A Hybrid Energy Model for Region Based Curve
Evolution - Application to CTA Coronary Segmentation

Muhammad Moazzam Jawaid®*, Ronak Rajani®, Panos Liatsis”, Constantino
Carlos Reyes-Aldasoro®, Greg Slabaugh?®

o City, University of London, Northampton square, London, EC1V 0HB
YThe Petroleum Institute, P.O.Box 2533, Abu Dhabi, UAE
¢St Thomas’ Hospital, Westminster Bridge Road, London, SE1 7TEH

Abstract

Background and Objective: State-of-the-art medical imaging techniques have
enabled non-invasive imaging of the internal organs. However, high volumes
of imaging data make manual interpretation and delineation of abnormalities
cumbersome for clinicians. These challenges have driven intensive research into
efficient medical image segmentation. In this work, we propose a hybrid region-
based energy formulation for effective segmentation in computed tomography
angiography (CTA) imagery.

Methods: The proposed hybrid energy couples an intensity-based local term
with an efficient discontinuity-based global model of the image for optimal seg-
mentation. The segmentation is achieved using a level set formulation due to the
computational robustness. After validating the statistical significance of the hy-
brid energy, we applied the proposed model to solve an important clinical prob-
lem of 3D coronary segmentation. An improved seed detection method is used
to initialize the level set evolution. Moreover, we employed an auto-correction
feature that captures the emerging peripheries during the curve evolution for
completeness of the coronary tree.

Results: We evaluated the segmentation accuracy of the proposed energy model

against the existing techniques in two stages. Qualitative and quantitative re-
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sults demonstrate the effectiveness of the proposed framework with a consistent
mean sensitivity and specificity measures of 80% across the CTA data. More-
over, a high degree of agreement with respect to the inter-observer differences
justifies the generalization of the proposed method.

Conclusions: The proposed method is effective to segment the coronary tree
from the CTA volume based on hybrid image based energy, which can improve
the clinicians ability to detect arterial abnormalities.

Keywords: computed tomography images; coronary segmentation; hybrid image

energy; level set method.

1. Introduction

Coronary artery disease (CAD, also known as atherosclerosis) relates to the
accumulation of cholesterol and fatty materials inside coronary arteries. Its
growth leads to an obstruction of the vasculature that supplies blood to the
heart musculature. As a result, the heart muscles become oxygen starved which
may result in fatal cardiac consequences including angina, heart failure and ar-
rhythmias. The mortality rate of CAD has dramatically increased in the last
decade around the globe. According to the fact sheet of the World Health
Organization [I], CAD was the prevailing cause of death globally in 2013, re-
sulting in 8.14 million deaths (16.8%) compared to 5.74 million deaths (12%) in
1990. Moreover, recent statistics of the National Health Services, United King-
dom [2] reveal that over 2.3 million people in the United Kingdom suffer from
CAD where the annual death toll is approximately 73,000 (an average of one
death every seven minutes). These substantial levels of ongoing morbidity and
mortality have led to heightened interest in new methods to identify coronary
abnormalities.

From a clinical point of view, the early detection of arterial abnormalities
is crucial as future cardiac events can be avoided or at least delayed, by ad-
dressing the behavioural risk factors such as tobacco use, unhealthy diet and

the physical routine. The conventional methods used to detect CAD include
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catheter guided techniques X-ray angiography, optical coherence tomography
(OCT) and intra-vascular ultrasound (IVUS); however, the invasive nature make
these methods time consuming and sensitive as a considerable risk is involved.
Moreover, the 2D angiogram-based representation of 3D vessels provides insuf-
ficient information to rule out the possibility of CAD as remodelling is often
missed. In contrast, the recent advancements in non-invasive imaging have
revolutionized the diagnostic accuracy as modern equipment has the potential
to image sub-millimetre details of internal organs [3]. Especially, CTA has
emerged as an important technique based on the fact that the internal organs
can be well differentiated on the basis of intensity response. For example, in
a cardiac CTA, the blood filled vessels appear comparatively brighter than the
surrounding tissues, which facilitates manual tracking of the coronary structures
with a reasonable accuracy. A shortcoming of the non-invasive imaging is the
high volume of imaging data, where it becomes cumbersome for the clinicians
to manually track structural abnormalities. Moreover, the manual analysis be-
comes time consuming and the diagnostic accuracy depends upon the previous
knowledge and expertise of the radiologist. These limitations have driven an
intensive research for automated diagnosis methods. The first step towards an
effective diagnosis is segmentation of the anatomical object of interest from the
background. Segmentation algorithms generally employ the intensity character-
istics to split an image into n distinct regions. A simple criterion is the gradient
strength which measures the directional change in the intensity of the image;
however, gradient based methods result in erroneous segmentation in the ab-
sence of sharp distinctive boundaries. In contrast, region based segmentation
methods exploit the principle of region homogeneity inside the image. Objects
are classified in the image based on the assumption that neighbouring pixels
constitute a homogeneous region if they have similar intensity. Region based
methods have proven to be more robust for medical imagery, as they are less
dependent on the initialization and more resistant to image noise [4]. Depend-
ing upon the complexity of the structures, a combination of features (geometric

shape, texture, intensity) can be used for effective delineation of objects.
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We now briefly summarize the flow of this paper. In Section 2, we review the
literature related with the current work. Starting with the generic image seg-
mentation, we conclude Section [2] with a focus on CTA coronary segmentation.
Section [3| gives a general description of the CTA data in this work, whereas the
proposed model is explained in Section @} In Section [5} we compare the perfor-
mance of proposed model with the existing segmentation methods. In Section

[6] we provide the discussion and some future directions for this work.

2. Related Work

Active contours have been a popular choice for image segmentation in recent
years [0]. The motivation for the active contour model is the seminal work
of Kass et al. [0] in which the object segmentation was posed as an energy
minimization problem. According to this model, the object boundaries can be
captured in an image with the help of a parameterized evolving contour where
the evolution of the moving contour is regulated by a complex energy metric as

expressed in Eq.
1
E= / Eint (Cs‘) + Eert (Ce) + Econs (CS) d5 (1)
0

where Cs denotes the evolving curve parameterized by s, and s is the curve
arc-length. The internal energy FE;,; penalizes the bending and stretching of
the curve to ensure smoothness, E.,; represents image based energy (intensity
statistics) and FE.,, refers to explicit constraints imposed by the user. Caselles
et al. [7, [§] proposed the geometric contour models to address the topological
changes during evolution. In contrast to the parametric representation of Kass
et al. [6], the geometric model was based on the level set formulation [9] which
allows the tracking of complex moving structures.

Apart from the contour representation, the curve driving force E..; plays a
decisive role in the successful delineation. Methods reported in [6] [7, 8, [10] ap-
proximated the image energy F.,: in terms of gradient strength, whereas Chan

and Vese [4] and Yezzi et al. [II] reported the use of region based statistics.
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Based on the assumption of homogeneous intensity for the object and back-
ground region, Chan-Vese approximated two regions with their global mean
intensities. Similarly, the energy formulation of Yezzi et al. [II] employed the
idea of maximal separation between two mean intensities of a piecewise con-
stant image. Consequently, the optimal segmentation can be achieved for both
models when the evolving curve captures the boundary of the object. Likewise,
an effective use of the level set based evolution is recently reported by Wang
et al. [12] for CTA based liver segmentation. Accordingly, the authors inte-
grated shape-intensity joint prior constraints in Chan-Vese energy formulation
for accurate segmentation of liver in CTA volume.

It should be noted that the global approximation of image statistics lead
to a good segmentation in generic images but fails to handle complex medical
data [I3], as medical images often violates the piecewise constant assumption.
Intensity inhomogeneity often occurs in medical images due to the acquisition
hardware artefacts, partial volume effect and different types of noise. In other
cases, it also appears due to the nature of data i.e. the non-uniformity of tis-
sues leads to an increased inhomogeneity [I4]. An effective way to overcome the
inhomogeneity problem is to approximate the image based energy FE.,; using
a fairly small region, so that curve evolves according to the local intensity dis-
tribution. The incorporation of localized statistics in the image segmentation
was first proposed by Brox and Cremers in [I5], where the piecewise smooth
model of Mumford-Shah [16] was approximated by the local means. Similarly,
Xu et al. [I7] proposed the use of local intensity statistics in a hybrid model
for an improved segmentation. Accordingly, the authors used global approxi-
mation in Chan-Vese energy model and the local approximation in the mean
separation energy model of [I1]. An improved segmentation was achieved by
using a weighted contribution of two terms; however, the computational cost
increases in terms of a two-fold segmentation. Moreover, the method was quan-
titatively evaluated only on 2D images and no results were reported for com-
plex 3D multi-scale images. Lankton and Tannenbaum [I8] proposed a novel

method for localized region based segmentation by introducing a radius-based
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kernel to define the localization scope. Successful results were presented for
both 2D image segmentation [I8] and 3D coronary segmentation [I9]; however,
the initialization sensitivity was explicitly emphasized. We have observed from
experimentation that the selection of the localization radius is critical in this
method. A large radius leads to a global approximation resulting in erroneous
segmentation, whereas a small radius makes the evolving contour vulnerable to
spurious local minima. Another limitation of this method is the demand for
intelligent placement of the initial mask to avoid the local optima problem.

In context of the vessel segmentation, Cheng et. al. [20] proposed a novel
idea of 2D cross-section based boundary detection of 3D vessels. According
to the proposed method, the vessel axis was computed in the first stage us-
ing multi-scale Hessian analysis. In the following step, a active contour model
was evolved to detect the vessel boundaries under shape and size constraints
for improved accuracy; however, the main limitation of the method is circular
shape approximation of the vessels. Consequently, the pathological lesions and
vessel morphological abnormalities may lead to inaccurate segmentation in this
method. Yang et al. [21] reported an edge-based method for the segmentation
of coronary tree from the CTA volumes. The authors employed an adaptive
inflation principle that allowed the bidirectional growth of the evolving curve
based on the curve position. A two class Gaussian Mixture Model was approx-
imated from the image histogram to obtain the edge map of the CTA volume;
however, a violation of two class behaviour in CTA volume may lead to the
erroneous segmentation as curve evolution is fully dependent on the resultant
edge map. Yin and Liatsis [22] proposed a hybrid energy model by integrating
the global image behaviour in the coronary evolution. In a pre-processing stage,
voxels representing the air in the CTA volume were normalized to obtain a two
class representation. Next, using the assumption of a constant background, a
bimodal histogram was approximated with a Gaussian Mixture Model. In the
final stage, an explicit label image was derived using a cumulative distribution
function of the histogram to represent the global model of the CTA image. This

method works efficiently for the bimodal images; however, it fails to handle
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the significant variations in CTA data encountered in practice. For instance,
the intensity shift in the background makes this approach vulnerable as the
label image misguides the evolving contour. Another limitation is the exclu-
sive pre-processing required for individual volumes as the acquisition dependent
parameters affect the quality of the CTA differently.

We make two basic contributions in this work. First, we introduce a hybrid
energy formulation that integrates the local intensity and a probability based
global discontinuity map of the image. The proposed hybrid energy based
model captures object boundaries accurately as the hybrid energy is less at-
tracted to the local optima solutions. Moreover, the hybrid energy provides
robustness against the initialization and localization radius simultaneously, as
demonstrated in Section The second contribution is the application of the
proposed energy model to solve an important clinical problem of coronary seg-
mentation. In the first stage, coronary seed points are detected based on Han et
al.’s [23] method; however, we reduced the false positive detections by impos-
ing a contrast medium based intensity constraint. In addition, we introduced
an auto-correction feature for the mask, which captures the emerging periph-
eries during the evolution process. The superiority of the proposed model is
illustrated by comparing the segmentation performance against coronary seg-

mentation model of Yang et al. [21].

3. Clinical CTA Data

In this work we used the clinical CTA data of the Rotterdam coronary artery
algorithm evaluation framework [24] 25]. The Rotterdam CTA data comes from
different institutions and is based on different vendors as illustrated in Table
This multi-vendor data makes the coronary segmentation challenging; how-
ever, it serves as a great platform to ensure the generalization of the proposed
algorithm. We investigated a total of 18 CTA volumes, for which the lumen
segmentation ground truth is also provided. The segment-wise [26] reference

ground truth is provided in terms of 3D discrete contours defining the lumen
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boundary along the length of the segment.

Table 1: CTA data used in coronary segmentation.

Vendor Siemens Toshiba Philips
Volume Count 6 6 6
Institution Erasmus MC Uni. (NL) | Leiden Uni. (NL) | Utrecht Uni. (NL)
CT Scanner Somatom Def. Aquilion One 320 Brilliance 64
Slice/Rotation 32x2 320x1 64x1
ECG Gating Retrospective Retrospective Retrospective
Reconstruction Kernel b26f b26f b26f
Contrast Medium Ultravist 370 Ultravist Ultravist 370

It should be mentioned that the main theme of the Rotterdam framework
is stenosis grading in the coronary tree; however, the provision of the manual
ground truth for lumen makes this data suitable for coronary segmentation

problems.

4. Proposed Model

In this work, we propose to integrate the discontinuity map (global model)
in the localized segmentation of Lankton et al. [I8] for an improved accu-
racy. The localized model computes the image based energy E.,; from a radius
constrained region, which often leads to the local optima problem. Thus, it
demands a careful initialization for the desired segmentation, which is not al-
ways straightforward in the case of complex medical structures. In contrast, the
integration of the image global model in the curve evolution process will allow
a certain amount of flexibility in the placement of initial contour. In case of far
initialization, the global term will push the contour towards the object bound-
ary by suppressing the influence of local optima. Moreover, a scalar weight
regulates the influence of the global term to achieve a desired segmentation. A

higher weight of the global term will push contour rapidly towards the salient
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features, whereas a lower weight will allow the localized statistics to fine tune
the object boundaries. Accordingly, we will show that the hybrid energy based
curve evolution will make the segmentation process robust i.e. less sensitive
to the initial placement of the mask and more flexible against the localization
scale. For the rest of the paper, we let I denote an image (3D CTA volume)
defined on the domain 2. Moreover, C' represents a closed contour to be evolved
and x, y denotes two independent spatial variables such that each represent a

point in the domain €.

4.1. Contrast Medium Approximation

A contrast medium is injected intravenously for enhanced visualization of
blood-filled coronaries as a part of the CTA examination; however, the diffusion
is not homogeneous in all patients. Consequently, we start with the assump-
tion that the mathematical modelling for the contrast medium behaviour in
an individual CTA volume may lead to an improved segmentation of the coro-
nary tree. Since the blood flows into coronaries from the descending aorta,
we therefore segmented the aorta in the first step to investigate the impact of
contrast medium. The bright appearance of the aorta in Fig. reflects the
presence of the contrast medium. For aorta segmentation, we first applied an
intensity threshold of 100 HU [27] to enhance the visualization of blood voxels
(i.e. to suppress the lungs and soft tissues) as shown in Fig. Based on
the circular appearance of the aorta in 2D axial planes, we applied a circular
Hough Transform [28] based shape analysis in the subsequent step to segment
the aorta from the blood volume as shown in Fig. Iteratively, 2D segmen-
tation is performed through axial slices until the circular aorta changes shape
which reflects the coronary origin. Next, we computed the intensity histogram
of the segmented aorta and modelled the mean response of contrast medium
with the help of a Gaussian distribution function. Fig. shows the intensity
distribution in the segmented aorta for three different volumes. A significant
difference in the mean intensity value emphasizes the need of using contrast

medium model in the segmentation process.
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The Gaussian mean represents the intensity value for contrast filled blood
in the descending aorta; however, the concentration of the contrast medium
decreases as the blood flows away from the aorta to distal segments of the
coronary tree. Moreover, the diffusion is also affected by the vessel remodelling
and intermediate plaque instances which results in ambiguous appearance of
distal segments. Thus, we accommodated the intensity drop by approximating

it with twice the standard deviation as follows:
R[ = {/11:&20’[} (2)

where u; and o represent the aorta based mean intensity and standard de-
viation for the respective CTA volume. The intensity range R; establishes a
realistic intensity interval for the coronary tree. We use the lower value to track
the vessel progression towards the distal segments, whereas the upper threshold

is used used to normalize the potential calcifications.

10



(a) 2D axial slice.

(b) Blood mask.

(c) Aorta segmentation
Intensity distribution in segmented Aorta for 3 Volumes
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(d) Gaussian approximation for segmented aorta intensity distribution.
Figure 1: Contrast medium approximation in a CTA volume. (a) shows the 2D axial slice
where contrast filled aorta is comparatively brighter. (b) and (c) shows the aorta segmentation

contrast medium behaviour.

using an intensity threshold of 100 HU and circular Hough transform. (d) shows the intensity
distribution of segmented aorta for 3 CTA volumes, where a significant variation refers to

4.2. Coronary Seed Detection

Coronary seed points are required to initialize the region growing segmen-
220

tation in the 3D CTA volume. For fast identification of the coronary seeds, we
exploited the fact that the coronary arteries appear as tubular structures along
the z dimension in the CTA volume. Consequently, we used Hessian based eigen

value analysis to identify the local geometry in 3D CTA volume as proposed by

Frangi et al. [29]. Accordingly, we computed the vesselness measure for the
complete volume using Eq.

11
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0 if Ao OT/\3>O

{1 —exp (—%) exrp (—%) (1 —exp (7‘22))} otherwise

Vo (x) =

(3)
where term R4 and Rp discriminate the tubular structures from plate and
blob patterns based on geometrical orientation and S serves as a penalty term
to suppress the background noise. Moreover, A1, A2, A3 represents three eigen
values and the a;, 1 and ( are the tuning parameters which are set equal to 0.5,
0.5 and 220 (i.e. the default values proposed in [29] ). It should be noted that,
to investigate the coronary at different scales in a CTA volume, a scale range of
[1—5] is used and V,(x) represents the maximum vesselness for voxel x obtained
at the optimal scale. An inherent characteristic of the multi-scale vessel filter
is the assignment of high vesselness measure to the object edges in the image.
This is illustrated in Fig. where the computed vesselness is plotted for a 2D
axial image. To overcome this limitation, we employed a cylindrical filter [23]
to further enhance the tubular structures in a CTA volume. Accordingly, the
cylindrical filter is used to compute normalized local vesselness measure V. (x)
using orthogonal cross sections such that one defines an ideal tubular structure
and zero otherwise. In the subsequent step, response of the local cylindrical
model was combined with the multi-scale vesselness to identify the potential
coronary segments. To avoid erroneous seed detection, we used a threshold
based classification to label the candidates voxels x according to Eq. [

1 ifV,(x) >Tf and Ve(x) > Tyy
S0 (%) = (4)
0 otherwise
where s,(x) denotes the seed label i.e. 1 denotes coronary seed and 0 otherwise.
As proposed in [23] algorithm, we had chosen fairly small values for multi-scale
vesselness Ty = 1073 and cylindrical response Tyr = 10~ thresholds to ensure

that all potential tubular candidates are examined in the seed detection process.

12



(a) vesselness measure for 2D slice.

(c) Seed points using intensity constraint. (d) Mask initialization in 6 mm neighbour-

hood.

Figure 2: Coronary seed detection and mask initialization. (a) show that the [29] model has
assigned considerable vesselness for image edges. (b) represents the consequent seed points
with numerous false positives. (c¢) and (d) show the improved seed points and the associated
mask for initializing the region based segmentation. For best visualization of coloured images,

refer to online version.

It can be observed from Fig. that seed detection process based on Eq. [4]
incurs a number of false positives. This is due to the fact that both geometrical
filters had taken into account the shape features only. As a result, the elongated
heart muscles and the surrounding non-coronary vasculature have been marked
as the coronary segments which resulted in numerous false positive seeds. To
suppress the non-coronary seed points, we posed our intensity based constraint
in the seed detection process and redefine Eq. [4| to obtain improved seed label

’
s, as follows:

, 1 ifV,(x)>Tf and Vo(x) > Tyy and I(x) € Ry
8o (X) = ()

0 otherwise

Equation [5] ensures that only those candidates seed points are retained in the

13
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final set s; which satisfy the HU intensity criteria R; of the respective CTA
volume. Fig. illustrates the efficacy of intensity based constraint R; as the
majority of the false positives has been eliminated. Next, we initialize a localized
mask spanning over the region of 6 millimeters around the detected coronary
seed points. A 6 mm neighbourhood is selected as the coronary segments are well

encompassed within the mask area on the axial slice of a CTA image [30, 311, [32].

4.3.  Hybrid Energy Approzimation

4.3.1. Local Energy Modelling
We derive the local energy term in the first stage by using an extension of
the Chan-Vese energy model. For an image I, the mathematical representation

for the Chan-Vese algorithm is as follows:

Fler, c0,C) = / [1(x) — e1]%dx + / 1(x) — es)2dx
inside(C) outside(C)
+ ylength(C)

(6)

where C' is the evolving contour, ¢, co represent the global mean intensity for
two regions (i.e. inside and outside the curve) and 7 is the regularization weight
term to enforce contour smoothness. The optimal segmentation is achieved
when the two regions are best approximated with their global mean values, as it
leads to the minimal fitting error F'(c1, ca, C). For computational robustness, we
redefine the Chan-Vese segmentation using level set formulation as expressed in
Eq. [l In the level set representation, the unknown curve C' has been replaced
with a signed distance function ¢(x), such that the curve C is represented as

zero level set C' = {x | ¢ (x) = 0}.

Flet, ca,6) = / H(x) (I (x) — e1)* dx + / (1 - Ho(x) (I (x) — 2)? dx
T / 56(x) [V (x)] dx (7)

14



Based on the signed distance representation, we used the Heaviside function
H¢(x) to select the interior of the curve C, whereas the exterior region is selected
using the complementary equation (1 — H¢(x)). Moreover, the interface at the
zero level set is obtained by using Dirac delta function 0(¢). The §(¢) is the
derivative of the H(¢), which is 1 when ¢(x) = 0 and 0 far from the interface.
The mathematical representation for the Heaviside and Dirac delta function is
as follows:
Ho(x) = , ifé(x)>0 () = 1, ifo(x)=0 @®
0, ifo(x)<0 0, otherwise
To address the intensity inhomogeneity problem of the CTA data, we employed
the localization statistics in the energy minimization process as proposed by
Lankton and Tannenbaum [I8]. Accordingly, a radius based mask (6 mm in
this work) is used to select the localized neighbours as expressed in Eq. @
Accordingly, the selection kernel will be 1 when a spatial point y lies within a
region of radius Ry, centred at x, and 0 otherwise.
Bxy) = 1, if x—y| <Ry ©
0, otherwise
The interaction of the localization kernel with the evolving curve is graphically
illustrated in Fig. [3] whereas the mathematical model for computing the local-

ized mean intensity inside and outside the curve (¢1, co respectively) is expressed

in Eq. [I0]

oy Bx.y)I(y)Ho(y)dy

c1(d) _ nyB(X;Y)I(Y)(l — Ho(y))dy
N, By Holy)dy

=10 = Jo, B, Y)(1 = Hé(y))dy
(10)

15
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Figure 3: Kernel function for localized interior and exterior statistics. Red shows the evolving
curve, whereas the blue represents the localized ball region B(x,y). For the current point

(green), the localized interior and exterior are shown as yellow and cyan.

The minimization problem expressed in Eq. [7] can be solved using an Euler-
Lagrange formulation as outlined in [4]. The subsequent application of the
gradient descent method for optimal deformation leads to Eq. [T} For additional

explanation and detailed derivation readers are referred to [4, [I§].

Ge )=o) | onBlxy) {16) - ) = (1) = )}y
[ Vo(x)
+ yép(x)div {W} (11)

The image based force responsible for the curve evolution can be identified
by discarding the regularization term of evolution Eq. Accordingly, the

localized curve driving force can be written as follows:

Fiocal =0¢(x) . o(y)B(x,y) {(I(y) = c1)* = (I(y) — c2)*} dy (12)

The practical efficiency of Fj,.q; depends upon several factors including care-
ful selection of the localization radius and the intelligent placement of the initial
mask. The sensitivity to the initialization makes this method delicate as small
perturbations in the initialization may lead to an undesirable solution. Fig. []
presents two simple cases for synthetic images where the localized curve evolu-

tion fails to handle small perturbations in initial mask.

16
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(a) Segmentation result for careful initializa- (b) Perturbation leads to erroneous segmenta-

tion. tion.

(c) Segmentation result for careful initializa- (d) Perturbation leads to erroneous segmenta-

tion. tion.

Figure 4: The sensitivity of the localization model against initial mask. (a) and (c) show the
segmentation result for a cautious initialization, that is, very close to the manual delineation.
On the other hand (b) and (d) show the result when perturbations are introduced in the initial

mask. Blue is the initial mask and red is the final segmentation result.

To overcome this limitation, we propose to integrate the global model of the
image in the segmentation process. Consequently, we redefine the curve driving

force as expresed in Eq.

thbrid = {Flocal + BFglobal} (13)

where [ is the constant weight regulating the influence of the global term for
achieving the desired segmentation. The mathematical model for obtaining

image based Fyiopq is explained in the following section.
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4.8.2. Global Energy Modelling

The global model of the image is derived by identifying the intensity discon-
tinuities in image. Conventionally the gradient is used for defining an edge-map
of an image; however, the gradient generally thickens the object boundary as
shown in Fig. 5b. Thus, the quality of the segmentation is compromised as the
evolving contour stops away from the true borders of the object. One possibility
is the use of smaller gradient scale; however, the selection of the optimal scale di-
rectly influences the segmentation quality. In contrast, the Bayesian framework
leads to sharp inter-class distinctions [21] inside an image as presented in Fig.
5c. This characteristic makes the Bayesian approach more feasible for the coro-
nary segmentation problem as the cardiac CTA data is generally approximated
using a three class assumption [13], 2], 22].

Based on clinical interpretation of the cardiac CTA, we start with the as-
sumption that the histogram of the CTA volume can be well approximated using
three classes (air filled lungs, heart tissues and the blood filled structures). How-
ever, we applied a precautionary normalization to suppress the calcifications (if
any) in the CTA volume by clamping the intensity against the upper threshold
value of the respective R; intensity range. Next, we approximated the indi-
vidual peaks of the image histogram to obtain the Gaussian approximation for
three individual classes using Eq.

1 —(d—pp)?

ex 20} 14
i (14)

where d = I(x) denotes the intensity levels in the volume I at position x,

p((x)|x €cp)=N(d,pg,ox) =

¢k is the class identifier and (uy, o)) represent distribution parameters of the

respective class.

18



CTA Axial Slice Gradient Edge Map Probabilistic Edge Map

Figure 5: Image discontinuity modelling based on two methods. (a) shows the 2D axial slice
with coronary segments. (b) shows the edge map obtained using gradient strength which leads
to thicker edges. (c) presents shows the probabilistic difference based discontinuity map with

sharp edges.

In the subsequent step, the overall histogram of the CTA is represented using
a Gaussian mixture model where individual peaks are mapped to a weighted

Gaussian distribution as expressed in Eq.
3

p(d) = arN(d; px, o) (15)
k=1

Next, the expectation maximization [33] algorithm is iteratively applied to de-
termine the optimal distribution parameters for each class where the prior prob-
ability is set equivalent for all three classes at the start. In the final step, Bayes’
rule is applied to obtain the voxel-wise posterior probabilities (i.e. probabilities
of a single voxel x with intensity value d, for three different classes).

Pr(I(x)=d|x € c;)Pr(x € c)
Z:=1 Pr(I(x)=d|x €c;)Pr(x €c;)

Prixec | I(x) =d) = (16)

where Pr(I(x)|cx) and Pr(x € ¢i) represent the likelihood and the prior proba-

bility function for three individual classes. To minimize the impact of probabil-

19
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ity approximations, we applied anisotropic diffusion as proposed by Perona and
Malik [34]. A total of five iterations are applied to achieve smoothed posteri-

ors PrSmth

with gradient modulus (Kappa) set equal to 30. In the subsequent
step, we derive the global model of the image as the squared difference of the
two largest posteriors for every pixel as expressed in Eq. This encoding
significantly enhances the boundary between two classes as presented in Fig.
5c.

Iglobal = {Prsmth(x (S ckl) — Prsmth(x S Ckg)}2 (17)

By substituting the two imaged based forces in Eq. we obtain the hybrid
curve driving force as expressed in Eq. [T

thbrid = 6¢(X) o ¢(Y)B(X7Y) {(I(Y) - Cl)2 - (I(Y) - 02)2 + ﬁlglobal(Y)} dy

(18)

Based on the fact that the seed containing axial slice lies in the mid of the
CTA volume, the initial mask is evolved in both directions along the caudo-
cranial axis to capture the complete coronary tree. Generally, the coronary tree
splits into branches as we move away from the aorta along the patient axis in
the CTA volume. However, in some complex cases, the coronary peripheries
emerge away from the main progression and join the tree as slices are navi-
gated. To capture the potential side branches which emerge far from the main
progression, we incorporated an auto-correction feature. The auto-correction
feature captures the emerging peripheries during the curve evolution by scan-
ning the neighbourhood of the main progression. This self-adjustment feature
of the mask offers computational robustness without increasing processing load
in terms of 3D level set segmentation. The non-connected components (based
on false positive seed points or the auto-correction) are discarded in the final
step with the help of morphological operations. Readers are referred to [35] for a

detailed implementation of bidirectional evolution and auto-correction feature.
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5. Results

We designed a Matlab based framework to compare the obtained segmen-
tation with respect to the manual ground truth. For individual contours of
the ground truth lumen, we computed the plane normal (perpendicular to the
segment centreline) in the first stage. In the subsequent stage, we extracted
the corresponding orthogonal planes from the segmented tree and the lumen
boundary contours are identified as shown in Fig. [fa] The first stage of the
quantification process is illustrated in Fig. [6b] where 3D segmented contours
are plotted against manual ground truth. Next, we projected the 3D contours
on a 2D plane where two polygons are interpreted as binary images as shown
in Fig. In the final stage, we employed the Jaccard index to compute the

overlap between two polygons.
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(a) 3D Coronary surface. (b) 3D contours. (¢) Jaccard overlap.

Figure 6: Segmentation evaluation against manual ground truth of Rotterdam data. (a) shows
the ground truth and the obtained segmentation contours overlaid on 3D coronary surface in
voxel coordinate system. (b) presents a visual comparison of obtained segmentation with
ground truth in world coordinate system, whereas (c) shows the Jaccard overlap computation

for corresponding 2D contours based on TP, TN and FN.

The mathematical relation to obtain the Jaccard index between manual

ground truth and the segmented image is as follows:

TP
. _ 1
Jaccardindex TP+ FPTFN) (19)
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where TP denotes the true positive i.e. an intersection between two images,
FP represents the false positive i.e. part of segmented image not present in the
ground truth and FN denotes the false negative i.e. part of the ground truth
missed in the obtained segmentation. The Jaccard index for overlapping seg-
mentation approaches to one, whereas two dissimilar images results in Jaccard

score of zero.

5.1. Analysis of 2D Images

As demonstrated in Fig. [4] the localization model successfully detect objects
of interest when the initialization is fairly close to the object boundary, whereas
it fails to handle perturbations because of the local optima problem. This short-
coming is further highlighted in Figs. [7]- [§] to illustrate the effectiveness of the
proposed method over the localization model of [I8] for 2D images (synthetic
and clinical CPR respectively). It should be noted that the localization model
is trapped in local optima leading to erroneous segmentation for different ini-
tializations, whereas the hybrid method results in successful segmentation for
different initializations. Moreover, the weight regulating the influence of the
global term can be adjusted to obtain a desired segmentation according to the

nature of data or the initialization.

(a) B =—0.53 (b) 8 =0.20 (c) B=0.65 (d) 8=0.35

Figure 7: Performance of two segmentation methods for synthetic images. Blue and red
show the hybrid and localization segmentation respectively, whereas green represents the

initializations. The localization radius used for these results is 8 pixels.
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Figure 8: Performance of two segmentation methods for clinical images. (a) and (b) show right

coronary of CTA volume 01 for two different initialization. (¢) and (d) show right coronary
of CTA volume 02 for two different initializations. Green denotes the initialization, whereas
blue and red represents the hybrid and localized segmentation respectively. The localization

radius used for these results is 8 pixels.

We also investigated the robustness of proposed model against the localiza-
tion radius. Figs. [0]-[I0]shows the response of the two methods when localization

radius is decreased from 8 to 4 pixels.

(a) B =—0.83 (b) B =0.45 (c) B=0.82 (d) B =0.75

Figure 9: Performance of two segmentation methods for synthetic images. Blue and red
show the hybrid and localization segmentation respectively, whereas green represents the

initialization. The localization radius used for these results is 4 pixels.

It is evident that change in the radius degrades the performance of the
localized model leading to incorrect segmentation, whereas the proposed model
successfully delineates the object for the updated radius. We observed that there

exists an inverse relationship between localization radius and the global weight
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B. The smaller radius results in less information for the energy optimization
process requiring more influence of the global term, whereas a large radius
offers adequate intensity information, hence; less stimulus from the global term
is required. This correlation is to be investigated in a future study to make the
weight 8 adaptive against the localization radius and to define an image based
threshold for the localization radius, as a very large radius leads to a global

approximation of image which is not suitable for medical data.

(a) B=0.3 (b) 8=0.78 (c) B=0.24 (d) 8=0.91

Figure 10: Performance of two segmentation methods for clinical images. (a) and (b) show
right coronary of CTA volume 01 for two different initialization. (c) and (d) show right
coronary of CTA volume 02 for two different initialization. Green denotes the initialization,
whereas blue and red represents the hybrid and localized segmentation respectively. The

localization radius used for these results is 4 pixels.

5.2. Analysis of 3D images

It becomes challenging to visually evaluate the segmentation quality in 3D
space due to viewing angle limitations as shown in Fig. Thus, we ex-
tracted 2D slices orthogonal to the segment centreline at different points across
the length of vessel to illustrate the effectiveness of the hybrid energy model
over the localization method. Consequently, the lumen boundary based on or-
thogonal cross sections is compared with the ground truth contour as illustrated
in Fig. [[2] It is apparent from the figure that the curve moving under the influ-
ence of localized energy (blue) gets trapped away from the real lumen, whereas
the integration of the global force pushes the contour further to attain a more

accurate approximation (green). The explicit push of the contour towards the
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lumen reduces the false positives and leads to an improved accuracy of the

segmentation.

(a) 3D coronary surface, the centreline and (b) An axial plane from CTA with

oblique planes interpolated in 3D volume overlaid segmentation

Figure 11: Coronary segmentation visualization. (a) shows the segmented 3D coronary tree
with overlaid centreline and two oblique cross sections. (b) shows a 2D axial slice from CTA

with the coronary segments outlined in two colours. Red shows the left coronary artery and

blue represents the right coronary artery.

\JE

(a) Plane 4 (b) Plane 6 (c) Plane 8 (d) Plane 10
-

(e) Plane 12 (f) Plane 14 (g) Plane 16 (h) Plane 18

Figure 12: Consecutive cross-sectional planes for segment-12 of CTA volume 01. Green is the
expert’s manual ground truth, blue represents the hybrid energy segmentation and red shows

the segmentation for localized model [1§].
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Moreover, the statistical comparison of the two segmentation methods is
presented in Fig. where we plotted the respective false positive rate and the
Jaccard index with respect to the ground truth annotations for two representa-
tive volumes. It should be noted that the mean results for complete Rotterdam
dataset are presented in Table |2 To avoid biasing towards a particular expert,
we compared the response of the two methods with three manual observers in-
dividually and it can be observed that the hybrid model consistently achieves

higher Jaccard index in comparison to localization method of [I§].
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Figure 13: Segmentation accuracy of two method with respect to three individual observers
of Rotterdam Data. Low FP % and high Jaccard index consistently shows the advantage of
hybrid model over the localization [I8]. method

5.8. Evaluation based on Segment Classes

Before comparing the mean performance of the two segmentation methods

for the complete Rotterdam dataset, we evaluated the hybrid segmentation in
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a clinical context. From a clinical point of view, the coronary segments are
divided into two classes namely major and minor segments. The major class
refers to proximal sections close to the descending aorta, whereas the minor class
refers to distal segments of the coronary tree. Any abnormality or occlusion
in the major segments is treated as a severe clinical threat as the dependent
branches are simultaneously affected resulting in considerable loss to the heart
tissues. In contrast, the abnormality associated with the minor segments are
less threatening as these segments does not affect other segments in parallel.
Fig. shows the mean performance of the hybrid energy model for complete

Rotterdam data in context of these two classes.

Hybrid segmentation for two classes Hybrid segmentation for two classes
100 100

95+ 95
90 90
85+

1
1
80+
75 |
70+ —_ 70 !
.l * E
60 60
1 1
1

55 *

Jaccard index (%)
Jaccard index (%)

T
1
1
55 1

50 50
Major Minor Healthy Diseased

(a) Hybrid segmentation statistics for major - (b) Hybrid segmentation statistics for healthy

minor segments. - diseased segments.

Figure 14: The mean performance of the hybrid model for complete Rotterdam CTA data
in a clinical context. (a) shows higher accuracy for major segments in comparison to minor

branches, (b) shows higher accuracy for healthy segments in comparison to diseased branches.

The box plot is used based on the fact that distributional characteristics of
different groups can be compared effectively. The high median value and the
compact distribution reflects that the overall accuracy is fairly high and con-
sistent for major segments, whereas the reduced diffusion, poor contrast and
narrower diameter in minor segments results in reduced accuracy and high vari-
ability. Similarly, Fig. [T4b] shows the performance of the hybrid energy model
using “healthy versus diseased” criteria. It should be noted that the segmen-

tation accuracy for the healthy segments is high in comparison to the diseased
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segments. The variability observed for the healthy class is unexpected, however
this can be related with the immature plaques / lesion present in different seg-
ments. As the ground truth classification (healthy versus diseased) is done on
the basis of visual inspection of the coronary tree, so there is a chance that seg-
ments with insignificant abnormalities were placed in healthy class; however, it
effects the segmentation accuracy. On the other hand, the performance for the
diseased class is persistent as this class contain significantly abnormal segments.
To conclude, these results reveal the fact that it becomes difficult to precisely
delineate the diseased segments, specially in the presence of low intensity based
soft plaques. Moreover, the type and the progress of the abnormality directly
affects the segmentation quality.

The relationship between the segmentation accuracy and “segment-class” is
further investigated as shown in Fig. The first row shows mutual agreement
of three human experts for two representative coronary segments, whereas the
second row presents the Jaccard index of two segmentation methods. It should
be observed from Fig. that the high concentration of the contrast medium
in the proximal segment of the coronary tree leads to a good inter-observer
agreement. Consequently, both segmentation models achieve an adequate qual-
ity segmentation and the Jaccard index shows a marginal superiority of hybrid
model over the localization method in Fig. In contrast, lower concen-
tration of the contrast medium results in the ambiguous appearance of distal
segments, which leads to a significant inter-observer disagreement as shown in
Fig. This results in an increased false positive ratio for the localization
model, whereas the hybrid energy moderates false positives due to influence of
global term in curve evolution (see Fig. . Consequently, the hybrid model
shows a considerable improvement in the Jaccard index as plotted in Fig.
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Figure 15: Performance of two segmentation methods for different segment types. Good agree-
ment among three manual observers (a) reflects the bright appearance of proximal segments.
(b) the reduced agreement among three human observers due to the ambiguous appearance
of distal segments. (c) and (d) represents the Jaccard index for two segmentation methods

w.r.t three individual observers.

The comparative performance of two segmentation methods for complete

Rotterdam dataset is presented in Table [2l The Jaccard index (with respect to

Table 2: Jaccard index (%) of two segmentation methods for Rotterdam CTA data.

Segment type | Jaccard index value
Local Hybrid
Major 73.48 76.5
Minor 58.26 68.65
Healthy 68.21 71.62
Diseased 57.79 65.56
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the manual annotations) shows that the hybrid energy achieves better segmen-
tation over the localization model of [18] for all types of coronary segments. A
considerable difference for the minor segments is related with the reduced false
positive (%) due to the increased push of global term in hybrid segmentation,
whereas lower Jaccard index value for the diseased segments reflect the complex-
ity of segmentation. To validate the statistical significance of the hybrid energy
model, we performed a paired t—test by employing results of two segmentation
methods. Accordingly, the null hypothesis is rejected which indicates a signif-
icant difference in the mean of the two distributions. Moreover, we obtained
p values equal to 0.0014 for the false positive rate and 0.0001 for the Jaccard

index which indicates a statistically significant difference.

5.4. Comparison with Existing Coronary Segmentation Model

After validating the superiority of hybrid energy over [I8], we compared the
performance of the hybrid model with the coronary segmentation algorithm of
Yang et al. [21], which implements an edge based conformal factor in the curve
evolution. Fig. - Fig. demonstrates the efficacy of hybrid energy model
over [2I] with respect to the manual annotations. For comparative purpose,
we start with the assumption that observer 1 of Rotterdam CTA data is the
typical ground truth representing the “true” lumen. Segmentation statistics
(sensitivity, specificity and Jaccard index) with respect to the observer 1 are
presented in Fig. [I6] whereas Fig. shows the performance of two methods
against mean human agreement of three observers. It can be observed from Fig.
[L6althat the higher true positive rate of the hybrid energy model leads to a higher
sensitivity for all investigated volumes. Likewise, the reduced false positive rate
results in comparatively better specificity for the hybrid model; however, a lower
scale of specificity percent refers the fact that both methods found difficult to
delineate the diseased segments. For the overall Jaccard overlapping index, it
should be noted from Fig. that the hybrid method outperforms the [21]

model with a consistent higher index value.
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Figure 16: Segmentation result for [2I] and the hybrid segmentation method with respect to
observer 1 of the Rotterdam data, (complete CTA dataset).

435 Fig. shows the overall segmentation performance of two method in con-
text of the mean human agreement of 3 human observers. It can be observed
from the plot that the overall Jaccard index is dropped due to averaging against
three manual annotations; however, the comparative performance of the pro-
posed model remains superior to [2I] model and shows a consistent bound with

w0 inter-observer mean agreement.
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Figure 17: Segmentation result for the mean human agreement, [2I] and the proposed method

with respect to average of 3 observers, (complete CTA dataset).

It can be observed from the plot of Fig. that there occurs a considerable
dip in Jaccard index value for CTA datasets 10 and 17 (for all three segmentation
methods). This unexpected drop is related with the structural abnormalities of
the coronary tree as shown in Fig. [I8a] These aberrations in coronary tree
makes segmentation challenging even for the manual observers, as Fig.

shows a minimal agreement among three human experts.
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Figure 18: Illustration of the inconsistencies between manual observers. (a) A coronary struc-
ture with an aberration, which complicates segmentation. (b) Clinical annotations for lumen
boundary for three observers (red, blue and green circles). (c) Magnification of the boundaries.

Notice the inconsistent decision of the observers whilst delineating the lumen.
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6. Discussion

A limitation of the proposed method is the manual selection of the appropri-
ate weight 3 for the global term, as the true boundary is surpassed occasionally
due to high influence of the global force. Subsequently, in the CTA volume
based analysis, we evaluated different values for S from the normalized range
[0, 0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1.0] to derive an empirical evidence for
best global weight. According to a series of experiment, the segmentation ob-
tained with 3 less than 0.1 produces results similar to localization model of [18§]
due to very less influence of global term, whereas setting g greater than 0.25
results in suppression of distal segments due to very high influence of global
term. This makes 8 = 0.15,0.25 a feasible choice for effective segmentation of
the coronary tree.

A primary drawback associated with the level set evolution is the processing
time as the curve evolution in a higher space requires a large number of com-
putations. However, the key to minimize the processing time is to exploit the
fact that the curve changes position smoothly and does not hold abrupt jumps
or discontinuities. Consequently, the area around the evolving curve is to be
evaluated for new position i.e. only a narrow band is to be investigated. For
a fair processing time, we employed the sparse field method of Whitaker [36]
to evolve the curve as it promises the accurate but minimal representation of
the evolving curve. Accordingly, the average time for segmentation of coronary
vasculature on Matlab R2014 based Intel 3.4 GHz machine is 80 seconds.

It should be noted that the fully automatic segmentation of the coronary
tree has been a challenging problem so far and the current research is focused
to minimize the human interaction. Several methods [37, B8] [39] (40, 41] have
been proposed in recent years addressing the automatic and semi-automatic seg-
mentation of coronary lumen with a motivation of stenosis detection; however,
a little attention has been paid on the negative remodelling of coronary vessels.
From a clinical point of view, negative remodelling signals the presence of soft

plaques which have been reported as most important indicator of heart attack
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and stroke [42]. In context of the broader theme of our study, we compared our
results with [2I] method as the proposed idea of bidirectional evolution grabs
effectively the negative remodelled vessels.

In future work, we aim to make the global weight 8 adaptive with respect to
the localization radii for the robust automated implementation of the algorithm.
Furthermore, we plan to use the segmented coronary tree in machine learning
framework for the detection and localization of the non-calcified plaques as the
future coronary segmentation research is to be steered by soft plaques quantifi-

cation.

7. Conclusion

In this paper, we proposed a simple yet efficient segmentation method and
demonstrated its efficacy for 3D coronary segmentation. An image discontinuity
model is combined with a localized active contour segmentation which achieves
better overlap with manual annotations. The proposed method is less sensitive
to the local optima problem which helps in reducing false positives as well as it
allows a certain degree of freedom for initialization. The capability to address
the variations in initial mask and localization radii simultaneously, makes our

algorithm a feasible choice for the coronary segmentation.
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