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Abstract. This paper presents a new, fully automatic method of accurately 

extracting lesions from CT data. It first determines, at each voxel, a five-

dimensional feature vector that contains intensity, shape index, and 3D spatial 

location.  Then, non-parametric mean shift clustering is applied to produce 

intensity and shape mode maps. Finally, a graph cut algorithm segments the 

image using a novel energy formulation that incorporates shape, intensity, and 

spatial features. A key difference from the usual graph construction is that we 

connect modes (small regions, or super-pixels resulting from mean shift 

clustering) instead of pixels. The initial foreground and background can be 

automatically obtained by calculating highly spherical regions based on the 

shape index map. The proposed method has been evaluated on a clinical dataset 

of thoracic CT scans that contains 100 nodules. A volume overlap ratio between 

each segmented nodule and the ground truth annotation is calculated. Using the 

proposed method, the mean overlap ratio over all the nodules is 0.81. On visual 

inspection as well as using a quantitative evaluation, the experimental results 

demonstrate the potential of the proposed method. The rich information 

provided by the joint spatial–intensity-shape features provides a powerful cue 

for successful segmentation of nodules adjacent to structures of similar intensity 

but different shape. 

1   Introduction 

Accurate and automatic segmentation of medical images is an essential component 

of a computer-aided diagnosis (CADx) system. However, medical image 

segmentation is typically a difficult task due to noise resulting from the image 

acquisition process, as well as the characteristics of the object itself and its 

neighborhood. Lesions may be embedded in areas of complicated anatomy; and may 

have very similar intensities to their adjacent tissues (e.g. juxta-vascular nodules). In 

such cases, traditional intensity-based or model-based methods may fail to properly 

segment the object [1-3]. For example, a contrast-based region growing approach was 

introduced in [1]. This method assumes that the region of interest appears as a bright 

or dark object relative to the surrounding tissue. However, since adjacent blood 

vessels have a similar intensity to the nodule, the segmentation tends to include a part 

of a blood vessel along with the nodule. A morphological approach was presented in 

[2]. One issue with this method is its sensitivity to the morphology template size, 

which makes it difficult to choose a suitable template for all different kinds of 

nodules. As indicated by the authors, this algorithm is targeted for small and high 

contrast nodules; thus for a large nodules, especially when a blood vessel is attached 

to a nodule, the algorithm might fail to properly delineate the nodule.    



    Image segmentation methods based on energy minimization have been 

intensively researched [4-10]. In particular, graph cut based methods, which can 

achieve a global minimum of energy functions used in image segmentation, have been 

shown much promise in medical image computing. However, in most graph-based 

methods, the graph vertices are constructed at image pixels, and the segmentation 

energy is composed of intensity terms. For example, Zheng et al. [5] proposed a 

framework to simultaneously segment and register the lungs and nodules in CT data. 

For segmentation, a 2D pixel based graph cut algorithm was applied on the 3D lung 

and nodule datasets. It is noted that, by representing a graph vertex using an image 

pixel, the number of nodes in the graph increases polynomically with the image size 

(N
D
, where N is the number pixels in one of the D dimensions); this dramatically 

increases the computation time. To improve efficiency, Li et al. [6] introduced a 

graph built on a pre-segmentated image using a watershed algorithm. However, their 

graph cut formulation is solely based on the image intensities. It is known that pixel 

intensity can be locally erroneous due to noise and other image acquisition issues 

(such as Partial Volume Effect (PVE) in CT). Thus, in these cases, noise can 

adversely affect the performance of a graph-based segmentation. Slabaugh et al. [7] 

incorporated an elliptical shape prior into the graph-cut segmentation framework. Xu 

et al. [8] presented a graph-cuts based active contours approach to object 

segmentation method. Zheng et al. [9] constructed a graph Laplacian matrix for the 

estimation of Ground-Glass Opacity (GGO) nodule in CT. Recently, Liu et al. [10] 

applied ordering constraints into an energy smoothness term based on an initial 

labeling. A simple geometric shape prior was also incorporated in a graph cut 

segmentation. 

In this paper, we propose an automatic mode-based graph cut method for lung 

nodule segmentation. An overview of the approach appears in Fig. 1. At each voxel in 

the image, the volumetric shape index (SI) is computed. The shape index, along with 

the image intensity and spatial position (x, y, z) are concatenated into a five 

dimensional feature vector at each voxel.  In this five dimensional joint spatial- 

intensity-shape (JSIS) feature space, mean shift clustering is applied, producing 

intensity and shape index mode maps (super-pixels). Then, a graph is constructed 

using the super-pixels as vertices. Weights in the graph are computed using a novel 

energy formulation that considers not only image intensity but also the shape feature. 

The use of mean-shift generated super-pixels produces better results and improves 

speed significantly compared to a dense graph with vertices at every voxel. The 

experimental results on CT lung nodules demonstrate the high performance of the 

proposed method.  

 

 

 

 

 

 

 

 

Fig. 1. Flow diagram of the proposed graph cut based method 
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2   Mean Shift Clustering of JSIS features 

    Our approach first computes the JSIS features, which are then clustered in a five-

dimensional space using mean shift. In this section, we review the shape index feature 

and our mean shift approach. 

2.1 Volumetric shape index: a 3D geometric feature 

    The volumetric shape index (SI) at voxel ),,( zyxp can be defined as [11][12]: 
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where ( )pk1  and ( )pk 2  are the principal curvatures at voxel p, which are defined 

as: 

( ) ( ) ( ) ( )pKpHpHpk −+=
2

1 , ( ) ( ) ( ) ( )pKpHpHpk −−=
2

2  

where ( )pK  and ( )pH  are the Gaussian and mean curvatures, respectively. 

    The calculation of the Gaussian and mean curvatures are based on the first and 

second fundamental forms of differential geometry. A practical approach for 

computing these forms is to use the smoothed first and second partial derivatives the 

image with respect to x, y, z as suggested in [13]. In this paper, prior to shape index 

calculation, a single-scale Gaussian smoothing is employed to obtain the smoothed 

image with standard deviation of 1.5. 

    Shape index represents the local shape feature at each voxel. Every distinct 

shape, except for the plane, corresponds to a unique shape index. For example, the 

shape index value of 1.00 indicates a sphere-like shape (e.g. nodule), and 0.75 

indicates a cylinder-like shape (e.g. vessel). Based on the definition, volumetric shape 

index directly characterizes the topological shape of an iso-surface in the vicinity of 

each voxel without explicitly calculating the iso-surface. This feature provides rich 

information for automated segmentation of anatomical structures or lesions in medical 

images, where the region of interest is within an area of complicated anatomy and 

image intensities of different shapes are similar to each other (such as an adjoining 

lung nodule). 

2.2 Combination of shape index feature into mean shift framework 

For each voxel, 3D spatial location, intensity and volumetric shape index features 

are concatenated in the joint spatial-intensity-shape (JSIS) domain of dimension d=5.  

Given n data points ip , i=1,…,n in a 5-dimensional space, the multivariate kernel is 

defined as the product of three radially symmetric kernels: 
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where 5,kc is a normalization constant which assures K(f) integrates to 1. s
f is the 

spatial location, 
r

f is the intensity and 
sif is the shape index feature; sh , rh and 

sih are the kernel window size for spatial, intensity and shape index kernel function. 

The normal kernel is used in this paper, where ( ) ( )22/ 21exp)2( ffk d −= −π . 

By using the mean shift framework [14], the shape index feature can be combined 

with the intensity for clustering. The mean shift vector with three kernel windows 

(spatial, intensity and shape index) can then be calculated as:  
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where ( ) ( )fkfg '−= . The mean shift vector always points toward the direction of 

the maximum increase in the density function. 

It is noted that the mean shift algorithm estimates the modes (the densest regions) 

of the multivariate distribution underlying the feature space. The set of points that 

converge to the same mode is defined as the attraction basin.  Mean shift maps all 

the data samples to the local maxima of their corresponding attraction basin based on 

five-dimensional features. Super-pixels (modes) are formed for the set of pixels in 

each attraction basin. Each super-pixel has a constant shape index and intensity. This 

produces mode maps, namely an intensity mode map (
IM ), and a shape index mode 

map (
SIM ), and a spatial mode map (

SM ). The spatial mode map is not used directly 

in our energy function; however, spatial information is utilized when defining 

neighbors in our graph. Fig. 2 shows a nodule attached to a vessel and its 

corresponding intensity and shape index mode maps. It can be noted that the mode 

maps ((c) and (d)) from JSIS mean shift clustering can be seen as “filtered” images 

and are less contaminated by outliers. In the following section, graph cut based 

segmentation is applied on these super-pixels. 

 

   
                (a)           (b)             (c)            (d) 

Fig.2. One attached nodule with its intensity and shape mode maps (a) Original CT sub-image; 

(b) Shape index map based on Eq. (1); (c) Intensity mode and (d) shape index mode maps. 

3 Automatic Graph Cut based Segmentation on Mean Shift Mode 

Map with Shape Feature 

In this section, we consider the mode map as a graph G. As mentioned above, the 

graph G=(V, E) is defined with vertices Vv∈  representing super-pixels determined 



from five dimensional mean-shift clustering, and edges E∈ε  connecting adjacent 

super-pixels. A key difference from the usual graph construction is that we connect 

super-pixels instead of the original pixels. As a result, the number of vertices in G is 

greatly reduced compared to the original number of pixels in the image. Two key 

issues are addressed in the following two sub-sections: initialization and energy 

function definition. 

3.1 Initialization based on high spherical concentration 

In our previous work, we have developed an automatic lung nodule detection 

algorithm [15], which produced a small number of potential nodule regions. The aim 

of this paper is to accurately delineate each nodule boundary. Given that a nodule is 

generally either spherical or has local spherical elements, while a blood vessel is 

usually oblong, for each potential nodule region (or region of interest), a spherical 

concentration is calculated for the automatic estimation of initial nodule (foreground) 

region. 

A cluster of high shape index voxels is automatically determined using hysteresis 

thresholding [13] applied to the shape index map. This algorithm finds a spherical 

region 
sℜ formed of 3D connected voxels that all have shape index greater than or 

equal to a relaxed threshold and contain voxels with a shape index greater than or 

equal to a high threshold. The voxels in this spherical region define the foreground 

seeds for the graph cut segmentation. 

 

To produce the background seeds, the foreground region is enlarged based on the 

distance transform [16]. The initial background region can be obtained by inverting 

the enlarged foreground region. Here, the foreground region is enlarged to ensure that 

the background seeds do not cover the nodule to be segmented. Fig.3 shows an 

example of the segmented vascular nodule using the above automatic calculation of 

foreground and background seeds, where, the high threshold and relaxed threshold for 

hysteresis thresholding were chosen to be 0.92 and 0.82 respectively; and the initial 

foreground (Fig.4 (a2 and b2)) was enlarged 10 layers based on the distance transform 

to obtain the background (Fig.4(a3 and b3)). 



 

   
                     a1         a2         a3        a4   

 

 
                   b1         b2        b3         b4 

 

Fig.3. An example of one attached solid nodule segmentation based on the automatic 

calculation of initial foreground and background. (a1-b1) 3D nodule in 2 continuous slices in 

CT; (a2-b2) initial foreground based on high spherical concentration; (a3-b3) initial 

background; (a4-b4) segmentation results by the proposed graph cut based method. 

 

   

3.2 Energy function 

The lesion segmentation problem is formulated as a binary labeling problem, so the 

goal is to assign a unique label { }1,0∈il  to each super-pixel (mode) (where 0 is 

background and 1 stands for foreground (lesion)) by minimizing a Gibbs energy E(L) 

[17]:  
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where ( )ilE1
 is the data energy, determining the energy to assign the label 

il  to the 

mode i, and ( )ji llE ,2
 is the smoothing energy, denoting the cost of assigning the 

labels 
il  and 

jl  to adjacent super-pixels i and j. λ is a weighting factor. The details 

of energy minimization via the graph cut algorithm for binary labeling can be found 

in [1]. Below we focus on how to define the two energy terms. 

 

Data energy (t-link energy):  Given the initial foreground { }F

mM  and 

background regions{ }B

nM  which are automatically calculated based on the hysteresis 

thresholding of shape index map discussed in the section 3.1. Here, m and n are the 

super-pixel indices for initial foreground and background, respectively. For each 

super-pixel i, the intensity distance of the super-pixel to the foreground super-pixels 

{ }F

mM , weighted by the shape feature, is calculated as: 
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 are the ith super-pixel’s intensity and shape 

index resulting from mean shift clustering. Alternatively, an exponential function can 



also be used for the calculation of the intensity similarity. The intensity distance to the 

background super-pixels { }B

nM  is as: ( ) B
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We note that a nodule is generally either spherical or has local spherical elements (we 

define spherical elements as a local grouping of voxels recognized by high volumetric 

shape index values). It can be seen that F

id  in Equation (5) encourages a super-pixel 

to have the same label as the initial foreground super-pixels if it has a similar intensity 

to the foreground super-pixels and also a shape feature closer to one. 

 

Smooth energy with shape feature (l-link): The second term ( )ji llE ,2
 in 

Equation (4) is defined as: 

( ) ( ) ( )
SIIsiSIIsiji EEwEEwllE ⋅⋅−++= 1,2

 (6) 

where 
IE  is the intensity energy term, denoting the intensity difference between two 

adjacent super-pixels i and j, which is defined as: ( )1)()(1),( modmod +−= jIiIllE eejiI
 . 

This means super-pixels with similar intensities have a larger 
IE , which leads to 

assigning the same labels to the two super-pixels.  

    
SIE  is the shape energy term, denoting the shape difference between two 

adjacent super-pixels, which is defined as ( ) ( )( )11),( modmod +−= jSIiSIllE eejiSI
. Similar 

to the intensity term, the shape energy term captures the shape features for the two 

adjacent super-pixels, if both the shape index values are similar, 
SIE  is larger, which 

means with high probability, both super-pixels have the same label. It is noted that, 

both the intensity mode value and shape mode value have been normalized to the 

same scale for the calculation of intensity energy term and shape energy term.  

It can be seen from Equation (6), the intensity term and shape term are combined 

through a weighting function 
siw  which is defined as: 
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It is noted that, when the shapes between two adjacent super-pixels are the same, 

1=siw , and the energy depends on the first term of Equation (6). However, when two 

adjacent super-pixels have very different shapes, 
siw  is small, so the Equation 6 

depends on the second term. Fig.4 shows a juxta-vascular nodule segmentation by 

using different smooth energy functions. Due to PVE in CT imaging, part of the 

nodule’s pixels (e.g. Fig.4(a3)) have relatively low intensities, compared to that on the 

other slices. By using the first term only in Equation (6), those pixels with low 

intensity (but similar shape feature) can still be correctly identified as being part of 

the nodule object as seen in Fig.4 (b3). However, some small amounts of vessel 

(similar intensity but different shape feature) are also included into the nodule object, 

as seen in Fig. 4(b1-b3). This is because the first term equally considers the similarity 

for both of the intensity and shape features. Fig.4(c1-c3) are the results by using the 

second term only. It can be seen that, the shape feature is only used as a weighting to 



the intensity feature. Different shapes gives lower weighting to intensity term, this is 

why part of nodule can be properly separately from the adjoining vessel with similar 

intensity, as shown in Fig.4(c1-c2). However, the pixels with lower intensity due to 

PVE are wrongly identified as background due to the different intensities, compared 

to that on the other slices, as shown in Fig.4(c3). Fig. 4(d1-d3) are the results by 

combining both of terms as in Equation (6), in which the nodule boundary can be 

properly delineated despite the PVE and the presence of vessels with similar intensity. 

 

            
     a1         a2          a3             b1           b2        b3 

           
  c1          c2         c3               d1         d2         d3 

Fig.4. An example of one attached solid nodule segmentation by using different smooth energy 

function. (a1-a3) 3D nodule in 3 continuous slices in CT; (b1-b3) nodule segmentation by using 

the first term only in Equation 6; (c1-c3) results by using the second term only in Equation 6; 

(d1-d3) nodule segmentation by using the smooth energy in Equation 6. 

4 Experimental Results and Discussion 

The proposed algorithm has been evaluated on CT lung data. The three kernel 

window sizes (spatial sh , intensity rh and shape index sih ) in the five-dimensional 

mean shift clustering were set to be 3.0, 6.5 and 3.0, respectively. The proposed graph 

cut algorithm was applied to the mean-shift super-pixels using Equations 4, 5, and 6, 

where the weighting factor λ was set to be 100.  

Fig.5 shows an example of the proposed method on one Ground-Glass Opacity 

(GGO) nodule. It is known that GGO nodules are usually with faint contrast, irregular 

shape and fuzzy margins, it is challenging to properly segment the nodule boundary. 

The proposed method demonstrates good performance on this GGO nodule 

segmentation. For comparison, the segmentation results without the shape feature are 

given in Fig. 5(a3) and (b3), where, four-dimensional mean shift with spatial and 

intensity features were used, also in the definition of smooth energy term (6), only the 

intensity energy term was considered. It can be seen that, by considering the shape 

index feature in both the mean shift clustering and the definition of energy 

formulation for graph cut, the nodule boundary can be properly delineated from the 

background despite the presence of other non-target structures (such as vessels). 

The performance of our mode-based (mode map) graph cut algorithm was also 

compared with that of pixel-based method, where, in the graph construction, each 

vertex represents one pixel. Fig.6 shows the comparison results on another GGO 

nodule image, where, 46195 vertices (pixels) was constructed in the pixel-based 

graph, compared to 946 vertices for the super-pixel based method. Testing was 

performed on a system with a 2.39GHz CPU and 2GB memory.  Construction of the 



graph and energy minimization required 16 seconds for the pixel-based method, and 

1.2 seconds for the super-pixel based method (including the mean shift).  The 

majority of the computation time is in the graph construction, which includes the 

calculation of the both energy terms for each vertex.  On the super-pixel based 

graph, the fewer vertices results in a much faster run-time. 

Since the intensity mode map from the five-dimensional joint spatial-intensity-

shape index mean shift algorithm expresses the local structure of the data, it can be 

seen that our proposed super-pixel-based method produces better results and improves 

the speed significantly.  

For a quantitative evaluation, the proposed method has been tested on a database of 

clinical chest CT scans, containing 100 nodules (solid and mixed-sold nodules) with a 

slice thickness ranging from 0.5mm to 2.0mm. The size of the nodules ranged 

between 5mm to 20mm in diameter. To produce the ground truth, each nodule 

boundary was manually delineated by experienced radiologists. An overlap ratio 

between the segmented nodule and the ground truth annotation is calculated. Fig. 7 

shows the overlap ratios based on the proposed method with and without shape index 

feature. It is noted that, without shape features, the mean overlap ratio for the whole 

dataset is 74% with standard deviation (std) of 0.08. However, the mean overlap ratio 

has been increased to 81% with the std decreasing to 0.047 by using the proposed 

method. This indicates the segmentation based on our proposed method is stable and 

accurate for different types nodules.   

 In this paper, the parameters for three kernel window size (spatial sh , 

intensity rh and shape index sih ) in Equation 2 and the weighting factor ( λ ) in 

Equation 4 are chosen experimentally. As it is noted that, kernel window sizes depend 

on the data structure. To improve the performance, we are currently analyzing the 

sensitivity of the segmentation results to those parameters and also a variable window 

size needs to be further investigated.  

 Generally speaking, it is challenging to segment GGO boundary due to its 

irregular shape and faint contrast. In this section, Fig.5 and Fig.6 show good examples 

of GGO nodule segmentation by using the proposed method. This is because, firstly, 

the method clusters pixels under mean shift framework by taking into account the 

joint spatial-intensity-shape feature. The resulting mode map significantly reduces the 

variance of both of the intensity and shape features. Then, the super-pixels from mean 

shift clustering are further merged by using graph cut algorithm. However, this is a 

pilot study for the GGO nodule segmentation. Further experiments (e.g. quantitative 

evaluation) are needed before the method can be applied in clinical practice. 

 

 

 

 

 

 

 



    
             a1              a2              a3               a4                    

 

    
           b1             b2               b3               b4 

 

Fig.5. Example of one GGO nodule segmentation. (a1-b1): 3D GGO in two continuous slices; 

(a2-b2): shape index mode map from five-dimensional mean shift; (a3-b3): segmentation 

without shape feature;  (a4-b4): segmentation results based on the proposed method. 

 

     

 

Fig.6. Segmentation result on one GGO (left) based on pixel-based graph-cut algorithm 

(middle) and our proposed mode-based graph-cut algorithm (right). 

 

 

Volume overlap ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Nodule number

ra
ti
o

Proposed 5d MS and GC with shape

feature feature
4d MS and GC without shape feature

 
Fig.7. Volume overlap ratio based on the two different methods 

 



5 Conclusion 

We have presented a new automatic method of extracting lung nodules from CT 

data. A five dimensional JSIS mean shift clustering is firstly used to produce both of 

intensity and shape index mode maps. A graph cut algorithm is then applied to the 

mode map using a novel energy formulation which considers not only image intensity 

but also the shape feature. The joint JSIS feature provides rich information for lesion 

segmentation. Both by visual inspection on both solid nodules (such as Fig.3 and 4) 

and GGO nodules (such as Fig.5 and 6), as well as using a quantitative evaluation on 

100 nodules (solid and mixed-solid) demonstrates the potential of the proposed 

method. The method can not only successfully segment nodules adjacent to structures 

of similar intensity but different shape, but also can correctly identify some part of 

nodules with different intensity (due to PVE in CT imaging) but similar shape. 
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