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Abstract. Segmentation of arterial wall boundaries from intravascu-
lar images is an important problem for many applications in study of
plaque characteristics, mechanical properties of the arterial wall, its 3D
reconstruction, and its measurements such as lumen size, lumen radius,
and wall radius. We present a shape-driven approach to segmentation
of the arterial wall from intravascular ultrasound images in the rectan-
gular domain. In a properly built shape space using training data, we
constrain the lumen and media-adventitia contours to a smooth, closed
geometry, which increases the segmentation quality without any trade-
off with a regularizer term. In addition, we utilize a non-parametric
probability density based image energy, with global image measure-
ments rather than pointwise measurements used in previous methods.
This greatly enhances our segmentation method. The tests of our algo-
rithm on a large dataset demonstrate the effectiveness of our approach.

1 Introduction

Intravascular ultrasound (IVUS) allows real time tomographic assessment of the
arterial wall, which is very important for studying vascular wall architecture
for diagnosis and assessment of the progression of the cardiovascular diseases
[1]. Atherosclerosis is a disease characterized by a deposit of plaque in arterial
wall over time. The disruption of an atherosclerotic plaque is considered to be
the most frequent cause of heart attack and sudden cardiac death. Studying
vulnerable plaques constitutes a major research area in the field of clinical and
medical imaging. In order to track progression and regression during therapy of
the atherosclerosis, the luminal and media/adventitial arterial wall is extracted
and the plaque area is identified in the region between these two borders. Man-
ual segmentation and processing is tedious, time-consuming, and susceptible
to intra- and inter-observer variability. Due to the high number of images in
a typical IVUS pullback, in the order of hundreds, automated segmentation of
the arterial contours is an essential task.

Numerous approaches have been used to (semi-)automatically detect regions
of interest in IVUS images. Most reported successful approaches are based on
contour detection using a minimization of a cost function of the boundary
contours or deformable models. Various optimization algorithms are applied.
One approach is graph searching [2] in which prior knowledge of the expected
IVUS pattern is incorporated. Other approaches are based on active contours
[3, 4], probabilistic segmentation using elliptic templates [5], active contours
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through a neighborhood search [6, 7] and statistical distribution of blood and
vessel wall tissue [8, 9].

None of the previous IVUS segmentation algorithms used a shape-driven
approach, as we present in this paper. Medical IVUS image segmentation algo-
rithms are almost always hampered by noise, stents, shadowing due to calcium
deposits and have weak or missing boundaries of structures. Under such condi-
tions, prior models proved to be useful in aiding the segmentation process. In
fact, active shape models (ASMs) have become a popular tool in various seg-
mentation applications for prostate, heart structures such as the left ventricle,
and brain structures such as the corpus callosum [10–13]. The first ASMs [10]
used parametric point distribution models learned through principal component
analysis (PCA). The contours or shapes in a training dataset are first aligned to
build an average shape, and eigen modes or eigenshapes obtained through PCA
describe the variations from the mean shape. Implicit shape representations are
now more popular since they solve the correspondence problem between shapes
during the alignment stage [11, 12]. Our contribution in this paper is a shape-
driven approach to IVUS segmentation. We will model both the lumen and
medial/adventitial contour variations within a shape space, in the “resampled”
rectangular domain. Hence, we constrain the lumen and media-adventitia con-
tours to a smooth, closed geometry, which increases the segmentation quality
without any tradeoff with a regularizer term, yet with adequate flexibility. In
addition, we utilize a non-parametric probability density based image energy
with global image measurements rather than pointwise measurements used in
previous methods. This greatly enhances our segmentation method.

2 Shape Representation and Shape Space

In this paper, we build a statistical shape model to represent the inner and
outer arterial wall contours in a compact way, and use this shape prior to drive
the segmentation. The details of this method particular to the IVUS application
are explained next.

2.1 2D Curves in “Re-sampled Rectangular” Domain

To build a statistical shape model, first a shape representation has to be se-
lected. Typical lumen and medial/adventitial contours are shown in Figure 1
in both the display domain and the resampled rectangular domain, which
is the original acquisition format. We choose the rectangular representation,
since computations are much simpler due to the 1D appearance of the seg-
menting contours (see Figure 1b). Therefore, in the rectangular image domain
Ω ∈ R

2, we utilize an implicit shape representation by embedding periodic
contours C ∈ Ω implicitly as the zero-level set of a signed distance function
Φ : R

2 −→ Ω:
C = {(x, y) ∈ Ω|Φ (x, y) = 0}, (1)

where Φ (x, y) < 0 is above (inside), and Φ (x, y) > 0 is below (outside) the
contour.

2.2 Data Description

In-vivo pullbacks of 1529 frames on 20 patients were acquired with a Volcano
Therapeutics Galaxy machine at 15 frames/sec with 1mm/sec using a 20MHz
transducer. The pullbacks were taken from the left anterior descending artery
(LAD), the right coronary arthery (RCA), and the left circumflex coronary
artery (LCX). We used 257 frames to train our shape space and 1272 frames
for testing. The patients used for training were not included in the testing.
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Display domain Rectangular domain

Fig. 1. Lumen and media/adventitia in display and rectangular domain.

The lumen and media/adventitia contours were segmented by an expert in-
terventional cardiologist in our team, in order to provide the “ground truth”
segmentation contours both for training and for testing.

2.3 Building a Shape Space

After the signed distance representations for the N lumen shapes Φl
1 , ...,Φl

N ,
and media/adventitia shapes Φa

1 , ...,Φa
N in the training dataset are formed, we

conduct statistical analysis. We align all the shapes radially by cropping them
from the uppermost row (radial) coordinate where the contours can start, and
the lowermost row coordinate where the media/adventitia contours can end.
The horizontal (angular) shift of the shape in the rectangular grid corresponds
to a rotation of the shape in the display domain. We have not carried out an
alignment in the horizontal direction because we would like the shape space to
capture those shifts through its eigenshapes.

We compute the mean lumen shape: Φl
mean = 1

N

∑N
i=1 Φl

i , and the mean
medial/adventitial shape:Φa

mean = 1
N

∑N
i=1 Φa

i . We subtract them from each
shape in the training set to construct the shape variability matrices Sl =
[Φ̃l

1 · · · Φ̃l
N ] and Sa = [Φ̃a

1 · · · Φ̃a
N ]. After PCA is carried out on both Sl

and Sa , we obtain our models that represent each shape as variations around
the mean:

Φl (w) = Φl
mean +

k∑
i=1

wl
iU

l
i (2)

where wl = {wl
1, w

l
2, ..., w

l
k} are the weights associated with the first k principal

modes U l
i . The same analysis is carried out for the training set containing the

media/adventitia shapes.
In Figure 2, the eigenshapes representing the first four variations in the

lumen shape space are shown by varying them around the luminal mean shape:
Φl

mean + wl
i U l

i , with i = {1, 2, 3, 4}. Note that the first mode deformation
corresponds to a negative/positive amplification of the curving, the second
mode to a radial shift (distance to the catheter and change of the lumen area)
although it also includes an angular shift effect. The third mode corresponds
to a flattening vs. curving whereas the fourth and higher modes explain more
local variations of the shape. The same interpretations can be made for the
eigenshapes of the media/adventitia contours. As we can see from Figure 2
the arterial wall contours form a fairly restricted class of shapes, therefore
a small number of eigenshapes {U l

i }k
i=1 and {Ua

i }k
i=1 is needed to explain
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Fig. 2. Luminal mean shape with weight variations for the first four modes.

its variations. In our experiments we found that six principal modes suffice
for lumen and media/adventitia, respectively, to obtain shapes that are both
meaningful and smooth.

3 Segmentation Framework

Once we build the statistical shape space, any arterial wall can be represented
by a vector of weights wl

1, ...w
l
k associated with the first k principal modes of

the lumen data, and wa
1 , ...wa

k of the media/adventitia data. The weights of any
shape can be found using Eq. (2) by projecting the shape matrix without the
mean onto the mode matrix:

w l = U l
T (Φ l − Φ l

mean) (3)

where Φ l represents the truncated mode matrix in the reduced subspace. With
this compact shape description, we will evolve the shape weights w directly
to deform the contour towards the lumen and media/adventitia borders in the
IVUS image. The steps of the segmentation are explained next.

3.1 Preprocessing

In IVUS images, the catheter creates a dead zone in the center of the display
domain, or the top rows of the rectangular domain, along with the imaging
artifacts due to ”halo” ring-down effects of the catheter (see Figure 1). These
regions need to be removed because otherwise they will hamper the segmen-
tation process. The standard approach, that is to subtract the average image
from every frame, does not remove the artifact properly and degrades the image
quality. For our data we observe that the artifact stays approximately constant
over the IVUS sequence of frames. However, the variance of the artifact is not
zero because the luminal border often interferes with the artifact zone. By tak-
ing the minimum image Imin(x, y) = mini∈λ Ii(x, y) over a set of frames Ii of
the IVUS sequence λ (e.g. 20 frames), we get the constant artifact zone with-
out the bright interferences with the contour. We compute the sums over the
rows of Imin and find the global maxima. The catheter artefact is noted down
as the row at which the row sum falls below 50%. We omit the rows above
this artifact line from any kind of computations involved in our segmentation.
The first local minimum after the global maximum indicates us the end of the
artifact. We subtract the artifact zone of Imin from every frame, as shown in
Figure 3a and b.

3.2 Lumen Segmentation

The next step is to initialize the lumen contour in a way that takes advantage
of the prior information about the lumen region having less ultrasound reflec-
tion, hence a dark intensity profile. We shift the mean lumen shape Φl

mean
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)-(b) Rectangular domain before and after artifact removal, (c) initialization
of the luminal contour and (d)-(f) evolution of the luminal contour after 3,6 and 9
iterations.

in angular direction to minimize the mean intensity above the contour. This
simple strategy for the initial shape pose works well as shown in Figure 3c.

For the evolution of the luminal contour we utilize region statistics from
IVUS images for segmentation, and define the following energy

Elumen(w l) =
∫

Ω

−Xin(x ) log(Pin(I(x ))dx +
∫

Ω

Xout(x ) log(Pout(I(x ))dx

(4)
where X is an indicator function for inside and outside the contour. This
is the familiar regional probabilistic energy [13]. To estimate the probabil-
ity distributions Pin and Pout, we use the Kernel density estimator: P (q) =
1

Nσ

∑N
i=1 K( q−qi

σ ), where N is the number of pixels inside or outside the contour
and K(p) = 1√

2π
exp(−p2

2 ), with a heuristically chosen σ value (e.g. σ = 10).
Finally, we take the first variation of the energy in Equation (4) to find

the gradient flow of the contours represented by the weight vector w . The
Euler-Lagrange equations result in the ordinary differential equation (ODE):

∂wl
i

∂t
=

∫
C

− log(Pin(I(x ))/Pout(I(x ))U l
idx , (5)

where U l
i is the corresponding eigenshape.

The equation above uses pointwise intensity measurements on the contour,
therefore may be hampered by speckle noise in the lumen. We design a more
global intensity term Imodified that avoids the contour getting stuck in local
minima. This intensity utilizes a maximum function of the averaged intensity
over the column above the contour position x = (x, y):

Imodified(x, y) = max
y0∈[0,y]

1
y − y0 + 1

y∑
yi=y0

I(x, yi), (6)

where the origin of the image (0,0) is in the top left corner. We then replace
I(x ) in Equation (5) with Imodified(x ).

We constrain the luminal contour by the artifact line (see Figure 3b). The
evolution of the shape weights, hence the segmentation, over the artificial evo-
lution time t is depicted in Figure 3c- 3f.
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(a) (b)

(c) (d)

Fig. 4. Segmentation of media/adventitia: (a) max intensities contour (b) median
filtered contour (c) initial shape pose with gradient window (d) evolved contour (after
six iterations)

3.3 Media/adventitia Segmentation

In IVUS images, the media is observed as a thin black line, whereas the ad-
ventitia tissue has echogenic characteristics and appears very bright. We take
advantage of this anatomical observation by employing edge information. How-
ever, a pointwise gradient is not very useful because of the noise present in IVUS
images. We define a smoother version of the gradient as the difference between
the average intensity of a square above and below the current pixel position.

For the initialization of the media/adventita contour we divide the rectan-
gular image into 25 columns (= 14.4◦ angular intervals). We find the position
of maximal gradient for every column. This will give us a first initialization of
the media/adventitia contour (see Figure 4a). A median filter (of size 7) that
is passed over this initial contour eliminates eventual noise due to small arti-
facts or openings as shown in Figure 4b. We use the median filtered contour to
obtain our initial shape pose (see Figure 4c).

For the evolution of the media/adventitia contour we compute the gradient
as the difference between the average intensity of two oriented windows above
and below the contour as shown in Figure 4c. We utilize the familiar edge-
based energy [14], and derive the ordinary differential equation (ODE) for the
media/adventitia contour, with ∇G representing the smoothed oriented edge
gradient:

∂wa
i

∂t
=

∫
C

∇G(x )U a
i dx . (7)

In addition, we incorporate an anatomical constraint to the evolution of the
media/adventita so that the minimum distance to the lumen is 0.2mm.

4 Results and Discussions

We tested our IVUS segmentation algorithm on 1272 images from IVUS pull-
backs of 18 different patients. The update equations (5) and (7) are used to
segment the lumen and media/adventitia contours and they typically converge
after 5 to 50 iterations. Figure 5 demonstrates our results for several frames. We
found that our media-adventitia algorithm works very well when there are no

55



(a) (b) (c)

(d) (e) (f)

Fig. 5. Six examples of automatically computed lumen and media/adventitia con-
tours, including the cases of (a) healthy artery without plaque (b) centric catheter
(c) small lumen with spurious noise between lumen and media/adventitia (d)-(f) cal-
cification with black shadow

very strong features such as a large calcification or a large side branch opening.
With minor calcification and side branches, the segmentation is fairly success-
ful due to the nicely constrained shape space in which our segmentation takes
place. Because of this, even if there are openings, noise or other artifacts, the
contour stays as a closed smooth contour, and can achieve meaningful results.
Table. 1 depicts the percentage of true positive pixels, false positive pixels,
and absolute area differences. It can be observed that our algorithm achieved
a 96.99% correct classification for the lumen contour, and a 92.74% for the
media-adventitia contour.

Table 1. Percentage of true positive and false positive pixels, and the absolute area
differences between the segmentation maps of our algorithm and the physician’s man-
ual delineations for both the lumen and the media/adventitia contours, averaged over
1272 IVUS frames.

True Positives (%) False Positives (%) Absolute Area Difference (mm2)

Lumen Contours 96.99 ± 32.30 11.14 ± 8.41 0.677 ± 0.617

M-A Contours 92.74 ± 7.75 3.30 ± 4.95 0.719 ± 0.914

The pixel size is 25 x 25 µm2.

With a 20MHz IVUS probe, it can be observed that a fair amount of speckle
noise is present in the lumen. However, a higher frequency probe (40MHz)
will produce more speckle noise. Therefore, the lumen segmentation has to be
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adopted by computing a new intensity probability distribution. This will be
part of our future studies.

5 Conclusion

We have presented a shape-driven approach for segmenting arterial wall from
IVUS images in the “resampled” rectangular domain. Our experiments demon-
strate that this method can be used in plaque analysis, 3D reconstruction of the
arterial wall and for measurements such as lumen size, lumen radius, wall ra-
dius, and so on. In future work we plan to focus on detecting calcifications and
branch openings, and incorporating that knowledge into the medial/adventitial
contour extraction. We will also take advantage of the continuity of images in
the IVUS pullback sequences and enhance our algorithm by extending it to 3D.
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