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Abstract. State-of-the-art CTA imaging equipment has increased in-
creased clinician's ability to make non-invasive diagnoses of coronary
heart disease; however, an effective interpretation of the cardiac CTA
becomes cumbersome due to large amount of imaged data. Intensity
based background suppression is often used to enhance the coronary
vasculature but setting a fixed threshold to discriminate coronaries from
fatty muscles could be misleading due to non-homogeneous response of
contrast medium in CTA volumes. In this work, we propose a volume-
specific model of the contrast medium in the coronary segmentation pro-
cess to improve the segmentation accuracy. The influence of the contrast
medium in a CTA volume was modelled by approximating the inten-
sity histogram of the descending aorta with Gaussian approximation. It
should be noted that a significant variation in Gaussian mean for 12 CTA
volumes validates the need of volume-wise exclusive intensity threshold
for accurate coronary segmentation. Moreover, the effectiveness of the
adaptive intensity threshold is illustrated with the help of qualitative
and quantitative results.
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1 Introduction

Coronary heart disease (CHD) has become a major cause of death worldwide.
According to recent statistics [13], CHD is responsible for approximately 73,000
deaths per year (an average of one death every seven minutes). Consequently,
clinicians are interested in early detection of CHD to effectively predict and con-
trol future cardiac events. The limitations of conventional cardiac-angiography
based diagnosis have driven intensive research for non-invasive diagnosis leading
to highly sophisticated imaging procedures. The clinical use of computed tomog-
raphy angiography (CTA) is a prominent example of non-invasive diagnosis, in
which blood filled vasculature can be easily discriminated from the background
based on high intensity. However, the high volume of imaging data demands



automatic segmentation of coronary vasculature as manual diagnosis becomes
cumbersome and prone to inter-observer errors.

Apart from simple threshold and clustering techniques, the sophisticated al-
gorithms employ partial differential equations (PDEs) to detect object bound-
aries, i.e. an initial guess is evolved under constraints to detect the object bound-
aries. Commonly used formulations include the parametric snake model and the
level set representation. The parametric snake i.e. active contour model [9] leads
to a fast and computationally efficient segmentation but shows greater sensitivity
to the topological changes, whereas the level set representation [14], [1] provides
inherent split and merge mechanisms to accurately detect complex structures at
the cost of processing time. It should be noted that for both formulations, the
evolution of the initially placed curve is regulated by an image based energy.
Methods reported in [1] and [9] approximate the image-based energy in terms
of the intensity gradient strength (edge-map), whereas techniques proposed in
[2] and [19] employs regional intensity statistics for the energy approximation.
The region-based methods show robust performance in general as the gradient
strength often leads to over segmentation for weak edges. However, the conven-
tional region-based methods fail to address the intensity inhomogeneity problem
of medical images due to the underlying piecewise constant assumption. Con-
sequently, Li et. al. [11] and Lankton et al. [10] proposed the use of localized
statistics to regulate the curve growth in medical images for minimizing the
impact of the intensity inhomogeneity.

In context of blood vessel segmentation in CTA, Harnandez [6], Mohr et al.
[12], Szymczak et al. [15], Yin et al. [17] and Yang et al. [18] reported successful
segmentations; however, the impact of the externally injected contrast medium
has been little employed in the coronary segmentation process. Isgum et al.
[8] proposed an automated system for the coronary calcification detection, in
which all the connected components of intensity value greater than 220 HU were
interpreted as potential calcified plaques. Similarly, Hong et al. [7] proposed a
fixed threshold of 350 HU for the segmentation of coronary calcified plaques in
the contrast enhanced CTA.

In this work, we derive the estimate intensity threshold by investigating the
impact of the contrast medium in the respective CTA volume to ensure the ac-
curacy of segmentation. Followed with this introduction, we define the proposed
coronary segmentation model in Section 2. Subsequently, comparative results are
presented in Section 3, which is followed by the shortcomings and the conclusion.

2 Proposed Model

Based on the fact that externally injected contrast medium enhances the visual
brightness of blood filled coronaries in CTA, we propose to adaptively model the
contrast medium in the coronary segmentation process. The proposed method
is classified as semi-automatic since it requires manual seed points to initialize
the segmentation process. We start with the assumption that the coronary seg-
mentation can be improved by suppressing the non-coronary structures using



intensity and shape constraints in a pre-processing step. However, the deriva-
tion of a generic intensity threshold across the dataset is challenging due to the
non-homogeneous diffusion of the contrast medium in different CTA volumes.
Consequently, the impact of the contrast agent is mathematically modelled in a
first step to derive the volume-specific intensity range in Hounsfield units (HU)
for respective CTA volumes. In the following step, we computed the voxel-wise
vesselness measure using 3D Hessian matrix of the CTA volume to suppress the
non-tubular voxels. In the final step, we applied the localized region based seg-
mentation to extract coronary the tree from the pre-processed CTA volume. For
the rest of the paper, let I denote a 3D CTA volume defined on the domain Ω
and x, y denotes two independent spatial variables in the domain Ω. In addition,
we employ a mask function M(x,y), which defines a neighbourhood of radius
RL centred at x. Accordingly, the mask function M(x,y) will be 1 when a point
y lies within a neighbourhood region of x, and 0 otherwise.

2.1 Contrast Medium Modelling

For enhanced visualization of the coronary vasculature, a contrast medium is
often injected intravenously before the cardiac CTA exam. Consequently, the
contrast affected blood appears brighter in the CTA volume which allows clin-
ician to distinguish the coronary vasculature from the background as shown in
Fig. 1a - 1b. the diffusion of the contrast medium is non-homogeneous across

(a) (b) (c) (d) (e)

Fig. 1. Coronary appearance and aorta segmentation in axial slices. (a-b) similar ap-
pearance for coronary in two CTA volumes. (c-d) background suppression mask and
the segmented aorta, (e) aorta shape change due to emerging coronary structure.

patients as it depends upon several factors including the type and amount of
contrast medium, the total scan time and the heart rate. This clinical fact leads
to the assumption that despite of similar visual appearance of the blood filled
coronaries, there exists a statistically significant difference in the blood intensity
values for different CTA volumes. Consequently, the intensity based suppression
of the non-coronary structures requires volume specific threshold values for op-
timal segmentation. Therefore, the use of a fixed threshold from the literature
[7], [8] may result in erroneous segmentation. Based on the fact that the contrast
affected blood flows into coronaries from the descending aorta, we therefore seg-
mented the aorta in the first step to estimate the volume-specific HU intensity



range. For aorta segmentation, we started with the background suppression in
CTA using an intensity threshold of 100HU as shown in Fig. 1c. In the following
step, we applied a circular Hough Transform [4] based shape analysis to segment
the aorta from in the blood volume as shown in Fig. 1e. Iteratively, 2D seg-
mentation is performed through axial slices until the circular aorta changes the
shape which reflects the origin of coronary vasculature. Next, we computed the
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Fig. 2. Intensity approximation and mean accuracy for CTA volumes. (a) shows the
intensity distribution histogram for four CTA volumes in which a significant mean vari-
ation demonstrates the need of an adaptive intensity threshold. (b) represents compar-
ative segmentation accuracy for two intensity thresholds.

intensity histogram of the segmented aorta and the contrast medium response is
modelled using Gaussian fitting. Fig. 2a shows the Gaussian approximation for
four CTA volumes where a significant variation in the mean values emphasize
the need of an adaptive intensity threshold for accurate segmentation. It should
be noted that the Gaussian mean represents the intensity for blood-filled aorta;
however, the concentration of the contrast medium decreases as the blood flows
towards distal segments of coronary tree. Moreover, the vessel narrowing towards
the distal end points often result in the less diffusion and poor contrast. Thus,
to take into account the intensity drop towards distal segments, we estimate the
adaptive intensity range RI for respective CTA volume I as expressed in Eq. 1.

RI = {µI ± 3σI} (1)

where µI and σI represent the aorta based mean HU and standard deviation for
the respective CTA volume. For a quantitative comparison, the Gaussian distri-
bution parameters and the derived intensity range for 12 clinical CTA volumes
are presented in Table 1. It should be noted that the lower boundary of adaptive
intensity range is meant for suppressing the non-coronary voxels and the upper
boundary can be used to segment the calcified plaques (if any) in the arterial
tree.



Table 1. Volume-specific intensity (HU-range) for 12 CTA volumes.

CTA Vol Mean HU Std Minimum HU Maximum HU

01 942 62 756 1128

02 495 42 369 621

03 436 45 301 571

04 485 38 371 599

05 542 60 362 722

06 630 50 480 780

07 663 53 504 822

08 463 62 277 650

09 517 53 358 676

10 543 55 378 708

11 335 45 200 470

12 425 53 296 554

2.2 Enhancement of Tubular Structures

In this step, we employ shape information to effectively suppress the non-coronary
voxels. Based on the fact that coronary vessels follow a tubular structure, we en-
hanced tubular voxels as proposed by Frangi et al. [5]. Accordingly, we obtained
the 3D Hessian matrix of the CTA volume I in a first step to investigate the
structural shape information. Next, we computed the eigenvalues from the 3D
Hessian matrix to identify the geometric patterns and the voxel-wise vesselness
is computed as follows:

Vo(x) =

{
0 if λ2 or λ3 > 0{

1− exp
(
− R2

A

2α2

)
exp

(
−R2

B

2η2

)(
1− exp

(
S2

−2ζ2

))}
otherwise

(2)

where RA = |λ2|
|λ3| discriminates plate-like structures from the cylindrical vessels,

RB = |λ1|√
|λ2λ3|

differentiates blobs from other shapes and S serves as a penalty

for the noise suppression. Moreover, the tuning parameters α = 0.6, η = 0.5 and
ζ = 220 controls the overall vesselness measure. The response of the vesselness
filter for 2D axial slices of CTA volume is shown in Fig. 3b, whereas the vessel-
ness computed for the complete 3D CTA volume is presented in Fig. 3c. Fig. 3b
-3c reflect that the tubular structures have been assigned high vesselness in com-
parison with the background; however, an inherent limitation of the multi-scale
filter is misclassification of the edges, i.e. edges are often assigned comparatively
high vesselness as well. This drawback is evident in Fig. 3c where it becomes
extremely complex to identify the coronary vasculature. Consequently, the CTA

I(x) =

{
I(x) if Vo(x) > Tf and I(x) ∈ RI
0 otherwise

(3)
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Fig. 3. Pre-Processing for optimal segmentation. (a) shows a 2D axial slice, (b-c) repre-
sent the 2D and 3D vesselness measure for CTA volume with prominent tubular struc-
tures and (d-e) show the intensity based background suppression using fixed and adap-
tive intensity threshold respectively. It can be observed that fixed threshold based seg-
mentation (red) performs over segmentation due to leakage into nearby non-coronary
structures, whereas (blue) contour represents the adaptive threshold segmentation.

volume I is filtered using intensity and vesselness constraints of Eq. 3 with Tf
set equal to 10−3.

2.3 Coronary Tree Segmentation

Once the CTA volume is effectively filtered (as expressed in Eq. 3), the coronary
tree is segmented using a 2D level set evolution based on the Chan-Vese [2]
localized image energy. The segmentation process starts with the selection of
the coronary seed points. To ensure that both coronary structures (left and right
arteries) are segmented simultaneously, the coronary seed points are placed on
an axial slice at the mid of the caudal-cranial axis. Next, the seed points are
used to initialize a localized mask with a radius of 6 millimeters (i.e maximum
possible coronary diameter on an axial slice [3]). Subsequently, the initial mask
evolves under the influence of image-based localized Chan-Vese energy to capture
the true boundary of the coronary. Because of the 2D nature of the level set
evolution, the evolved mask serves as an initialization to its adjacent axial slice
on the caudal-cranial axis to capture the complete coronary tree. To define the
mathematical model for level set coronary evolution, we start with the Chan-
Vese segmentation in which two regions (the object and the background) are
modelled with their mean intensity values as follows:

F (c1, c2, C) =
∫
in(C)

[I(x)− c1]2dx +
∫
out(C)

[I(x)− c2]2dx + γlength(C) (4)

where C is the evolving curve, and c1, c2 represents the mean intensity value
inside and outside the evolving curve respectively. For the level set formulation,
the evolving curve C is embedded into a higher space using a signed distance
function φ : such that C = {x|φ(x) = 0}. The internal and external regions of the
curve are defined using the Heaviside function (also termed as unit step function)
Hφ, which is 1 when φ(x) > 0 and 0 when φ(x) < 0. Moreover, the evolving
curve (zero level set) can be identified using derivative of Heaviside function i.e.
the Dirac delta function δ which is 1 when φ(x) = 0 and 0 far from the interface.



Accordingly, we formulate Eq. 4 using level set representation as expressed in Eq.
5. The first term of Eq. 5 is image-based curve driving energy which minimizes
the approximation error and the second term is the regularization term added to
ensure the curve smoothness. For additional details and complete mathematical
derivations, readers are referred to [2,10].

∂φ

∂t
(x) =δφ(x)

∫
Ωy

φ(y)M(x,y)
{

(I(y)− c1)2 − (I(y)− c2)2
}
dy

+ γδφ(x)div

{
∇φ(x)

|∇φ(x)|

}
(5)

where γ is the weight assigned to regularization term and c1, c2 represents the
localized interior and exterior intensity mean values as expressed in 6. It should
be noted that localization mask based statistics are used in the segmentation
primarily due to the intensity inhomogeneity problem in medical medical data.

c1 =
∫
Ωy

M(x,y)I(y)Hφ(y)dy∫
Ωy

M(x,y)Hφ(y)dy
, c2 =

∫
Ωy

M(x,y)I(y)(1−Hφ(y))dy∫
Ωy

M(x,y)(1−Hφ(y))dy (6)

2.4 Auto-correction Feature of the Mask

In general, the coronary tree comes out from the descending aorta and splits
into branches along the caudal-cranial axis; hence all the segments are well cap-
tured in the level set based active contour evolution. However, due to the wide
inter-patient variability and 2D axial slice based data acquisition in CTA, some
distal branches emerge away from the main trajectory and become a part of the
tree as slices are navigated. To address this issue, one possible solution is the 3D
level set segmentation but it increases the computational load. In contrast, we
introduced an auto-correction feature in the mask to capture the emerging pe-
ripheries during evolution. The proposed method reconstructs the mask in every

(a) (b) (c) (d)

Fig. 4. Auto correction of mask to capture nearby emerging peripheries for CTA Vol-
ume (a-b), Emerging peripheries missed during evolution. (c-d), Emerging peripheries
are captured for complete tree extraction.

iteration by scanning the neighbourhood of the trajectory on 2D axial slice. All
the individual peripheries that satisfy the constraints (tubular shape and adap-
tive intensity) are captured as shown in Fig. 4c -4d. This self-adjustment feature



offers improved accuracy and the computational robustness, whereas the non-
connected structures are automatically discarded using connected component
analysis.

3 Results

To demonstrate the effectiveness of the adaptive intensity modelling, the coro-
nary segmentation was performed using two different intensity thresholds. The
comparative results reveal that the use of fixed threshold i.e. 350HU [7] leads
to an erroneous coronary tree in terms of under/over segmentation, whereas the
proposed adaptive threshold ensures accurate segmentation by employing the
influence of contrast medium in the segmentation process. Moreover, the pro-
posed segmentation shows a greater corroboration with the manual annotations
in the cross sectional analysis as illustrated below.

3.1 CPR Based Analysis

Fig. 5 shows the segmented right coronary artery (RCA) of CTA volume 1 using
two different thresholds. Table 1 indicates that the strong concentration of the
contrast medium requires a higher intensity threshold (756 HU) to minimize false
positives. It can be observed from the figure that the volume-specific threshold
precisely tracks the main progression of the RCA Fig. 5b from aorta to the distal
segment with the minimal peripheries, whereas the use of a literature based [7]
fixed threshold 350 HU results in numerous side branches for the RCA Fig. 5a.
The efficacy of the adaptive intensity threshold is illustrated by constructing the

(a) (b) (c) (d) (e)

Fig. 5. Visualization of segmented RCA in CTA volume1, (a) RCA obtained using
fixed intensity threshold of 350HU, (b) RCA obtained using adaptive threshold. (c-e)
represent CPR image along three axes to confirm the efficacy of adaptive threshold.

curve planar reformatted (CPR) images along three different axes. CPR visual-
ization from three different views helps to evaluate if there exist any intermediate
peripheries for the segmented RCA. The centreline for the right coronary artery
is obtained in the first step using sub-voxel skeletonization algorithm of [16]. In
the subsequent step, we constructed the 2D CPR images from CTA volume as
shown in Fig. 5c - 5e. It should be noted that distinct views along three different



axes substantiate the fact that the right coronary artery is well segmented from
aorta to the distal points using the adaptive intensity threshold. Moreover, it
can be observed that the peripheries which appear to be a part of the coronary
structure in Fig. 5a, are not coronaries indeed but the kissing vasculature in
close proximity which were captured mistakenly by active contour during the
evolution.

3.2 Cross-Sectional Analysis

The efficacy of the adaptive intensity threshold is further illustrated by com-
paring the two segmentations in 3D space. Fig. 6a - Fig. 6b shows a zoomed
version of the segmented Left circumflex artery (LCX) branch of CTA volume
1 obtained using two thresholds. It should be noted that the adaptive thresh-
old (756 HU) results in a smooth segmentation (see Fig. 6a), whereas the fixed
threshold (350 HU) leads to over-segmentation in terms of disconnected expan-
sion of the LCX. This is based on the fact that the high concentration of the
contrast medium misleads the evolving curve to capture the nearby structures
(see Fig. 6b). This over-segmentation is further unfolded using the orthogonal
planar analysis as shown in Fig. 6c - 6d. The impact of the over-segmentation
can be clearly observed by viewing the boundary points as the fixed threshold
based segmentation shows incorrect expansion of the vessel in cross sectional
planes in contrast to the response of adaptive threshold based segmentation.

Likewise, Fig. 6e-6h present the case where the use of the fixed intensity
threshold leads to an under-segmented tree because of low concentration of the
contrast medium in CTA. The less concentration of contrast medium results
in a lower intensity threshold in coronary segmentation, as Table 1 defines 200
HU for CTA volume 11. Fig. 6e shows that adaptive threshold leads to detailed
coronary structure, whereas RCA obtained using a fixed intensity threshold of
350 HU shows under-segmentation as a significant portion towards distal RCA
is missed (see. Fig. 6f). This under-segmentation becomes more evident in the
planar analysis as the segmented lumen shrinks rapidly towards the distal seg-
ments. Fig. 6g - 6h shows that the 350 HU based segmentation vanishes through
the distal section of RCA in contrast to the response of adaptive threshold based
segmentation.

3.3 Validation against Manual Annotations

The effectiveness of the volume-specific intensity threshold is also evaluated
with respect to the manual annotations of two independent observers. Two well
trained biomedical students were requested to perform the manual annotations
of coronary lumen independently in our centre using interactive coronary anal-
ysis software. The lumen boundary obtained at the optimal coronary display
settings (L/W=300/800) are recorded for qualitative and quantitative evalua-
tion of two segmentations. It can be observed from Fig. 7a -7e) that the adaptive
threshold leads to a good agreement with manual observers by suppressing the
nearby vasculature, whereas the fixed threshold based segmentation captures
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Fig. 6. Top. LCX branch of CTA volume 1. (a-b) LCX segmentation using adaptive
(756HU) and fixed (350HU) threshold values respectively. (c-d) illustrates the effi-
cacy of adaptive threshold as planar boundary points show over-segmentation for fixed
threshold. (bottom). RCA branch of CTA volume 11. (e-f) RCA segmentation using
adaptive (200HU) and fixed (350HU) threshold values respectively. (g-h) illustrates
the efficacy of adaptive threshold as planar boundary points show under segmentation
for fixed threshold. Red is the boundary for fixed threshold segmentation and green
represents the response of adaptive threshold.

the adjacent non-coronary structures that results in increased false positives.
Likewise, Fig. 7f -7j show the response of two segmentations for RCA of CTA
volume 11. It should be noted that the adaptive threshold leads to a true seg-
mentation by allowing expansion towards low intensity voxels, whereas the fixed
intensity threshold favours high intensity voxels resulting in under-segmentation.
To demonstrate the quantitative efficiency of the adaptive intensity threshold,
we computed the segment-wise accuracy with respect to the manual annotation
using three metrics i.e. sensitivity, specificity and the Dice similarity coefficient.
It can be observed from Fig. 8a that the adaptive threshold in LCX segmen-
tation leads to a reasonable score for all the accuracy metrics, whereas high
false positives associated with the fixed threshold leads to low specificity and
a decreased Dice coefficient score (see Fig. 8b for the fixed threshold). Simi-
larly, the use of adaptive threshold results in a stable value for all three metrics
in RCA segmentation (Fig. 8c), whereas the fixed threshold leads to increased
false negatives causing a significant drop in the sensitivity and the correspond-
ing Dice similarity coefficient (Fig. 8d). Moreover, the mean Dice similarity for
two segmentation methods is presented in Fig. 2b which clearly demonstrates
the efficacy of adaptive threshold over fixed intensity threshold (specifically for
volumes with irregular concentration of dye i.e.volume 1, 6, 7, 8 and 11).
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Fig. 7. Fixed and adaptive threshold based segmentation with respect to manual an-
notations. (top) analysis for LCX of CTA volume 1 (bottom) analysis for RCA of CTA
volume 11. Fixed threshold reflects over segmentation for CTA volume 1 and under
segmentation for CTA volume 11. Red is the fixed threshold segmentation and green
is the adaptive threshold result. Blue and yellow represents manual annotations.
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Fig. 8. Segmentation accuracy for fixed and the adaptive threshold based segmentation.
(a-b) results for LCX segment of CTA volume 1 where high false positives lead to low
specificity and decreased Dice score, (c-d) results for RCA segment of CTA volume 11
where high false negatives lead to low sensitivity and decreased Dice score.

4 Conclusion

We demonstrated that adaptive modelling of the contrast medium intensity can
considerably improve the accuracy of the coronary segmentation. In contrast,
the use of a fixed intensity threshold across the dataset may decrease precision
by capturing the nearby non-coronary segments or missing the distal parts of
coronary tree. After deriving the volume-specific intensity ranges, we employed
a bi-directional level set based Chan-Vese evolution to segment the coronary
tree from CTA volume. Promising results validating a significant improvement
in segmentation quality confirms the need of contrast medium modelling in seg-
mentation process. A limitation of the current method is its failure to detect
non-calcified plaques which exhibit an unexpected intensity drop across the le-
sion regions of the coronary tree, which is being investigated in an ongoing study.
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