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Abstract. The most frequent cause of heart attack and sudden car-
diac death is the disruption of plaque build ups in the arteries. Current
technologies such as intravascular ultrasound (IVUS) and optical coher-
ence tomography (OCT) image the vessels from inside-out in order to
detect plaque deposits as well as other structures. In this work we de-
velop a novel image fusion technique that produces images with greater
quality and quantity of information by establishing a correspondence
between the two modalities. We employ a three step process using fea-
ture extraction, registration, and image fusion. The final results of our
algorithm represent an improvement over each modality individually.

1 Introduction

The fusion of different medical image modalities is a clinically welcomed proce-
dure for providing physicians with more enhanced diagnostic information and
computer algorithms with higher resolution, richer image measurements. This
fusion would not be possible without multi-modal image registration, which is
now an essential tool in medical imaging.

The purpose of this paper is to develop a novel image fusion of intravascular
ultrasound (IVUS) and optical coherence tomography (OCT) images to aid the
study of atherosclerotic plaques. Atherosclerosis is a disease characterized by a
deposit of plaque in arterial wall over time. The disruption of an atherosclerotic
plaque is considered to be the most frequent cause of heart attack and sudden
cardiac death [1]. Therefore, studying vulnerable plaques constitutes a major
research area in the field of clinical and medical imaging. Merging imaging
techniques will advance the diagnostic accuracy of IVUS and OCT and might
improve the detection of rupture-prone plaques.

Intravascular ultrasound (IVUS) is a widely available clinical tool for guid-
ing percutaneous interventions. (See Figure 1-b) While IVUS uses frequencies
from 20 to 40 MHz and provides good penetration depth, it lacks high enough
accuracy (resolution 120um) to study thin-cap atheroma lesions. Optical co-
herence tomography (OCT) is a newer imaging modality that provides high
resolution (15-20pm) tomographic visualization of coronary arteries (see Fig-
ure 1-¢). However, OCT lacks penetration with a maximum of only 1-2 mm into
the plaque, but it can image behind calcifications clearly while ultrasounds are
intensely reflected. The current high resolution capabilities of OCT are well
suited for imaging vulnerable plaques but poor depth penetration hamper full
characterization of coronary lesions and plaque burden. Since IVUS penetrates
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Fig. 1. Anatomy of vessel (a), IVUS image with catheter artifacts (b), OCT image

(c).

deeper into the media and adventitia, combining OCT and IVUS modalities will
enhance quantitative analysis of coronary arteries significantly (see Figure 1-a
for a diagram of vessel anatomy).

Multi-modal image registration techniques have been presented among var-
ious imaging modalities: Magnetic Resonance (MR) and Computed Tomogra-
phy (CT) images, Ultrasound and CT, PET and CT, and so on. Multi-modal
image registration through information theoretic measures, such as mutual in-
formation [2, 3], Kulback-Liebler divergence, and other similarity metrics [4]
have been extremely popular for both rigid and non-rigid registration. In two
main streams of registration, landmark-based approaches utilize a set of fiducial
marks, either automatically extracted or selected by the user [5, 6], whereas im-
age intensity-based registration approaches utilize global or local image match-
ing metrics such as cross-correlation and sum of squared differences [7-9]. See
surveys [10, 11].

Our contribution in this paper is to develop a computer assisted image fusion
of IVUS and OCT by a two phase registration. The practical advantage of fusion
is to make use of deep penetration of IVUS in addition to the high resolution of
OCT for imaging of the plaque. Our method is currently semi-automatic due
to user selection of key image frames from each of the IVUS and OCT datasets
to bypass longitudinal registration in 3D, which will be addressed in a future
work. Instead we focus on the transverse plane registration of the 2D image
frames. To our knowledge, this is the first study that fuses the two intravascular
imaging modalities, IVUS and OCT. Our hypothesis is that combining these
images will improve the accuracy of plaque characterization and further studies
of vulnerable plaque via finite element modeling and fluid structure interaction.

2 Method

In this section, we explain the steps of our IVUS-OCT fusion method. Our as-
sumption is that the longitudinal correspondence of input pairs from IVUS and
OCT pullback volumes are selected manually by the user, and the developed
method handles the automatic transverse plane registration afterwards.

We combine a landmark-based rigid registration method with an image-
based non-rigid registration in order to align and fuse the IVUS and OCT
modalities. As such our approach is comprised of several steps: i.) extract-
ing landmarks in the different datasets, and establishing the correspondence
between them; ii.) estimating the rigid transformation between the datasets
using the landmarks; iii.) aligning the two datasets further by non-rigid regis-
tration; iv.) fusing the two datasets using the computed transformations. The
above steps are explained in the next subsections.
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Fig. 2. Side Branch in IVUS (a) and OCT (c), Calcification in IVUS (b) and OCT
(d).

2.1 Feature Extraction

Landmarks can take the form of points, lines, surfaces, or volumes. We chose
to utilize landmarks in the form of contours that will provide correspondence
between IVUS and OCT image data. When determining the location of these
contours all of our computations are carried out in a rectangular format, which
is the original acquisition format.

The important features we use to create these contours are the inner arterial
wall, the side branches, and the calcification regions. Our algorithm works on
matched pairs of 2D key frames from corresponding scans that contain a side
branch, a large calcification region, or both. First, the inner wall of the vessel
is segmented using a previously developed segmentation algorithm [12]. Once
this is complete, the detection of side branches and calcification regions can
begin.

Side branches are identified as the openings formed when the vessel being
imaged bifurcates. This is visualized as an area of dark intensity extending
from the lumen in the near field towards the far field (Figure 2-a and 2-c).
The intensity pattern is detectable in the rectangular image domain as a dark
intensity segment extending in the radial direction (vertically in the rectangular
image).

Calcium deposits are places along the vessel wall where minerals have col-
lected to form dense pockets. In IVUS, these deposits can be recognized by the
presence of a bright echo along the lumen and shadowing of the far-field struc-
tures. This distinctive pattern is observed in OCT (Figure 2-b and 2-d). The
intensity pattern used to identify these features is a dark inclusion delimited
by sharp borders without shadowing.

In order to detect these features the thickness of the detected vessel wall is
measured over the entire scan. This is accomplished by first extracting a contour
that traces the farthest-field data that was obtained. In the rectangular domain,
this corresponds to the bottom of the grayscale data. Next, the segmented
lumen contour is projected outward radially by a small distance. This distance
is set adaptively based on the average thickness of the imaged vessel. Typically,
IVUS images use a larger distance than OCT images due to innate differences
in the technologies. In Figure 3 the farthest-field contour is marked in white
while the projection of the lumen contour is displayed in blue for both images.

A measure for thickness is obtained by computing the distance between the
projected lumen contour and the detected contour representing the farthest-
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Fig. 4. Final feature detector output in the rectangular domain. IVUS (a), OCT (b).

field structures. Places where the farthest-field structures are either missing or
extremely close to the lumen contour represent possible feature locations. In
Figure 3 feature locations are marked by vertical green lines.

Once feature locations have been identified, they are examined in more
detail. Locations which have a significantly darker lumen in the feature area
are classified as branches while locations which have particularly bright lumen
in the feature area are classified as calcifications. If the intensity of the lumen
in the feature area is not significantly high or low the feature is assumed to be
incorrectly labeled and is discarded.

In the registration phase it is simpler to use the single most distinctive
feature. Thus, the feature contour is analyzed once more. If a branch is present it
is used. If no branches are present then the calcification which formed the most
intense shadows (and therefore thinnest detected contour) is used. A contour
tracing the inner boundary of the lumen and extending sharply into the far
field at the center of the feature is created as the final feature detection output.
Figure 4 Shows the final result of the feature extraction after post processing.
These contours are then transformed back to the polar display domain where
the registration step takes place.

2.2 Rigid Registration Based on Feature Maps

In order to solve the correspondence problem from IVUS to OCT we need to
register the feature contours built in the previous section. Because OCT is the
higher resolution imaging modality the IVUS image will be deformed to align
with the OCT image. The correspondence is found very naturally by embedding
the contours C' € 2 in the image domain 2 € R? implicitly as the zero-level
set of a signed distance function @ : R2 — (2:

C ={(z,y) € 2|@(z,y) = 0}. (1)

This representation, which eases the rigid registration step, can be directly
plugged into a sum of squared differences (SSD) criterion:

$5D(g) = /Q (@ (g (,y)) — B°(x, y))*dudy, 2)
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Fig. 5. Several selected iterations taken during rigid registration.

where the unknown g¢ is a rigid motion in R? to be estimated, and the su-
perscripts * and ° denote the IVUS and the OCT images, respectively. The
rigid motion g : R? — R? has 2 translation parameters, a rotation parameter
and a scale parameter. The rigid registration equation for each transforma-
tion parameter g; is derived from the cost functional above by taking its first
variation:

0gi
ot

— @0 ) -2 < VT > 5

Here p denotes a uniform parameter on the contour C*. With the level set
representation, and a simple finite differencing discretization of the Eq.(3), a
simulated rigid motion can be extracted. Figure 5 shows several steps in the
evolution of the rigid registration of two feature contours.

2.3 Non-Rigid Registration for Refinement

After rigid registration, we perform a non-rigid registration to account for local
deformations between the IVUS and OCT images. The vector field u : 2 — 2
that represents the discrete displacement field from the already rigidly trans-
formed IVUS image I*f to the OCT image I° will be estimated by a min-
imization of a similarity metric between some appropriately processed and
transformed image intensity functions. In a multi-modal image registration,
image intensities usually can not be used for alignment directly and should be
transformed according to the application. In IVUS and OCT image modalities
image intensity patterns are very different, but the strong gradients on and
around the dominant structures are naturally very similar. Therefore, a highly
smoothed gradient image is used as a similarity metric for image matching.
We chose the normalized cross correlation as a statistical similarity measure

for a non-rigid alignment: CC(u) = \/V(;(;\(/I(i;?;i;lz;aj)))) :gr((?o)()ac))

denotes the covariance of the intensities between I*%(z) and I°(x), and var
denotes the variance of the intensities in an image. In order to regularize the
unknown vector field u , a penalty on its variation is added.

where cov

cov(I"®(x +u(x)) — I°(x
CC(u) U (= tulz) - I ()) ))+/Q|Vu|2dw (4)

- \/Var(fi’R(:E +u(x))) var(I°(x

This encourages a smoothly varying vector field. A variational approach to de-
rive the above cost functional results in partial differential equations to estimate
the displacement field w (see [13] for the final equations).
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2.4 Fusion

The final step of our algorithm is to fuse the two aligned images I and I°.
The two modalities IVUS and OCT will be fused in a weighted way based on
prior anatomical information and strengths of each modality. Calcium has well-
defined borders in OCT images, particularly for the first 2 mm, and appears as
a shadow behind a bright echo in IVUS images. Thus, the two modalities will
be fused through a convex combination, which is spatially weighted according
to the distance from the lumen boundary. In the first 2 mm from the edge
of the lumen contour, only OCT data is shown. Over the next 1 mm a linear
transition occurs where the OCT weight is decreased to zero as IVUS weight
is increased. Farther than 3mm from the lumen contour, only IVUS data is
shown.

3 Results and Conclusions

Our results have been summarized in Figure 6: the fused images represent an
enhancement in the amount of information contained in each frame. As a result,
improved diagnostic accuracy of plaque characteristics and further analysis of
arterial wall properties can be accomplished.

This novel image fusion technique has been shown to be capable of com-
bining information contained in IVUS and OCT imagery and producing new
images which present all relevant information in a more convenient form. The
final fusion results display the highly accurate, but shallow penetrating OCT
data when available and seamlessly blend into the less accurate, but far reach-
ing IVUS data. This will facilitate identification of detailed near-field structures
such as thin-cap atheroma lesions as well as the deeper structures to assess the
plaque burden or the remodeling index of coronary lesions. Thus using this
type of visualization will allow physicians to make higher quality diagnoses in
less time.

One current limitation of this technique is that it requires that matched
frames with discernable features be provided by a user. However, the algo-
rithms developed in this study will be extremely useful in extending the results
obtained here to future work. We plan to eventually create fusion/compound
imaging automatically from the IVUS and OCT pull-back volumes in 3D.
Transverse plane registration of key frames will be a key component in produc-
ing a high resolution 3D mesh structure of the arterial wall showing locations
of coronary plaques.
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Fig. 6. Fusion results from six matched key frames. The columns show OCT images,
matched IVUS images, and the fused result after registration respectively. The fiducial
markings were placed manually to illustrate which primary features were aligned
during rigid registration. Blue indicates a calcification, and green indicates a side
branch.
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