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Abstract. This paper presents a new, fully automatic method of accurately
extracting lesions from CT data. It first determines, at each voxel, a five-
dimensional feature vector that contains intensity, shape index, and 3D spatial
location. Then, non-parametric mean shift clustering is applied to produce
intensity and shape mode maps. Finally, a graph cut algorithm segments the
image using a novel energy formulation that incorporates shape, intensity, and
spatial features. A key difference from the usual graph construction is that we
connect modes (small regions, or super-pixels resulting from mean shift
clustering) instead of pixels. The initial foreground and background can be
automatically obtained by calculating highly spherical regions based on the
shape index map. The proposed method has been evaluated on a clinical dataset
of thoracic CT scans that contains 100 nodules. A volume overlap ratio between
each segmented nodule and the ground truth annotation is calculated. Using the
proposed method, the mean overlap ratio over all the nodules is 0.81. On visual
inspection as well as using a quantitative evaluation, the experimental results
demonstrate the potential of the proposed method. The rich information
provided by the joint spatial-intensity-shape features provides a powerful cue
for successful segmentation of nodules adjacent to structures of similar intensity
but different shape.

1 Introduction

Accurate and automatic segmentation of medical images is an essential component
of a computer-aided diagnosis (CADx) system. However, medical image
segmentation is typically a difficult task due to noise resulting from the image
acquisition process, as well as the characteristics of the object itself and its
neighborhood. Lesions may be embedded in areas of complicated anatomy; and may
have very similar intensities to their adjacent tissues (e.g. juxta-vascular nodules). In
such cases, traditional intensity-based or model-based methods may fail to properly
segment the object [1-3]. For example, a contrast-based region growing approach was
introduced in [1]. This method assumes that the region of interest appears as a bright
or dark object relative to the surrounding tissue. However, since adjacent blood
vessels have a similar intensity to the nodule, the segmentation tends to include a part
of a blood vessel along with the nodule. A morphological approach was presented in
[2]. One issue with this method is its sensitivity to the morphology template size,
which makes it difficult to choose a suitable template for all different kinds of
nodules. As indicated by the authors, this algorithm is targeted for small and high
contrast nodules; thus for a large nodules, especially when a blood vessel is attached
to a nodule, the algorithm might fail to properly delineate the nodule.



Image segmentation methods based on energy minimization have been
intensively researched [4-10]. In particular, graph cut based methods, which can
achieve a global minimum of energy functions used in image segmentation, have been
shown much promise in medical image computing. However, in most graph-based
methods, the graph vertices are constructed at image pixels, and the segmentation
energy is composed of intensity terms. For example, Zheng et al. [5] proposed a
framework to simultaneously segment and register the lungs and nodules in CT data.
For segmentation, a 2D pixel based graph cut algorithm was applied on the 3D lung
and nodule datasets. It is noted that, by representing a graph vertex using an image
pixel, the number of nodes in the graph increases polynomically with the image size
(ND , where N is the number pixels in one of the D dimensions); this dramatically
increases the computation time. To improve efficiency, Li et al. [6] introduced a
graph built on a pre-segmentated image using a watershed algorithm. However, their
graph cut formulation is solely based on the image intensities. It is known that pixel
intensity can be locally erroneous due to noise and other image acquisition issues
(such as Partial Volume Effect (PVE) in CT). Thus, in these cases, noise can
adversely affect the performance of a graph-based segmentation. Slabaugh et al. [7]
incorporated an elliptical shape prior into the graph-cut segmentation framework. Xu
et al. [8] presented a graph-cuts based active contours approach to object
segmentation method. Zheng et al. [9] constructed a graph Laplacian matrix for the
estimation of Ground-Glass Opacity (GGO) nodule in CT. Recently, Liu et al. [10]
applied ordering constraints into an energy smoothness term based on an initial
labeling. A simple geometric shape prior was also incorporated in a graph cut
segmentation.

In this paper, we propose an automatic mode-based graph cut method for lung
nodule segmentation. An overview of the approach appears in Fig. 1. At each voxel in
the image, the volumetric shape index (SI) is computed. The shape index, along with
the image intensity and spatial position (x, y, z) are concatenated into a five
dimensional feature vector at each voxel. In this five dimensional joint spatial-
intensity-shape (JSIS) feature space, mean shift clustering is applied, producing
intensity and shape index mode maps (super-pixels). Then, a graph is constructed
using the super-pixels as vertices. Weights in the graph are computed using a novel
energy formulation that considers not only image intensity but also the shape feature.
The use of mean-shift generated super-pixels produces better results and improves
speed significantly compared to a dense graph with vertices at every voxel. The
experimental results on CT lung nodules demonstrate the high performance of the
proposed method.
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Fig. 1. Flow diagram of the proposed graph cut based method



2 Mean Shift Clustering of JSIS features

Our approach first computes the JSIS features, which are then clustered in a five-
dimensional space using mean shift. In this section, we review the shape index feature
and our mean shift approach.

2.1 Volumetric shape index: a 3D geometric feature

The volumetric shape index (SI) at voxel p(x, y,z) can be defined as [11][12]:

ky(p)t+ka(p) M
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where k; ( p) and k, (p) are the principal curvatures at voxel p, which are defined
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as:

ki(p)=H(p)+H*(p)-K(p). kylp)=H(p)-{H?*(p)-K(p)

where K ( p) and H ( p) are the Gaussian and mean curvatures, respectively.

The calculation of the Gaussian and mean curvatures are based on the first and
second fundamental forms of differential geometry. A practical approach for
computing these forms is to use the smoothed first and second partial derivatives the
image with respect to X, y, z as suggested in [13]. In this paper, prior to shape index
calculation, a single-scale Gaussian smoothing is employed to obtain the smoothed
image with standard deviation of 1.5.

Shape index represents the local shape feature at each voxel. Every distinct
shape, except for the plane, corresponds to a unique shape index. For example, the
shape index value of 1.00 indicates a sphere-like shape (e.g. nodule), and 0.75
indicates a cylinder-like shape (e.g. vessel). Based on the definition, volumetric shape
index directly characterizes the topological shape of an iso-surface in the vicinity of
each voxel without explicitly calculating the iso-surface. This feature provides rich
information for automated segmentation of anatomical structures or lesions in medical
images, where the region of interest is within an area of complicated anatomy and
image intensities of different shapes are similar to each other (such as an adjoining
lung nodule).

2.2 Combination of shape index feature into mean shift framework

For each voxel, 3D spatial location, intensity and volumetric shape index features
are concatenated in the joint spatial-intensity-shape (JSIS) domain of dimension d=5.

Given n data points p;, i=1,...,n in a 5-dimensional space, the multivariate kernel is
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defined as the product of three radially symmetric kernels:
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where ¢, 5is a normalization constant which assures K(f) integrates to 1. fis the

spatial location, f'is the intensity and f *is the shape index feature; hg, h,and
hg; are the kernel window size for spatial, intensity and shape index kernel function.
The normal kernel is used in this paper, where k(f) =)™ "? exp(— 1/2HfH2)

By using the mean shift framework [14], the shape index feature can be combined
with the intensity for clustering. The mean shift vector with three kernel windows
(spatial, intensity and shape index) can then be calculated as:
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where g( f ): —k'( f ) The mean shift vector always points toward the direction of

the maximum increase in the density function.

It is noted that the mean shift algorithm estimates the modes (the densest regions)
of the multivariate distribution underlying the feature space. The set of points that
converge to the same mode is defined as the attraction basin. Mean shift maps all
the data samples to the local maxima of their corresponding attraction basin based on
five-dimensional features. Super-pixels (modes) are formed for the set of pixels in
each attraction basin. Each super-pixel has a constant shape index and intensity. This
produces mode maps, namely an intensity mode map (M, ), and a shape index mode

map (M, ), and a spatial mode map (). The spatial mode map is not used directly

in our energy function; however, spatial information is utilized when defining
neighbors in our graph. Fig. 2 shows a nodule attached to a vessel and its
corresponding intensity and shape index mode maps. It can be noted that the mode
maps ((c) and (d)) from JSIS mean shift clustering can be seen as “filtered” images
and are less contaminated by outliers. In the following section, graph cut based
segmentation is applied on these super-pixels.

(@) (b) (© (d)
Fig.2. One attached nodule with its intensity and shape mode maps (a) Original CT sub-image;
(b) Shape index map based on Eq. (1); (c) Intensity mode and (d) shape index mode maps.

3 Automatic Graph Cut based Segmentation on Mean Shift Mode
Map with Shape Feature

In this section, we consider the mode map as a graph G. As mentioned above, the
graph G=(V, E) is defined with vertices veV representing super-pixels determined



from five dimensional mean-shift clustering, and edges £ E connecting adjacent
super-pixels. A key difference from the usual graph construction is that we connect
super-pixels instead of the original pixels. As a result, the number of vertices in G is
greatly reduced compared to the original number of pixels in the image. Two key
issues are addressed in the following two sub-sections: initialization and energy
function definition.

3.1 Initialization based on high spherical concentration

In our previous work, we have developed an automatic lung nodule detection
algorithm [15], which produced a small number of potential nodule regions. The aim
of this paper is to accurately delineate each nodule boundary. Given that a nodule is
generally either spherical or has local spherical elements, while a blood vessel is
usually oblong, for each potential nodule region (or region of interest), a spherical
concentration is calculated for the automatic estimation of initial nodule (foreground)
region.

A cluster of high shape index voxels is automatically determined using hysteresis
thresholding [13] applied to the shape index map. This algorithm finds a spherical
region R formed of 3D connected voxels that all have shape index greater than or

equal to a relaxed threshold and contain voxels with a shape index greater than or
equal to a high threshold. The voxels in this spherical region define the foreground
seeds for the graph cut segmentation.

To produce the background seeds, the foreground region is enlarged based on the
distance transform [16]. The initial background region can be obtained by inverting
the enlarged foreground region. Here, the foreground region is enlarged to ensure that
the background seeds do not cover the nodule to be segmented. Fig.3 shows an
example of the segmented vascular nodule using the above automatic calculation of
foreground and background seeds, where, the high threshold and relaxed threshold for
hysteresis thresholding were chosen to be 0.92 and 0.82 respectively; and the initial
foreground (Fig.4 (a2 and b2)) was enlarged 10 layers based on the distance transform
to obtain the background (Fig.4(a3 and b3)).
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Fig.3. An example of one attached solid nodule segmentation based on the automatic
calculation of initial foreground and background. (al-b1) 3D nodule in 2 continuous slices in
CT; (a2-b2) initial foreground based on high spherical concentration; (a3-b3) initial
background; (a4-b4) segmentation results by the proposed graph cut based method.

3.2 Energy function

The lesion segmentation problem is formulated as a binary labeling problem, so the
goal is to assign a unique label ll.e{O,l} to each super-pixel (mode) (where O is

background and 1 stands for foreground (lesion)) by minimizing a Gibbs energy E(L)
[17]:

E(L)=Y E()+2 Y E,(.1,) @
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where El(li) is the data energy, determining the energy to assign the label [, to the

mode i, and Ez(li,lj) is the smoothing energy, denoting the cost of assigning the

labels [ and [, to adjacent super-pixels i and j. A is a weighting factor. The details

of energy minimization via the graph cut algorithm for binary labeling can be found
in [1]. Below we focus on how to define the two energy terms.

Data energy (t-link energy): Given the initial foreground {M:; } and
background regions {M f} which are automatically calculated based on the hysteresis

thresholding of shape index map discussed in the section 3.1. Here, m and n are the
super-pixel indices for initial foreground and background, respectively. For each
super-pixel i, the intensity distance of the super-pixel to the foreground super-pixels

{M r }, weighted by the shape feature, is calculated as:
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wheres, =03, I, (i) and SI_ (i) are the ith super-pixel’s intensity and shape

index resulting from mean shift clustering. Alternatively, an exponential function can



also be used for the calculation of the intensity similarity. The intensity distance to the
background super-pixels {M f} is as: g” =mi1*‘ I ()-M" H . Therefore, E(l)is

mode

defined as:
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We note that a nodule is generally either spherical or has local spherical elements (we

define spherical elements as a local grouping of voxels recognized by high volumetric

shape index values). It can be seen that ¢/ in Equation (5) encourages a super-pixel

to have the same label as the initial foreground super-pixels if it has a similar intensity
to the foreground super-pixels and also a shape feature closer to one.

Smooth energy with shape feature (I-link): The second term Ez(li,lj) in

Equation (4) is defined as:
E (l' [,): Wxi(E1+ESI)+(1_Wxi)'E1'ESI (6)

200 %j
where E, is the intensity energy term, denoting the intensity difference between two
adjacent super-pixels i and j, which is defined as: E, (l’_,l/_)=1/q‘1mod€(l‘)_1m0d€(j)H+1) .
This means super-pixels with similar intensities have a larger E,, which leads to

assigning the same labels to the two super-pixels.
E,, is the shape energy term, denoting the shape difference between two

adjacent super-pixels, which is defined as £ (1[_,11):]7/Q‘51m0de(,')_ ST, ( jm.q.]). Similar

to the intensity term, the shape energy term captures the shape features for the two
adjacent super-pixels, if both the shape index values are similar, E, is larger, which

means with high probability, both super-pixels have the same label. It is noted that,
both the intensity mode value and shape mode value have been normalized to the
same scale for the calculation of intensity energy term and shape energy term.

It can be seen from Equation (6), the intensity term and shape term are combined
through a weighting function w,, which is defined as:
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It is noted that, when the shapes between two adjacent super-pixels are the same,
w, =1, and the energy depends on the first term of Equation (6). However, when two

adjacent super-pixels have very different shapes, w_ is small, so the Equation 6

depends on the second term. Fig.4 shows a juxta-vascular nodule segmentation by
using different smooth energy functions. Due to PVE in CT imaging, part of the
nodule’s pixels (e.g. Fig.4(a3)) have relatively low intensities, compared to that on the
other slices. By using the first term only in Equation (6), those pixels with low
intensity (but similar shape feature) can still be correctly identified as being part of
the nodule object as seen in Fig.4 (b3). However, some small amounts of vessel
(similar intensity but different shape feature) are also included into the nodule object,
as seen in Fig. 4(b1-b3). This is because the first term equally considers the similarity
for both of the intensity and shape features. Fig.4(c1-c3) are the results by using the
second term only. It can be seen that, the shape feature is only used as a weighting to



the intensity feature. Different shapes gives lower weighting to intensity term, this is
why part of nodule can be properly separately from the adjoining vessel with similar
intensity, as shown in Fig.4(c1-c2). However, the pixels with lower intensity due to
PVE are wrongly identified as background due to the different intensities, compared
to that on the other slices, as shown in Fig.4(c3). Fig. 4(d1-d3) are the results by
combining both of terms as in Equation (6), in which the nodule boundary can be
properly delineated despite the PVE and the presence of vessels with similar intensity.

Flg.4. An example of one attached solid nodule segmentatlon by usmg different smooth energy
function. (al-a3) 3D nodule in 3 continuous slices in CT; (b1-b3) nodule segmentation by using
the first term only in Equation 6; (c1-c3) results by using the second term only in Equation 6;
(d1-d3) nodule segmentation by using the smooth energy in Equation 6.

4 Experimental Results and Discussion

The proposed algorithm has been evaluated on CT lung data. The three kernel
window sizes (spatial i, intensity &, and shape index /; ) in the five-dimensional

mean shift clustering were set to be 3.0, 6.5 and 3.0, respectively. The proposed graph
cut algorithm was applied to the mean-shift super-pixels using Equations 4, 5, and 6,

where the weighting factor A was set to be 100.

Fig.5 shows an example of the proposed method on one Ground-Glass Opacity
(GGO) nodule. It is known that GGO nodules are usually with faint contrast, irregular
shape and fuzzy margins, it is challenging to properly segment the nodule boundary.
The proposed method demonstrates good performance on this GGO nodule
segmentation. For comparison, the segmentation results without the shape feature are
given in Fig. 5(a3) and (b3), where, four-dimensional mean shift with spatial and
intensity features were used, also in the definition of smooth energy term (6), only the
intensity energy term was considered. It can be seen that, by considering the shape
index feature in both the mean shift clustering and the definition of energy
formulation for graph cut, the nodule boundary can be properly delineated from the
background despite the presence of other non-target structures (such as vessels).

The performance of our mode-based (mode map) graph cut algorithm was also
compared with that of pixel-based method, where, in the graph construction, each
vertex represents one pixel. Fig.6 shows the comparison results on another GGO
nodule image, where, 46195 vertices (pixels) was constructed in the pixel-based
graph, compared to 946 vertices for the super-pixel based method. Testing was
performed on a system with a 2.39GHz CPU and 2GB memory. Construction of the



graph and energy minimization required 16 seconds for the pixel-based method, and
1.2 seconds for the super-pixel based method (including the mean shift). The
majority of the computation time is in the graph construction, which includes the
calculation of the both energy terms for each vertex. On the super-pixel based
graph, the fewer vertices results in a much faster run-time.

Since the intensity mode map from the five-dimensional joint spatial-intensity-
shape index mean shift algorithm expresses the local structure of the data, it can be
seen that our proposed super-pixel-based method produces better results and improves
the speed significantly.

For a quantitative evaluation, the proposed method has been tested on a database of
clinical chest CT scans, containing 100 nodules (solid and mixed-sold nodules) with a
slice thickness ranging from 0.5mm to 2.0mm. The size of the nodules ranged
between 5Smm to 20mm in diameter. To produce the ground truth, each nodule
boundary was manually delineated by experienced radiologists. An overlap ratio
between the segmented nodule and the ground truth annotation is calculated. Fig. 7
shows the overlap ratios based on the proposed method with and without shape index
feature. It is noted that, without shape features, the mean overlap ratio for the whole
dataset is 74% with standard deviation (std) of 0.08. However, the mean overlap ratio
has been increased to 81% with the std decreasing to 0.047 by using the proposed
method. This indicates the segmentation based on our proposed method is stable and
accurate for different types nodules.

In this paper, the parameters for three kernel window size (spatial Ay |,

intensity &, and shape index iy ) in Equation 2 and the weighting factor (A) in

Equation 4 are chosen experimentally. As it is noted that, kernel window sizes depend
on the data structure. To improve the performance, we are currently analyzing the
sensitivity of the segmentation results to those parameters and also a variable window
size needs to be further investigated.

Generally speaking, it is challenging to segment GGO boundary due to its
irregular shape and faint contrast. In this section, Fig.5 and Fig.6 show good examples
of GGO nodule segmentation by using the proposed method. This is because, firstly,
the method clusters pixels under mean shift framework by taking into account the
joint spatial-intensity-shape feature. The resulting mode map significantly reduces the
variance of both of the intensity and shape features. Then, the super-pixels from mean
shift clustering are further merged by using graph cut algorithm. However, this is a
pilot study for the GGO nodule segmentation. Further experiments (e.g. quantitative
evaluation) are needed before the method can be applied in clinical practice.
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Fig.5. Example of one GGO nodule segmentation. (al-bl): 3D GGO in two continuous slices;
(a2-b2): shape index mode map from five-dimensional mean shift; (a3-b3): segmentation
without shape feature; (a4-b4): segmentation results based on the proposed method.

Fig.6. Segmentation result on one GGO (left) based on pixel-based graph-cut algorithm
(middle) and our proposed mode-based graph-cut algorithm (right).
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Fig.7. Volume overlap ratio based on the two different methods



5 Conclusion

We have presented a new automatic method of extracting lung nodules from CT
data. A five dimensional JSIS mean shift clustering is firstly used to produce both of
intensity and shape index mode maps. A graph cut algorithm is then applied to the
mode map using a novel energy formulation which considers not only image intensity
but also the shape feature. The joint JSIS feature provides rich information for lesion
segmentation. Both by visual inspection on both solid nodules (such as Fig.3 and 4)
and GGO nodules (such as Fig.5 and 6), as well as using a quantitative evaluation on
100 nodules (solid and mixed-solid) demonstrates the potential of the proposed
method. The method can not only successfully segment nodules adjacent to structures
of similar intensity but different shape, but also can correctly identify some part of
nodules with different intensity (due to PVE in CT imaging) but similar shape.
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