of their SDFs
contain the desired shape information, hence analysis such as
PCA will still be valid as evidenced by prior art [9]. A shape
prior was built to guide the segmentation of objects in images
in [9], which is different from our problem. Variations on PCA
such as kernel PCA [10,11] and principal factor analysis [12] were
employed for statistical shape analysis, although PCA is preferred
in our work for its optimality in dimensionality reduction. In a
recent work [13], regression techniques are utilized to investigate
degrees of correlation and dependence variation between shapes
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Fig. 1. Exemplified shape estimation problem.

of different structures within the brain. Our method is different
in mathematical details and includes deformation of predicted
shapes via predicted difference shapes and fitted planes, with
a focus on shape generation for prosthetic devices. In [14],
Frèchet expectation was used to generalize univariate regression
to manifold-valued data to study the effect of aging on brain shape
in patient populations.

Another related body of work exists in computer graphics. For
instance, in SCAPE [15], given a sparse representation such as a
partial view over a human body, a method to obtain a complete
mesh model of the body is presented. In addition, given marker
motion capture data, a full 3D animation of a moving person
is produced. Separate models of body deformation for pose and
body shape changes in humans are learned in a reduced PC space.
Similarly, in Allen et al.’s work [16], a dense mesh is fitted to a
sparse marker data for various applications such as creating hole-
free surfaces, and synthesizing new human body shapes using PC
modes. The latter application is quite interesting as human features
such as height, and weight of an individual are correlated with
its principal components, and this relation is used to generate
a new individual with prescribed features, e.g. a given height
and weight. The idea resembles our work, however, rather than
directly relating features, which are not readily available, to its
shape representation, we directly relate the two corresponding
anatomical shapes of an individual, which are tied to each other
through a hearing aid designing process.

Our work is also similar in spirit to the image analogy prob-
lem [17], where a new painting D is produced by the input
photograph C, by copying matching patches from a prior paint-
ing/photo pair A/B. The explicit relation between the pairs is not
learned however, which is our aim in this work.

1.2. Our contribution

Our main contribution is the development of an automatic
shape transformation method to be used in various applications
like customized design of anatomical parts. We first introduce our
shape estimationmethodology following a felicitous application to
hearing aid design, in which a coupled pair of shapes are involved
as shown in Fig. 2. The shapes in the first class are the surface
models of the raw ear impressions of patients, and the shapes
in the second class are the related processed canal model into
which the hearing aid components will be placed. The raw shapes
are characterized by the ear canal (long and thin structure on
the top) and the external ear parts (round bowl-like structure in
the bottom, called concha) [18], and the processed shapes, which
we call the target shapes, are characterized by mainly the canal
geometry of the raw shapes.

As can be seen, these two shape classes are related to each
other by certain operations, and the problem at hand is, without
knowing the transformation between them and presented with
an example set of shapes from the two classes, to be able to
learn the relation between these two shape spaces explicitly. Our
motivation is also tied to not having to resort to feature extraction,
which often is more prone to errors with variations in the shape
geometry. For instance, problems with aperture feature detection
in ear impressions, were discussed in a feature-based alignment of
ear canal models work of Zouhar et al. [19].

We note that the approach by Kilian et al. [20], who utilized
Riemannian metrics for both a rigid and an isometric deformation
among shapes, would be an alternatively applicable approach for
our problem. The geodesic paths in shape space with the devised
metrics were computed to morph an initial or boundary value
shape into a set of shapes that sample the continuous path in
between the shapes. This would be quite useful if we already
partitioned the given shape space into a set of prototypes, obtained
from a principled and sufficiently narrow categorization of the
shapes into meaningful clusters. One could use the computed
geodesic path between a prototype source and target shape and
then transfer the same deformation over the given shape to obtain
the output shape.

Here, first, a transformation is learned to generate a target shape
given a new shape from the first class.We investigate the structure
of the shape’s variability, through a covariance analysis, and the PCs
are computed to obtain the modes of variation around the mean
shape (Fig. 3).Wenote that SDF shape representation is used in this
work, and PCA is performed on the SDFs. One advantage of looking
at PCs is that they can be geometrically interpreted in terms of
shape characteristics [21]. For the raw shapes, the first three PCs
account for 64.4% of the shape variability (the 4th PC accounting for
72.8%), respectively, and primarily involve enlargement towards
external parts and canal expansion, widening and straightening vs.
shrinkage and bending in general. For the target/processed shape
class, the first three PCs account for 83.4% shape variability (the 4th
PC accounting for 86.8%), and measure similar effects. The 4th PCs
measure an anisotropic scale (thinning at the center of the shape
vs. a widening). A typical discrete shape representation has on the
order of 103 dimensions (e.g. a surface mesh with ∼5000 vertices,
or an SDF grid with 106 voxels), and from such analysis, one can
see that the two shape classes, say R, and T , can be represented
by their first several PCs, and this suggests a projection on to a low
dimensional space spanned by these few PCs, say Rp, and Tp.

The idea here is that the higher order PCs usually account for
local, smaller and nonlinear variations that can introduce noise
into a global estimation, hence performing a shape estimation over
a reduced dimensional manifold effectively filters out noise and
Fig. 2. Each shape from the target class (gray) on the second roware related to the reference shapes (dark blue) on the first rowby a certain transformation. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The first four principal components (PCs) and their variations around the mean (mean = 0 variation) for both the reference and target shape spaces.
outlier effects and generates an efficiently well-transformed shape
as close as possible to the expected output shape geometry. This
is as opposed to a higher sensitivity of feature-based methods to
noise and variations in shapes, for instance as in extracting features
to devise rules for a rule-based shape design.

We can also view this analysis as the two related shape spaces
modeled byGaussian shape probability densities hencewith only a
mean prototypical shape together with its principal modes, i.e. the
shape variations. Then a joint probability density could be written
as:

P(R, T )

=
exp


−

1
2 (R − mR)

T6−1
R (R − mR) −

1
2 (T − mT )

T6−1
T (T − mT )


√
2π |6R|

√
2π |6T |

(1)

wherem are prototypical mean shapes for each class. If we further
model the two shapes separately by their respective Gaussian
probability densities, thenwhat remains is two linear shape spaces
independently represented, which is an underlying assumption of
this work. A likelihood probability for the target shape class can be
written in this case simply as:

P(T |R) =
exp


−

1
2 (T − mT )

T6−1
T (T − mT )


√
2π |6T |

. (2)

Our main observation was that through the likelihood function,
the main descriptor that characterizes each shape space, i.e. the
covariance matrices, can be tied to each other (6T = F Σ6R) as
we are interested in estimating a simple transformation F to ex-
plain the relationship between the two shape classes: F ◦ Rp
= Tp. An intuitive approach here is to carry out a multivariate
regression analysis between the PCs to obtain a linear transfor-
mation between the two low dimensional shape spaces. Thus, the
relationship between the two approximated shape spaces is incor-
porated into themultivariate regression formulation to introduce a
coupling effect and to suppress most of the higher order variations
and nonlinear effects. The estimated transformation matrix along
with an auxiliary class of difference shapes introducedwill provide
a proof of concept for a desired shape estimation framework, and
achieve a good performance.

Modeling of the relationship between two classes of shapes
on a linear manifold will be described in Section 2 exemplified
by the Hearing Aid Application. As a preprocessing we design a
biased registration for shapes that significantly differ in geometry,
as described in Section 2.2 followed by the shape estimation details
in Sections 2.3–2.5. The results are presented in Section 3 followed
by conclusions and discussions in Section 4.

2. Shape estimation for hearing aid shell rapid prototyping

In this section, we explain the details of our general shape esti-
mation methodology, exemplified on a particular rapid prototyp-
ing application, which is automatic estimation of the hearing aid
shells from individual patient ear impression surfaces.

2.1. Data description

The design process starts with a roughmold of the patient’s ear,
the so-called undetailed shell (shape), that is then detailed by a
specialist [22]. The detailing process includes cutting unused parts
based on the desired shell style and the geometry of the patient’s
mold (Fig. 4), rounding edges and other operations needed to fit
the electronics in the shell. This is a time-consuming process that
is based on the skills and experience of the specialist. Alternatively,
the specialist can carry out the detailing on digitized ear shells
using CAD software systems, which are still not fully automatic.
The initial motivation of ourworkwas to remove this bottleneck in
rapid prototyping systems for hearing aid devices, however, these
ideas can be applied to similar shape estimation problems.

In our learning approach, digitized undetailed ear molds and
their corresponding manually detailed molds, the latter of which
are used in training and validation and referred to as the ‘‘Ground
Truth’’ (GT) shapes, are acquired from a specialist. First, a 3D point
cloud is obtained, which is triangulated to build a polygonal mesh
surface. This can be carried out by classic surface reconstruction
techniques such as [23,24]. We utilized in-house techniques
for hole filling and smoothing of the triangulated meshes [25,
26]. At the end of the removal of artifacts from scanning, and
geometric processing, the triangulated mesh is free of holes
and smooth, hence is ready for conversion to a voxelized SDF
shape representation next. The mesh is first placed over a fixed
volumetric grid (e.g. a voxel grid of 1003 in this work), so that
inside and outside of the shape can be marked over the grid at
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Fig. 4. Ear impression: a typical raw (undetailed) shape (blue); target (detailed)
shape with cutting planes (red). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

each voxel. After placement over to the volumetric grid, the voxels
over the shape surface are marked as zero, and distances from
each voxel coordinate to the surface are computed utilizing fast
marching [27]. To construct the SDF, finally, positive distances are
used outside the shape and negative distances are used inside the
shape.

2.2. Biased shape registration

For the method presented here, there are two shape alignment
problems: (i) all the reference, i.e. undetailed, shapes in the
data population should be aligned. This is needed to factor out
rigid pose variations in a shape population to prevent their
influence in the PC analysis. (ii) The undetailed shapes must be
aligned with the corresponding target detailed shapes in order
to compute an auxiliary difference shape, which will be used in
further refinement of the shape estimated directly from the shape
regression step.

Iterative closest point-ICP algorithms are widely used for
automatic global rigid alignment [28]. Based on a variant of ICP,
the rigid alignment of all the undetailed shapes were carried out
by the method presented in [19] before they were converted to
a voxelized signed distance transform representation. As a rigid
transformation model, 3D rotation and 3D translation parameters
were used, and each undetailed shape in the training set was first
registered to an arbitrarily chosen undetailed shape in the set. After
the first step, an average template shape was computed, and all
the shapes were registered to the average shape. The groupwise
registration of all undetailed shapes clearly will not perfectly align
all of the undetailed ear impressions. However, as pointed by
Leventon et al. [9], an SDF representation provides tolerance to
slight misalignment of shape pose because even if there is slight
misalignment between voxels of two shapes, their distance map
values will still be highly correlated.

For the second alignment problem, we utilized a a variational
approach, where, a rigid registration is typically based on a sum of
squared distances cost between the two shapes, Φu and Φd:

E(g) =

∫
Ω

Xα(Φu(X), Φd(g(X)))[Φu(X) − Φd(g(X))]2dX . (3)

Here, g is a rigid transformation g(X) = RX + T ,X ∈ R3, with
parameters gi of 3D rotation matrix R, and 3D translation T . Φu

and Φd are the undetailed and detailed shell SDFs defined over the
domain Ω . Here,

Xα =


0, min(|Φu

|, |Φd
|) > α

1, min(|Φu
|, |Φd

|) < α
(4)

is a characteristic function to take into account in the energy
domain those points that are in a band around each shape, where
the band radius α needs to be fixed according to the expected
maximum distance between two shapes [29].
Applying the rigid registration with min indicator function
(Eqs. (3)–(4)) to our problem leads to failure in most cases as seen
in Fig. 5 (b), (e) and (h), even with ‘‘good’’ heuristic α parameter
values. The reason is that the detailed shape Φd is significantly
smaller than the undetailed shape, and parts of Φu that do not
exist in the detailed shell still influence the registration. In order
to avoid this problem, we use a ‘‘biased’’ energy in a similar
variational formulation. We propose a modified indicator function
with a distance restricted to a band around both Φd and Φu, but
constrained mainly by the smaller of the two shapes:

Xβ(Φu, Φd) =


0, max(|Φu

|, |Φd
|) > β

1, max(|Φu
|, |Φd

|) < β.
(5)

Deriving the energy functional with themax indicator function, we
obtain the corresponding biased rigid registration equation:
∂gi
∂t

=

∫
Ω

Xβ


Φu(X), Φd(g(X))

 
Φu(X) − Φd(g(X))


×


∇Φd(gX),

∂g(X)

∂gi


dX (6)

where t is an iteration parameter to update the registration
parameters gi, and ⟨·, ·⟩ indicates the inner product operation
in R3. Fig. 5 depicts results in ear shell registration, where the
biased alignment was successful in (c), (f), and (i). We note that
our biased registration idea resembles another variant of ICP-
based registration for point cloud alignment by [30]. In that work,
corresponding point pairs were rejected based on a maximum
distance threshold between the points. Our biased registration
incorporates the same idea into an energy between shapes
represented by SDFs, and achieves the same desired constraint in
a different setting.

2.3. Shape regression

After alignment of the shapes, i.e. their SDFs, a covariance anal-
ysis is carried out over ΣR and ΣT separately, and the PCs are
computed respectively. The shapes are projected onto a lower
dimensional linear manifold via projection matrices PR and PT

formed with a handful of PCs. For instance, the number of modes
needed to explain 97% of the variability in the data resulted in a di-
mension k = 19, which is the number of PCs retained. On this re-
duced space, an explicit mapping between the undetailed and the
detailed shape spaces is sought.WithN undetailed training shapes,
each was represented by its weights, Rp = wu

= PR(R − mR),
with R = Φu. Then the N × kweight matrixW u is formed whose
ith row is the vectorwu

i representing the ith undetailed shape. Sim-
ilarly, W d represents the weight matrix for the projected detailed
shapes Tp’s. We would like to find a model that best describes the
relation between the two shape classes in this highly reduced di-
mensional space, i.e., a mapping F between the two shape repre-
sentations as:

F ◦ W u
= W d . (7)

The nature of the mapping depends on the complexity of the
transformation sought. As expected, not all PC combinations will
provide linear relations. Nonlinear local variations between the
shapes show up for higher order PCs, which are the eigen shapes
whose eigen values are smaller than the largest k eigen values.
Although one could opt for sophisticated mappings between the
two shape spaces, a linear relationship between the reduced
representation of the two classes of shapes is chosen in order
to mitigate the uncertainties in the higher order local relations.
As such, a lower dimensional space discards the higher order
and nonlinear variations of the shapes, and facilitates a linear
relationship. In order to find a general multivariate regression
between all the modes, we construct a linear least squares
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Fig. 5. Registration of detailed ear impressions to undetailed: (a, d, g) shapes before registration; (b, e, h) shape (red) after original registration; (c, f, i) shape (red) after
biased registration by Eq. (6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
b

ca

d

Fig. 6. Two sample Aux shapes Ai ’s superimposed over the undetailed shapes in (b) and (d) obtained from the absolute difference of the pair of shapes: undetailed (dark
blue) and the detailed GT (gray) rendered together in (a) and (c), respectively. The difference of the SDF values, is represented as a color map, where the lowest value, 0, is
depicted by red color and increases towards blue. Colormap voxel distance values are converted to physical units via distance∗0.45mm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
optimization problem:

W uF d
= W d (8)

where F d is a transformation matrix that ‘‘encodes the detailing
process’’: it transforms the undetailed shape class into the detailed
shape class. The solution to this regression problem is simply given
by:

F d
= (W uTW u)−1W uTW d (9)

where W u, is of size N × k, where N > k. Therefore, it is an
overdetermined system, and the inverse of W uTW u exists. It was
inverted by a singular value decomposition (SVD) [31] to obtain F d .

2.4. Auxiliary shape regression

For a customized design, the resulting detailed shell should
conform exactly to the input patient data. A solution is to recover
the ear canal geometry from the undetailed shell in between
regions defined by the cutting planes, or practically the ‘‘cuts’’,
performed by the specialist. For this purpose, we build a statistical
model for a class of auxiliary shapes (Aux Shapes), to help deform
the estimated model towards the patient ear canal anatomy as
depicted in Fig. 6. The Aux field Ai are formed as the difference
of shapes in the two training sets, i.e. 8u

i − 8d
i , and indicates

where the two shapes match as expected after the input shape’s
modifications. In Fig. 6, it can be observed that the Aux shapes have
mostly zero value in the canal region, and non-zero values in the
top canal and concha regions.

Using each detailed/undetailed shape pair in the training set
we obtain an aux field A = [A1, . . . ,AN ] on which we perform
a covariance analysis to obtain a set of aux weights W a

i for each
shape. We relate the aux weights and undetailed weights via:

W uF a
= W a (10)
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Fig. 7. Flowchart describing the proposed automatic shape generation method.
(a) Regression result. (b) Plane fitting. (c) Morphing.

Fig. 8. Detailed shape found through regression is depicted (in red/dark) on: (a1) the undetailed shape; (a2) the GT detailed shape (in grey/light). (b1) estimated Aux shape;
(b2) the resulting clustering with 2 clusters; (b3) the fitted planes. Morph of an initial detailed surface (c1) towards the undetailed surface constrained by planes, final result
(c2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and estimate F a throughmultivariate linear regression. In the end,
along with the ‘‘detailing’’ transformation matrix F d , a second
regression matrix F a is estimated to ‘‘encode the crucial cutting
operations of detailing’’.

2.5. Automatic shape generation

After the training phase, a new undetailed shape is given as
input to the system, and the expected output is a corresponding
detailed shell similar to one that would have been produced by a
specialist. The flowchart in Fig. 7 summarizes our automatic shape
generation method: the new undetailed shape is registered to the
mean shape from the training data as explained in Section 2.2.
The weight vector for the new undetailed shape is computed by
projection onto its PCs, then the weight vector for the detailed
shape is estimated through multiplying it by the stored regression
matrix in Eq. (9) to construct a regressed shape as in Fig. 8(a). Next,
Aux shape weights are estimated via the regression matrix F a in
Eq. (10) to construct A. In Fig. 8(b), the A field is displayed over the
regressed detailed shape.

2.5.1. Plane estimation for constraining shapes
The regions of estimated A that have non-zero distance values

correspond to ‘‘cuts’’ that would have been made by the specialist.
Those cuts usually produce flat surfaces. Since the estimated
detailed shapes do not always have flat surfaces where the A shape
is non-zero, a clustering algorithmwill be used to grouppoints over
the A surface. First, we threshold the A field to obtain amask shape
M as follows:

M(X) =


0, if A(X) > maskCutOff
1, else.

Here, a typical value for the threshold: maskCutOff = 1, which
is fixed for all the experiments. A point cloud is formed from the
coordinates over the domain of the M shape: X c

= {Xi s.t.M(X)
= 0}, i.e. where M equals 0. Hence, the possible ‘‘cut’’ regions
are collected in the constructed point cloud, which usually
contains two sets of clustered points: one over the bottom of
the canal and one over the tip of the canal regions. A noise
reduction operation precedes the point cloud formation via two
morphological operations, openings and closings to eliminate
isolated points over the mask field M . Next, a k-means clustering
algorithm is applied to the created point cloudwith k = 2 clusters.
Two separate planes are fitted to these clustered regions as shown
in Fig. 8(b3), where green and blue colored regions correspond to
the top and bottom ‘‘cut’’ regions. Each plane is represented by its
normalNp and its distance to the origin, d. To fit a plane to a cluster
of points X c

= [X0, . . . ,Xn] in a least-squares sense, we minimize
the following sum:

E(Np, d) =

n−
i=0

(⟨Np,Xi⟩ − d)2 (11)
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Fig. 9. Sample plane evolutions for estimated detailed shapes: initial planes (left), after 2 iterations (middle), after 3 iterations (right). Color maps: (top) the continuous Aux
field A is shown, where red color represents low distances which increase towards green–yellow–blue colors; (bottom) after thresholding the Aux field to obtain a mask
field M , and k-means clustering, two clusters remain: here blue color indicates the canal bottom cluster, green color indicates the canal top cluster, and red color indicates
the rest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
to estimate the plane normal Np and the location of its center
d [32]. In the implementation, this can be achieved by using the
PCA of the point cloud, and choosing the two highest eigen value
directions to define the plane tangent vectors and the smallest
eigen value’s eigen vector to define the plane normal.

Due to noise in clustered data points and estimation error, the
fitted planes are sometimes not perfectly aligned with the surface
of the estimated detailed shape Φd. In order to further align a
fitted plane, we want to update the orientation of the plane to
better match the orientation of the detailed shape surface near
the plane. Therefore, to estimate a rotation matrix Rj applied to
the plane, we design an energy functional that will maximize the
global alignment between the rotated plane normal and the shape
surface normal as follows:

E(Rj) =

∫
Ω j

⟨RjNp(X), ∇Φd(X)⟩dX, (12)

where Ω j indicates either of the clustered regions at the top or
bottom of the canal (e.g. the green and red colored regions in
Fig. 9), hence index j ∈ {t, b}. We maximize this energy via a
variational approach by deriving it with respect to parameters of
Rj , and obtain the update equation for the rotation of the plane
normal as:

∂Rj

∂t
=

∫
Ω j


∇Φd,

∂Rj(X)

∂r ji
Np


dX (13)

where r ji , (i = 1, 2, 3), are the rotation parameters of the plane, in
an exponential coordinate representation of the 3D rotation. Two
3D rotations Rj are estimated for both of the planes. We show
sample plane evolutions in Fig. 9 to illustrate the further correction
on the orientation of the estimated plane via updates of the
rotation parameters in Eq. (13). The corrected plane orientations
with respect to the geometry of the shape can be observed.

2.5.2. Final shape morphing
After we estimate and correct the cutting planes in the detailing

process, finally, we morph the regressed detailed shape, i.e. the
result of regression in Eq. (9), completely towards the true patient
geometry. The estimated planes form a new binary mask Mp to
indicate the desired regions that drive the propagation of the
estimated detailed shape towards the undetailed shell Φu, except
at the parts that are detected as ‘‘cuts’’ withMp. The final part of our
Table 1
Dice measure, mean absolute distance, and the maximum absolute distance
between the estimated and the GT shapes for all 34 leave-one-out tests.

Cross validation/average ± std Regressed shapes Final shapes

Dice measure (%) 70.76 ± 7.55 85.03 ± 5.69
Mean absolute distance (mm) 1.50 ± 0.60 0.43 ± 0.10
Max absolute distance (mm) 4.98 ± 1.72 3.59 ± 0.94

algorithm involves a surface evolution by using the popular level
set framework [27]. We define a partial differential equation (PDE)
inspired by [33] for shape morphing modified by the plane mask
Mp in our problem. The detailed surface is then deformed by the
following PDE:

∂Φ̃d(X)

∂t
= Mp(X)Φu(X)|∇Φ̃d(X)| + κ(X)∇Φ̃d/|∇Φ̃d(X)| (14)

with an initial condition Φd, which is the regression result, κ is
the mean curvature over the surface, and Φ̃d is the final shape
generated as the output of our algorithm. Fig. 8(c) shows the
morphing of the Φ̃d, driven by the sign of the Φu and continuing
to propagate until it reaches the planes via the mask Mp(X) and
flattens out.

3. Results

The hearing aid dataset utilized for the experiments includes 34
undetailed and the corresponding detailed shapes. Cross validation
tests were performed as 34 leave-one-out experiments, where in
each test, 33 of the shapes were used in the training and the
remaining single shape was used in the testing phase. Table 1
presents average performance measures for these experiments.
The Dice measure between two shapes A and B represented in
the voxel domain is defined as 2#(A


B)/(#A + #B), where

# denotes the number of voxels on and inside a shape A. The
average Dice measure and its standard deviation (std) between
the GT, i.e. result of manual design, and the regressed detailed
shells (result of Section 2.3) show about 70% ± 7% overlap, which
to a degree can justify using a linear transformation for relating
undetailed and detailed shapes. The final deformed shapes showed
85%± 5% overlapwith the GT shape. The average absolute distance
between the zero level sets of the ground truth and the estimated
detailed shells for regressed shapeswere 1.50± 0.60mm,whereas
for the deformed final shape, it was 0.43 ± 0.25 mm, which
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Fig. 10. Bland–Altman plot for comparing volume measurements between the GT
and the estimated shapes.

showed improved proximity. The manual design specifications
allowed for maximum of 0.5 mm error for a comfortable fit to
patient’s anatomy. The maximum distance between the GT and
estimated shapes were 5.0 ± 1.7 mm for the regressed result, and
3.6 ± 0.9 mm for the final shape. Although the specifications for
themanual design are set to 0.5mm, the errors are unexceptionally
contained within the patient’s ear geometry by construction of the
method, hence will not produce spiky or outward bulging shapes.

A popularmethod to compare two different studies is called the
Bland–Altman method, which aims to measure the consistency of
the measurements [34]. The method states that for two clinical
methods to be consistent, the average difference between the
results of two measurements should be zero and that 95% of the
difference should be less than two standard deviations. Fig. 10
shows a scatter plot of the shape volume measurements resulting
from the manual and automatic shape estimations. Most of the
points are within two standard deviations which indicates that
the manual and automatic results are consistent despite the fact
that there is a consistent bias toward over-estimation of the target
shape with the automatic method.

This is a natural outcome of the last step of ourmethod inwhich
the regressed shape deforms to the reference shape constrained
by both the two estimated cut planes and the reference shape.
However, this over-estimation,without exception occurs at the cut
regions, and still fits inside the patient’s anatomy as depicted by
color maps of distances to the GT shapes in Fig. 11. Similarly, some
qualitative results for the hearing aid dataset, depicted in Fig. 12
make the samepoint. The errors as expected are distributed around
a b
c d

Fig. 11. Typical errors in the shape estimation are made in the bottom of the canal due to slight misestimation in the position and orientation of the cutting planes. Color
map voxel distance values are converted to physical units via distance ∗ 0.45 mm.
a b

c
d

Fig. 12. (a, b, c, d) Undetailed input shape (left) and estimated detailed shape with a color map that depicts the distance to the GT detailed shape, which is overlaid over the
former two with a transparent dark color. Color map voxel distance values are converted to physical units via distance ∗ 0.45 mm.
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a b

d

c

Fig. 13. (a, c) Blue/dark the undetailed input shape; (b, d) Light gray GT detailed shape, Red/dark the estimated detailed shape (superimposed on the transparent undetailed
shape view). The two estimated cutting planes are also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 14. Interaction: errors in the cut plane orientation estimation in (a) can be corrected by a modification provided by the specialist at the top of the canal in (b), and at
the canal bottom in (c). Color map voxel distance values are converted to physical units via distance ∗ 0.45 mm.
the cut regions: the top and the bottom of the canal, however, the
estimated shapes are observed to be in good agreement with the
GT shapes, particularly in the canal region.
Limitations: In Fig. 13, for the pair of shapes (a, b), note that the
canal of the patient is short, therefore the top part of the shell was
not cut at all. Our algorithm hence could not estimate the cutting
plane at the top, and fitted two planes to the bottom. This single
cut plane situation can be corrected by detecting the proximity of
the estimated planes. Similarly, the experiment in (c, d) shows the
importance of correctly estimating the orientation of the cutting
plane. With a non-perfect bottom plane as in (d), the resulting
shape deformed all the way towards the cutting plane beyond
the GT shape. Further improvement on plane estimation could be
carried out, however, we suspect that such variations will occur
even in caseswhen a specialist does the detailing twice on the same
shell, or even when two different specialists were to design the
same person’s shell. However, such data were not available due to
high demand, and time-to-market restrictions in the product line
(that is, two different specialists did not work on the same person’s
data).

Generally, a good idea to overcome the limitations of a full
automatic approach is to devise a hybrid solution where the
specialist provides control over the cutting planes, and if necessary
intervenes to correct them, as the cutting plane errors seem to be
the bottleneck of automatic detailing of hearing aids. As depicted
in Fig. 14, such an interaction can be inserted into our framework
as the steps of shape regression, cut plane estimation, and final
morphing constrained by the cut planes are separately executed.

Our experiments demonstrated a proof of concept of the
presented method to generate a detailed shell close to that
would be produced by a specialist, and good overall performance
measures are obtained in all the tests. Further large scale validation
is necessary for a rapid prototyping application.
4. Conclusions and discussions

We presented a general framework to automatically generate
a target shape from a reference shape via learning the relation of
these two shape classes on a much lower dimensional manifold
than the original shape space. As a specific application, our
system learns how to detail a hearing aid shape by estimating
a mapping from a patient’s digitized ear mold to the detailed
shell. Further refinement of the shape is achieved by deforming
the estimated shell towards the undetailed shell in regions
where the shapes should fit using an auxiliary difference shape
class. This component could be modeled according to the set of
operations and rules required by the specifics of the customized
design application. The mapping between two shape classes
was estimated through a linear multivariate regression to avoid
local nonlinear effects. This framework contains several known
components such as variational registration, PCA for shape
analysis, and linear regression, however, it is the first time they are
combined for a novel automatic shape transformation.

Possible future extensions include replacing some components
of this work with other dimensionality reduction techniques such
as kernel PCA or normalized PCA. However, a more interesting
development involves a nonlinear manifold approach. This is part
of our current work, in which the two related shape spaces
are modeled via non-parametric probability densities [35] rather
than the underlying independent Gaussian probability densities in
Eq. (1) which were indirectly coupled via an estimated mapping
in this paper. Another direction for improvement of the shape
estimation methodology is to use anatomical features or an atlas
over the ear impression surfaces to guide the estimation process.
Furthermore, various other applications of our technique to the
custom design of various anatomical parts such as dental implants
and prosthetic hips can be specifically designed.
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