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Abstract. Super-resolved image enhancement is of great importance
in medical imaging. Conventional methods often require multiple low
resolution (LR) images from different views of the same object or learn-
ing from large amount of training datasets to achieve success. However,
in real clinical environments, these prerequisites are rarely fulfilled. In
this paper, we present a self-learning based method to perform super-
resolution (SR) from a single LR input. The mappings between the
given LR image and its downsampled versions are modeled using support
vector regression on features extracted from sparse coded dictionaries,
coupled with dual-tree complex wavelet transform based denoising. We
demonstrate the efficacy of our method in application of cardiac MRI
enhancement. Both quantitative and qualitative results show that our
SR method is able to preserve fine textural details that can be corrupted
by noise, and therefore can maintain crucial diagnostic information.

1 Introduction

High resolution (HR) images are in demand for cardiac magnetic resonance imag-
ing (CMRI). However, HR CMRI images are often costly to acquire. In partic-
ular, the quality and resolution of CMRI images can be limited dramatically by
low signal to noise ratio, cardiac and respiratory motion, and restricted scan-
ning time due to patient symptoms etc. In consequence, noise corrupted and
low resolution (LR) images are produced that may reduce the visibility of vital
pathological details and potentially compromise the clinical outcomes.

Instead of optimizing hardware settings (e.g., improved cardiac gating and
respiratory navigation) and reducing scanning time (e.g., accelerated by parallel
imaging and compressed sensing), image super-resolution (SR) provides an alter-
native solution to boost the perceptual quality of CMRI images in terms of the
spatial resolution enhancement. Essentially, the goal of SR methods is to recover
a HR image from a single or multiple LR images [1]. Comprehensive reviews on
various SR methods can be found elsewhere [2, 3], and here we briefly review
the most relevant publications. Existing SR algorithms can be broadly cate-
gorized into three classes including interpolation based, reconstruction based,
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and learning or example based methods [4]. Widely used interpolation based
SR methods, which assume that images are spatially smooth, typically result in
overly smoothed edges with ringing and jagged artifacts [4, 5]. Reconstruction
based algorithms, which solve an inverse problem by recovering the HR image by
fusing multiple LR images, are time-consuming and limited to an upsampling
factor of two [4, 5, 6]. For learning or example based methods, the mapping
function between LR and HR images (or their patches) is learned from a repre-
sentative set of training image pairs. Once the mapping function is learned, it
is applied to a single testing image to achieve SR. Despite numerous learning or
example based methods (e.g., [7, 8, 9, 10]) claiming success for single-image SR,
these methods hinge on the availability of training data of LR and HR image
pairs; therefore, we define them as pseudo-single-image SR.

Compared to pseudo-single-image SR methods, Glasner et al. [1] proposed
a self-similarity based single-image SR method using a training dataset that is
directly established from the LR input, by exploiting patch redundancy among
in-scale and cross-scale images in an image pyramid to enforce constraints for
recovering the unknown HR image [4]. In this method, no extrinsic large train-
ing dataset is required as a priori, but the abundance of self-similar patches is
crucial for successful SR recovery. Instead of searching for similar image patches,
Yang and Wang [11] used support vector regression (SVR) to learn SR models
from patches at different image scales. They also applied a sparse representation
to extract effective image features for SVR to make their SR algorithm more
computationally feasible for real applications, following the application of sparse
representation originally proposed for solving the SR problem by Yang et al. [12].
More recently, Singh and Ahuja [13] added sub-band energy constraints for the
self-similarity based SR method, and Huang et al. [14] enriched the dataset of
self-similar patches by looking at their transformed exemplars. Although these
studies have demonstrated promising results, the SR methods were applied on
natural images, which are relatively clean. Therefore, the performance of these
methods for noisy inputs, e.g., CMRI images, hasn’t been demonstrated.
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Fig. 1. Flowchart of our approach including both learning and prediction.

In this paper, we propose an SVR based SR method that learns a sparse
representation as robust and effective features across various down-sampled and
denoised versions (using dual-tree complex wavelet transform, i.e., DTCWT) of
a single input LR image. Once the SVR has been trained, we can apply the
best model to predict the final SR image from a single LR image (Figure 1).
Compared to the previous learning based methods [7, 8, 9], our method does
not require construction of paired LR and HR training datasets. Compared to
Glasner et al. [1] (Figure 2(a)) and more recent work by Singh and Ahuja [13],
our method does not assume self-similarity of image patches. In contrast to the



SR methods [11], [15], in which SVR was originally applied, we use DTCWT to
suppress the noise, and we hypothesize that our method is more applicable for
medical imaging applications [16], in particular for the CMRI images.

2 Method

The overall workflow of our method is summarized in Figure 1, and details of
each step are described below.
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Fig. 2. Schematic diagram of (a) conventional self-similarity based SR method and (b) our self-
learning based SR approach. Panel (a): In step 1, the input LR image I r (yellow) is downsampled

by a factor of two recursively into several lower levels, and here only one downsampled level (Ifé) is
shown for illustration purposes. Then k nearest neighbors of the example patch (brown patch Prr in
ILr) are located in the downsampled level. For simplicity, we show the case where the most similar
patch (red patch in Igé) is used (i.e., k = 1). In step 2, the corresponding patch at the same location
(red patch in Ir) is used as the HR predictor (notice the larger size). In step 3, this patch is copied
and pasted in the HR image (Igr). In the case of k > 1, multiple predictors are averaged and then
pasted; Panel (b): Four major steps of our method and details are described in Sections 2.1-2.3.
Instead of downsampling using bicubic interpolation, DTCWT based denoising and reconstruction
was applied to construct the image pyramid.

2.1 Denoising and Pyramid Construction Using DTCWT

Most previous self-similarity or self-learning methods (e.g., [1, 11, 13]) used bicu-
bic interpolation to construct the image pyramid, but this can be susceptible to
noise. Intuitively, discrete wavelet transform (DWT) based denoising has an in-
trinsic multiscale structure of decomposition and reconstruction, and therefore
can be suitable for the pyramid construction task while effectively suppress-
ing the noise. In addition, the dual-tree complex wavelet transform (DTCWT)
overcomes two shortcomings of the widely used conventional DWT: lack of shift-
invariance and lack of directional selectivity [17]. Regarding memory usage, the
DTCWT is an over-complete transform with a redundancy factor of four for 2D
image processing while DWT is non-redundant. An alternative method to ob-
tain the orientation selective sub-bands is using steerable pyramid decomposition
[13], which is over-complete by a factor of 4k/3 (where k denotes the number of
orientation sub-bands) [18]. Regarding computational complexity, the DTCWT
is linear O(N) where N is the number of input pixels. In contrast, the steerable
pyramid decomposition has a complexity of O(NlogN). By considering both
memory and computational complexity, instead of using steerable pyramid de-
composition to overcome limitations of DWT, we decomposed the original image
using DTCWT. To accomplish the denoising and image pyramid construction,
each level of the pyramid was reconstructed using a soft-thresholding scheme
[17], which we used to train the SVR (step 1 in Figure 2(b)).



2.2 Extracting Features Using Image Sparse Representation

Directly working on pixels can be time-consuming and infeasible for real clini-
cal applications. In this study, a sparse image representation [19] was learned,
representing robust and effective features for SVR that can be formulated as an
optimization problem, min L 3" ||Dea; — x;||3 + Al|ag||1,i = 1,...,n, in which
x; is the vectorized image patch (patch size was set to P =5 x 5 in this study),
and is denoted as x = vectorize(PLr) — mean(Prr) € R”*!, and the subtraction
of the mean value of each LR patch (mean(Pr)) indicates the learning of local
pixel value variations instead of learning absolute pixel values. Here n is the
number of training patches and D is the over-complete dictionary to be learned,
«; is the corresponding sparse coeflicient vector, and A is the Lagrange multi-
plier term that regularizes the model sparsity (/;-norm term) and the ls-norm
based residual. According to previous research [11], better SR performance can
be achieved by patch categorization, i.e., clustering patches into low and high
spatial frequency ones and learning their dictionaries separately. We applied a
Sobel filter in this study, such that any patch including an edge derived from the
Sobel filter is considered to have high spatial frequency. In doing this, two dictio-
naries (D; and Dy,) for low and high spatial frequency patches have been learned
separately. Accordingly, we used the corresponding sparse coefficient vectors o
and ay, as the features for the SVR models (step 2 in Figure 2(b)).

2.3 Support Vector Regression

Finally, support vector regression (in this study we used v-SVR) [20], which
can fit the data in a high dimensional feature space without assuming the data
distribution, was applied to model the relationship between the input sparse
coefficient vector and the associated SR pixel value. In the training procedure,
the SVR solves the following optimization problem,

. 1 1 n .
mm2|wll2+p<ve+nZ(&mé)) (1)
=1
subject to y; — (W, P(a;)) —b< e+ &
(W, P()) +b—yi e+ &
£,65>0,€¢>0, 4,...,n

in which y; denotes the associated target variable, i.e., pixel value at the center of
the patch considered in the HR image (mean(Prg)) is also subtracted from each
corresponding y;). @(«;) is the sparse image patch features in the transformed
space; thus, @(a;) and y; form the feature and target variable pairs for training.
And w is the norm vector of the nonlinear mapping function to be learned. In
addition, p is the tradeoff between the generalization and the upper and lower
bounds of training errors &; and & subject to a margin of €, and v controls the
amount of support vectors in the resulting model. K (a;, ;) = &(a;)T (o) is
called the kernel function. In this study, we used a nonlinear Gaussian Radial
Basis Function (RBF) kernel K (a;, ;) = exp(—v||a; —a||?) with scaling-factor,
v > 0, to map feature vectors into a nonlinear transformed feature space. SVR



parameters (p and ) were estimated using grid search with cross-validation.
Furthermore, SVR model selection was achieved according to a minimum-error-
rate classification rule based on Bayesian decision theory [11], and the trained
best SVR model was applied to predict the final SR output for a test LR input
(steps 3 and 4 in Figure 2(b)).

2.4 Experimental Settings and Performance Measure

First, ex-vivo swine heart MR imaging data were acquired on a Siemens Skyra 3T
MRI system (Erlangen, Germany). The subject was scanned using a 4-element
receive coil setup and a 3D fast low-angle shot sequence (3D FLASH, TR/TE
= 50 ms/5.36 ms, flip angle = 35°, voxel resolution = 0.6 mm?®, and recon-
structed into 0.3 mm? isotropically). Second, in-vivo patient data were acquired
on a Siemens Avanto 1.5T MRI system. Ten subjects were scanned using a
navigator-gated inversion-prepared 3D segmented gradient echo sequence with
late gadolinium enhancement (TR/TE = 5.2 ms/2.3 ms, flip angle = 20°, voxel
resolution = 1.5x1.5x4 mm?, and reconstructed into 0.7x0.7x2 mm?) [21].

For the ex-vivo data, we extracted the central slice from the axial and saggi-
tal views respectively in order to test the efficacy of our method on both in-plane
and out-of-plane slices. The original resolution is 400x400 pixels for both slices,
and used as HR ground truth for SR results evaluation. Inputs were synthe-
sized by downsampling (by a factor of 2 and 4 denoted as x2 and x4 resulted in
200x200 and 100x100 inputs respectively), and degrading (by various additive
noises [(¢=10,15,20,and 25) and run 10 times for each noise level]). Evalua-
tions have been done qualitatively by visual inspection and quantitatively using
peak signal to noise ratio (PSNR) and mean squared error (MSE) against the
HR ground truth. The performance of our method was compared with bicubic
interpolation with standard low-pass Gaussian filter based denoising and the
self-learning based SR approach (SLSR) proposed in [11]. For the in-vivo data,
we randomly chose 40 ROIs (each of 200x200 pixels) from 10 patient cases. For
these 40 noise corrupted LR slices, we have no HR ground truth available. In
addition to visual inspection of x2 SR, we compared the line profiles extracted
from the results of three SR methods, namely, bicubic (with standard low-pass
Gaussian filter based denoising), SLSR, and ours, and estimated the remaining
noise in the SR results using the method described in [22].

3 Results

Figure 3(a) shows the synthesized LR input by a downsampling factor of two.
The added noise (¢ = 15) is shown in Figure 3(b). Figure 3(c) is the zoomed-in
ROI of the HR ground truth. Compared to the results of using bicubic interpo-
lation and SLSR method (Figure 3(d) and (e)), our SR result (Figure 3(f)) is
much more homogeneous in the myocardium region. In addition, green arrows
pointed at three example fine structures that are much clearer in our SR result.
Figure 3(g)-(i) are the results recovered from the synthesized LR input by an
x4 downsampling with additive noise (¢ = 15). Pink arrows pointed at textures
that have been preserved using our SR method (Figure 3(i)) while missing in
the bicubic interpolation and SLSR method (Figure 3(g) and (h)). Tables 1 and



2 show the PSNR and MSE with various additive noises, and the standard devi-
ations were calculated by running the random noise simulation 10 times at each
noise level (¢ = 10, 15,20, and 25). In addition, our SR results (both PSNR
and MSE in Figure 4) showed significant improvement compared to the results
of bicubic interpolation and SLSR (statistical significances were given by two-
sample Wilcoxon rank-sum test between the results of each two SR methods
with significance level of p < 0.05). There is no significant difference between
bicubic interpolation and SLSR when the noise level is high (e.g., when o = 25).

Fig. 3. (a) Synthesized input LR image (sagittal view of a swine heart MRI slice) that is down-
sampled (x2) and noise corrupted (red box showing the ROI; contrast has been altered for better
visualization of the background noise); (b) Random noise (o = 15) added to the original HR image;
(c) ROI of the original HR image without blurring or noise (ground truth); Panels (d)-(f): x2 SR
results; (d) ROI of the bicubic interpolation result; (e¢) ROI of the SLSR result; (f) ROI of our result;
Green arrows pointed three example fine structures that have been super-resolved using our method,
but much more blurred using bicubic interpolation and SLSR method; Panels (g)-(i): x4 SR results;
(g) ROI of the bicubic interpolation result; (h) ROI of the SLSR result; (i) ROI of our result; Pink
arrows point to three example textures that have been preserved using our method, but which are
more vague in the results of using bicubic interpolation or the SLSR method.



Figure 5(a)-(c) shows the x2 SR results for one ROI of an in-vivo late gadolin-
ium enhancement scan. Our SR result (Figure 5(c)) shows noise suppression in
the blood pool region of the left atrium, and therefore less confounding artifacts
with similar intensities as the real late gadolinium enhancement of the myocar-
dial wall. In addition, line profiles (Figure 5(d) and (e)) across the SR results
show that bicubic interpolation and SLSR method tend to be much noisier.
Furthermore, the noise level estimations have been performed according to [22],
and our method obtained a lower level of remaining noise (Table 3 shows that
0 = 32.041+4.17 compared to o = 35.76 == 3.67 obtained by bicubic interpolation
and o = 40.17 £+ 4.89 obtained by SLSR method, and noise level of the original
LR input is 0 = 53.52 £ 5.48).

Table 1. PSNR of x2 and x4 SR on ex-vivo cardiac MRI data from different views. For ¢ > 0 we
run 10 times for each noise level to obtain the meanzstd.

PSNR
NO N10 N15 N20 N25

Axial x2

Bicubic 33.84 33.2240.07 32.37+0.04 31.61+0.10 30.74+0.09
SLSR 36.01 35.28+0.11 33.96+0.14 32.54+0.13 31.35+0.18
Ours 39.81 37.54+0.13 35.00+0.13 33.14+0.10 31.70+0.16
Sagittal x2

Bicubic 31.96 31.30+0.02 30.60+0.06 29.77+0.03 28.96+0.07
SLSR 33.47 32.54+0.04 31.40+0.09 30.21+0.13 28.96+0.26
Ours 36.63 34.88+0.09 32.46+0.10 30.69+0.10 29.31+0.11
Axial x4

Bicubic 26.80 26.66+0.01 26.47+0.02 26.23+0.03 25.96+0.04
SLSR 27.86 27.76+£0.05 27.51+0.05 27.19+0.05 26.82+0.08
Ours 30.36 30.31+£0.02 29.91+0.05 29.02+0.07 27.71£0.09
Sagittal x4

Bicubic 25.53 25.37+0.01 25.19+0.01 24.93+0.02 24.66+0.02
SLSR 26.40 26.34+0.04 26.07+0.04 25.74+0.02 25.62+0.04
Ours 28.39 28.36+0.04 28.08+0.04 27.30+£0.05 26.21+0.21

Table 2. MSE of x2 and x4 SR on ex-vivo cardiac MRI data from different views. For o > 0 we
run 10 times for each noise level to obtain the meanzstd.

MSE

NO N10 N15 N20 N25
Axial x2
Bicubic 26.91 31.76+0.13 37.88+0.11 46.21+0.50 56.88+0.43
SLSR 17.34 20.79+0.21 28.12+0.37 39.22+0.43 54.55+1.04
Ours 6.85 12.11+0.16 21.414+0.30 33.23+0.56 46.60+0.70
Sagittal x2
Bicubic 32.79 38.2310.16 45.00+0.36 54.40+0.30 65.99+0.40
SLSR 23.18 28.68+0.26 37.554+0.28 50.09+0.63 68.00+0.78
Ours 11.19 16.86+0.19 29.514+0.41 44.2240.71 61.384+0.70
Axial x4
Bicubic 135.78 140.461+0.42 146.53+0.51 154.86+0.99 164.91+1.38
SLSR 106.35 109.02+1.25 115.27+1.25 124.12+1.41 135.40+£2.43
Ours 59.91 60.60+0.33 66.321+0.76 81.56+1.31 110.33+1.98
Sagittal x4
Bicubic 144.20 149.61+0.28 155.90+0.51 165.51+0.77 176.35+0.62
SLSR 118.01 119.72+0.98 127.25+1.10 137.29+1.68 152.61+1.85

Ours 74.59 75.17+0.68 80.27+0.71 95.97+1.10 126.70+1.32
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Fig. 4. Left: Boxplot of the PSNR, (Sagittal x2 SR); Right: Boxplot of the MSE (Sagittal x2
SR). Statistical significant between each two groups are showing above the boxplot (*** stands for
p < 0.05 and n.s. means no significant difference between two groups).
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Fig. 5. Panels (a)-(c): x2 SR results of an in-vivo late gadolinium enhancement scan using bicubic
interpolation, SLSR method and our approach respectively; (d) Horizontal line profiles through the
green arrows of the SR results; (e¢) Zoomed-in line profiles of the pink region in (d).



4 Discussion and Conclusion

The objective of this study was to develop an image post-processing method to
super-resolve LR cardiac MR images from single input while effectively suppress-
ing the noise. Results of this work provide compelling evidence that our single
image SR method, which is coupled with multiscale DTCW'T based denoising, is
capable of reconstructing superior HR results with significantly lower remaining
noise compared with conventional bicubic interpolation and a state-of-the-art
self-learning based SR approach, i.e., SLSR.

Kernel based single image SR methods (example kernels including linear,
bicubic, and Lanczos kernel) are the most widely used in clinical applications
due to their efficiency. Results of our experiments on ex-vivo cardiac MR images
showed that bicubic kernel based interpolation obtained lower PSNR and higher
MSE than SLSR or our methods when the noise level o < 20 (Tables 1 and
2). This can be attributed to the fact that bicubic interpolation makes strong
assumptions on spatial smoothness of images that can result in blurred edges,
loss of fine textures, and averaged noisy pixels with their less noisy neighbors
(Figure 3(d) and (g)).

Table 3. Noise estimation of in-vivo late gadolinium enhancement data for randomly selected 40
ROIs to obtain the mean-+std.

Original LR Image Bicubic SLSR Ours
Noise Level 53.52+5.48 35.76+3.67 40.17+4.89 32.04+4.17

Self-similarity based methods and later proposed self-learning based methods
utilize a multiscale decomposition of the LR image to understand the relation-
ship between its current scale and its lower resolution versions. Then the HR
output is reconstructed either using prediction from candidates selected by k-
nearest neighbors method (self-similarity based) or SVR (self-learning based).
To the best of our knowledge, previously published self-similarity or self-learning
based methods (e.g., [1, 11, 13]) are demonstrated on natural images, which
are assumed with less or no noise contamination. Results of the SLSR method
tested on ex-vivo data with various additive noises showed that for the noise
level 0 < 20 SLSR outperformed bicubic interpolation with significant differ-
ences (Figure 3(e) and (h) and Tables 1 and 2). This may be attributed to the
fact that SVR learns local pixel value variations nonlinearly, while negative lobes
on the bicubic kernel tend to create ringing artifacts. When o = 25 SLSR per-
formed similar to bicubic interpolation (no significant difference) demonstrating
that SLSR results can be affected by noise significantly. Tellingly, with noise sup-
pression in each level of the multiscale pyramid our method showed significant
improvement of both PSNR and MSE even for the dense noise contamination
with high magnification factor (Tables 1 and 2). Both line profiles and remain-
ing noise estimation further confirmed the merits of our SR method (Figure 5(d)
and (e) and Table 3).

Although previous research demonstrated the success of using paired LR and
HR training datasets to super-resolve a given new LR image [9], in this study we
emphasize the practical infeasibility of this class of methods for CMRI images
where acquiring HR training data can require prohibitively long scan times. For



clinical CMRI studies, total scanning time per patient is already long (typically
60 minutes) and this can not easily be extended for HR data acquisition without
having a significant input on patient throughput. A method, which doesn’t re-
quire the use of HR training data, is therefore highly desirable. Moreover, there
are potential hazards include painful peripheral nerve stimulation for prolonged
scanning time. We are aware that our proof of concept study may have two limi-
tations. First, there are several parameters that can be tuned in our framework,
e.g., the thresholds for the calculated gradient magnitude in Sobel filtering and
DTCWT denoising. Currently they are based on trial and error; however, we en-
visage that future assessment of the robustness of the SR framework will include
parameter perturbation. Second, we explicitly assumed an additive Gaussian
noise for simplicity, but more complex noise modeling and suppression could
be easily plugged-in to the current framework. In summary, our SR framework,
which couples SVR and DTCWT, can achieve promising HR CMRI results while
effectively suppressing the noise.
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