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Abstract—In this paper, a new CT lung nodule
Computer-Aided Detection (CAD) method is proposed for
detecting both solid nodules and Ground-Grass Opacity (GGO)
nodules (part-solid and non-solid). This method consists of several
steps. First, the lung region is segmented from the CT data using a
fuzzy thresholding method. Then, the volumetric Shape Index
map, which is based on local Gaussian and mean curvatures, and
the “Dot” map, which is based on the Eigenvalues of a Hessian
matrix, are calculated for each voxel within the lungs to enhance
objects of a specific shape with high spherical elements (such as
nodule objects). The combination of the shape index (local shape
information) and ‘“dot” features (local intensity dispersion
information) provides a good structure descriptor for the initial
nodule candidates generation. Anti-geometric diffusion, which
diffuses across the image edges, is used as a preprocessing step.
The smoothness of image edges enables the accurate calculation of
voxel based geometric features. Adaptive thresholding and
Modified Expectation Maximization methods are employed to
segment potential nodule objects. Rule-based filtering is first used
to remove easily dismissible non-nodule objects. This is followed
by a weighted Support Vector Machine (SVM) classification to
further reduce the number of false positive objects.

The proposed method has been trained and validated on a
clinical dataset of 108 thoracic CT scans using a wide range of tube
dose levels which contain 220 nodules (185 solid and 35 GGO
nodules) determined by a ground truth reading process. The data
was randomly split into training and testing datasets. The
experimental results using the independent dataset indicates an
average detection rate of 90.2%, with approximately 8.2 false
positives per scan. Some challenging nodules such as non-spherical
nodules and low contrast part-solid and non-solid nodules were
identified, while most tissues such as blood vessels were excluded.
The method’s high detection rate, fast computation, and
applicability to different imaging conditions and nodule types
shows much promise for clinical applications

Index Terms— Anti-Geometric Diffusion, Computer-Aided
Detection (CAD), CT, Expectation-Maximization, Lung Nodule,
Shape Analysis

I. INTRODUCTION

HERE has been growing interest in the development of
Computer-Tomography (CT) as a tool for detecting lung
cancer. Lung nodules can be classified into two categories:
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solid nodules characterized by their high contrast and
Ground-Glass Opacity (GGO) nodules with faint contrast and
fuzzy margins [1]. Generally speaking, nodules with GGO
characteristics are either part-solid (consisting of solid
components and GGO components) or non-solid (pure-GGO).
GGO nodules are more likely to be malignant than solid nodules
[2]. Studies on lung nodule Computer-Aided Detection (CAD)
are reported frequently in the literature [3]-[17]. However, most
attention has been given to solid nodule detection. As pointed
by Sluimer et al. in a review of computer analysis of CT lung
scans [11], research leading to improved detection of GGO
nodules should have top priority. Recently, there are a number
of papers that describe GGO nodule detection. But most of the
work focuses on detection with high-dose CT imaging. As
discussed in [2], lung cancer screening using low-dose CT
(LDCT) has been reported to be effective at detecting lung
cancer. This paper describes a new CT lung CAD method that
aims to detect both solid nodules and GGO (part-solid or
non-solid) nodules using a range of tube dose levels.

A. Previous Work on Nodule Detection

Existing approaches in the literature for detecting potential
nodules can be roughly categorized into intensity- and model-
based detection methods. Intensity based detection methods are
usually based on the assumption that lung nodules have
relatively higher intensity than those of lung parenchyma and
employ techniques such as multiple thresholding [3]; clustering
[4]; artificial neural networks [5]; and mathematical
morphology [6], to identify nodules in the lung area.

For model-based detection methods, techniques such as
template-matching [7][8], object-based deformation [9], and the
anatomy-based generic model [10] have been proposed to
separate spherical shaped nodules from elongated structures
such as blood vessels. Lee et al[7] proposed a Genetic
Algorithm (GA) Template Matching (GATM) technique for
detecting nodules within the lung area. Shape and gradient
features rules were used to reduce FPs. They achieved 72%
sensitivity with 31 FP/ scan. Farag et al.[8] proposed a similar
GATM approach based on Gaussian templates, while the
Gaussian parameters were automatically estimated from the
given data. They achieved the detection rate of 82.3% with the
FP rate of 9.2%.

Recently, several approaches to lung CAD that combine
geometric and intensity models to enhance local anatomical
structure (e.g spherical objects) have been proposed. Paik ez al.
[13] proposed surface normal overlap (SNO) method to capture
the concentration of normals by calculating derivatives of
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intensity images. They report results on 8 chest datasets with
90% sensitivity and 5.6FP/scan for solid nodules. Zhang et
al.[14] integrated surface curvature features into the voting
procedure of normal overlap. They tested on 42 thoracic CT
cases and showed improvement compared to the original SNO
method, with sensitivity of 92% at the same false positive rate.
Mendonca et al.[15] also analyzed surface curvature by using
the eigenanalysis of the curvature tensor to detect nodules,
which achieved a sensitivity of 67.5% at 9.3 FP/scan (for
nodules above 4mm) on 50 low-dose images. Pereira et al. [16]
extracted a set of rotation invariant features from a multi-scale
and multi-orientation filter bank and those features were then
used in a multi-classifier for the false positive reduction.

Most of the above algorithms have been developed for solid
nodules. For detection of GGO nodules, Kim et al.[12] used
texture features and a three-layered neural network to detect
GGOs. They tested on 14 scans with tube dose from 200mA to
400mA and achieved a sensitivity of 94.3%. Zhou et al.[17]
developed a boosting k-NN classifier for automatic detection of
GGO. The detected GGO region was then automatically
segmented by analyzing the texture likelihood map. They
applied their method to chest CT with 10 GGOs. The method
detected all of the 10 nodules with only one false positive.

Despite much effort being devoted to the computer-aided
nodule detection problem, lung CAD systems remain an
ongoing research topic [18]. One of the major difficulties is the
detection of GGO nodules with low-dose thin-slice CT
screening. Another two difficulties are the detection of nodules
that are adjacent to vessels or the chest wall when they have very
similar intensity; and the detection of nodules that are
non-spherical in shape. In such cases, intensity thresholding or
model based methods might fail to identify those nodules.

B. Our Approach

This paper proposes a new and effective approach to lung
CAD by calculating 3D local geometry and statistical intensity
features for potential solid and GGO nodule detection. It aims
to build a unified lung CAD framework with clinically
acceptable performance for the detection both of solid and GGO
nodules using a wide range of tube dose levels. The main
contributions of the paper are summarized below:

* A unified lung CAD framework for the detection of solid and
GGO nodules using a wide range of tube dose level (e.g.
30mA—250mA). Incorporating GGO detection into a lung
CAD framework has great potential for clinical application.

* The components of our algorithm utilize some existing
methods in new ways. In particular, new efforts have been made
to adapt the methods into our lung CAD framework as follows:

o Anadaptive fuzzy thresholding method is presented for the

segmentation of the lung region.

o The application of anti-geometric diffusion [19] to the

image prior to computing geometric features. The smoothness
of the edges generated by anti-geometric diffusion is better
suited to the accurate calculation of the voxel based features
(such as shape index features).

o The combination of features is well suited to detect solid
and GGO nodules. In particular, the shape index [20] (local
shape information) and “dot” features [21] (local intensity
dispersion information) provide a good structure descriptor

that can detect most of the nodules.
o The accurate segmentation of the nodule object is very
important for the extraction of features. Our solution to
efficiently segment the potential nodule object involves two
steps: a) an adaptive thresholding for a coarse segmentation;
b) a Modified Expectation Maximization algorithm (MEM)
for accurate segmentation.

The proposed method has been evaluated on a clinical dataset
of 108 thoracic CT scans with tube range from 30mA to 250mA.
The experimental results demonstrate the high performance of
the proposed method, with an overall detection rate of 90.2%
(including solid and GGO nodules), false positives at
approximately 8.2/scan.

II. METHODOLOGY

Fig.1 gives an overview of our proposed lung nodule
detection scheme. In the following sections, each stage is
described in detail.
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Fig.1 Block diagram of the proposed nodule detection system

A. Lung Segmentation

Due to the different scanning protocols, it is challenging to
choose a threshold for lung image segmentation. Vinhais et al.
[22] presented a fully automated method for extracting the lung
region based on material decomposition. They applied the
method on 30 thoracic CT images and it provided a
reproducible set of thresholds for accurate extraction of the
lungs. Hu et al.[23] used optimal thresholding to automatically
segment lungs.

In this paper, a two-step segmentation method is proposed for
lung extraction. First, a 3D adaptive fuzzy thresholding [24] is
used to obtain the initial lung mask; then a 2D-based
post-refinement process on the lung contour chain code is
applied to obtain a complete lung mask; both described below.

Let Ty, () and M,,,, (i) denote the cumulative histogram and

first moment starting from the minimum intensity I, of the
image, respectively; while Tj;e;, (i) and M ;e (i) starting from
the maximum intensity /,,,,, . In this paper, to exclude the voxels

outside the thorax, a simple thresholding (e.g. -1000HU) is first
applied on the whole image to produce a processing mask
image. I, and I, are then the minimum and maximum grey
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level of the original image over the voxels in the mask.

Given a particular gray level i, the histogram can be divided
into two regions. For each of the two regions, the mean value
can be calculated as:

My, (D)
Tio ()
In order to determine an optimum threshold, a cost function is

calculated at each grey level i [24],
2

L-1
Ci =Y [m;(1)* 1.0 m;(¢))] (2)
t=0
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where m; (t) is a membership measurement at each grey level ¢

to one of two regions separated in the histogram by the grey
level i. The closer the data point (¢) is to the mean of its region,
the higher its membership value. The gray level I, that provides
a minimum cost function is chosen as a threshold for 3D lung
image segmentation.

Based on the threshold ), the initial thorax object is
identified from the original CT image. A morphological flood
fill operation [25] is then used to obtain a hole-free lung mask.
Fig.2 (b) shows an example of the initial segmented lung mask
from the first step of the lung extraction. It is noted that a nodule
attached to the lung wall and some other attached tissues such as
vessels are initially excluded from the lung mask at this step.

The aim of the second step of the lung extraction process is to
obtain those attached objects. For each 2-D slice of the
segmented lung object, a chain code [25], is employed to
represent the initial lung contour. Alternatively, each code can
be considered as an angular direction, in multiples of 45
degrees. 1-D Gaussian smoothing is then applied to the chain
codes to remove the noise from the initial lung contour. By
specifying a threshold value on the smoothed angle code
(e.g.180), each point can be classified as a concave point (above
180), or a convex point (below 180), or a smooth point (180). A
concave section is specified by its critical points (such as A and
B in Fig. 3). These points are detected by examining the chain
code and identifying each transition point for which the angle
increases [26]. By using this chain code representation, the pairs
of critical points are then detected on each segmented lung slice.
The next step of the lung contour refinement is to join
corresponding pairs of critical points and fill in the resulting
polygons formed by all the points in the contour in between the
pair of critical points, which are endpoints of a concave region.
Fig.2(d) shows the final segmented lung image. The subsequent
nodule detection is calculated within the segmented lung mask.

B. Potential Lung Nodule Concentrations Extraction

The volumetric shape index [20] is a measure of local shape
characteristics. Given the fact that a nodule is generally either
spherical or has local spherical elements, while a blood vessel is
usually oblong, the volumetric shape index, which identifies
spherical elements, can be used as the first step to detect
potential nodule candidates. It is noted that, compared to solid
nodules, GGO nodules have irregular shapes and vague
boundaries. In this paper, it is assumed that there are some
spherical elements embedded in those irregular shapes. We
define spherical elements as a local grouping of voxels
recognized by high volumetric shape index values. For

example, while a GGO nodule may not be entirely spherical, it
can still be detected by identifying small spherical elements
concentrated within the GGO object. The goal in this section is
to detect the potential nodules based on these spherical
elements. In the next section, we will address the complete
segmentation of potential nodules. An example of pure GGO
using spherical elements concentrated in parts of the object is
given in Fig.7.

)

Fig.2 Lung segmentation based on a fuzzy thresholding method; processing
goes from left to right. (a) Original CT lung image; (b) Lung mask extraction
from fuzzy thresholding; (c) Segmented concave regions (an attached nodule
and other attached tissues) based on critical points; (d) Final segmented lung
mask formed by adding the (b) and (c) to produce the final lung mask.

Critical
points

Fig.3. Lung post-processing based on critical points

In this subsection, an anti-geometric diffusion model,
proposed by Manay et al. [19] is used prior to the shape index
calculation. This model differs from Gaussian smoothing
suggested in [27] or geometric diffusion models (including
anisotropic diffusion) introduced by Perona and Malik [28] for
image smoothing and denoising. The anti-geometric diffusion
model diffuses across image edges. The advantages of diffusing
across image edge include better localization, less sensitivity to
noise, and better connectivity of the shape index map.

1) Pre-Processing using Anti- Geometric Diffusion

The anti-geometric diffusion model was introduced in the
context of adaptive thresholding and fast segmentation [19]. A
brief description of this method is as below.

Given the iso-intensity contours of an image I(x, y,z) , let 7

and ¢ denote the gradient and the tangent directions,
respecitively. Recall that the linear heat equation is described as

ol . .
—=V.-VI=Isr+1,, . In the case of anti-geometric
5 ¢+ &

diffusion, the tangential diffusion is excluded and only the
normal diffusion is applied, the anti-geometric diffusion is
defined as:

a P20 +20 0L + 131

o =t = = 3)

3+13
where, I, and I are the first derivatives along x and y.

The result of diffusion in the normal direction is that the
image edges are smeared. The smoothness of the edge is very
important for accurate voxel based geometry feature calculation
(such as shape index). This will be discussed in the next
subsection, where examples of shape index calculation on one
GGO nodule with different diffusion models are also given for
comparison.
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2) Shape Index: A 3D Geometric Feature
The volumetric shape index (SI) at voxel p(x,y,z) can be

defined as [20][27]:
ky(p)+k2(p)

k1 (p)-k2(p)
where k(p) and &, (p) are principal curvatures at voxel p.

1 1
SI(p)=———arct
(p) 5~ aretan (4)

Every distinct shape, except for the plane, corresponds to a
unique shape index [20]. Five well-known shape classes have
the following shape index values: cup (0.0), rut (0.25), saddle
(0.5), ridge (0.75), and cap (1.0). For example, the shape index
value is 1.0 indicates a sphere-like shape which represents a
“cap”, and 0.75 indicates a cylinder-like shape which represents
a “ridge”. Volumetric shape index directly characterizes the
topological shape of an iso-surface in the vicinity of each voxel.

To illustrate the characteristics of the shape index, Fig.4(a)
shows an example of one small lung nodule attached to a blood
vessel. It is noted that different shape index values between the
sphere-like nodule and the cylinder-like blood vessel at each
voxel are obtained; the average of shape index values for the
nodule is higher than that for the blood vessel.

Figure 5 demonstrates the influence of the different diffusion
models on the shape index calculation of a GGO nodule. It can
be seen that, by using the anti-geometric diffusion, the average
shape index value at voxels close to nodule edge are higher than
that of geometric diffusion or Gaussian smoothing. This is
because the anti-geometric diffusion smears the image edge,
providing better localization and connectivity of the shape index
at nodule edges. Later, in the Section III of this paper, we will
present results showing that the use of anti-geometric diffusion
in the overall CAD system yields better performance than the
use of Gaussian smoothing as a pre-processing step.

3) Potential Nodule Candidates Detection Based on the

Shape Index Feature

A sphericity region is defined as a region for which, for
Vi, je Ry, (1, j are 3D connected voxels) we have:

SIG) 28y, SI(j) 2% 5)
a high
experimentally. In this paper, we refer to clusters of spherical
elements as potential nodule concentration regions, which can
be extracted using the following steps:

e Based on the calculated shape index map using (4), all the
high sphericity regions ({x,, ) that satisfy the condition set in (5)
are identified, with 4 € [0.9,1] . The size of each Ry, is set to
be larger than &, voxels. Fig.6(b) is the detected high sphericity

where ¢ is shape index threshold chosen

concentration regions with ¢ and &; chosen to be 0.92 and 3.
¢ Find all the low sphericity regions (URy;) that satisfy (5)
with ¢} €[0.8,0.9) . The size of eachR;is set to be larger than
&, voxels. Fig.6 (c) is the detected low sphericity regions with
#% and 6; chosen to be 0.82 and 20.

e The region R, is regarded as a potential nodule region if the
region R; contains at least one high sphericity region
Ry as R, <Ry . Fig.6(d) shows an example of the detected
potential nodule regions.

(a)
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Fig.4. Shape index map with a nodule attached to a vessel. (a) Original CT
image; (b) Shape index map; Shape index map values for the nodule (c) and for
the blood vessel (d).

(@)

© T
Fig.5. Shape index maps produced using different diffusion models. (a) One
slice of a GGO nodule; Shape index map with Gaussian smoothing
(0 =1.0) (b) Geometric diffusion (At =1.0) (c) and anti-geometric diffusion

(Ar =1.0) (d); (e)~(g) Example of corresponding shape index values at the

same voxels adjacent to the nodule edge.

FP regios

Nodule, 't
Ry 2

(©) (d)
Fig.6. An example of solid nodule regions extraction. (a) shape index map; (b)
high sphericity regions; (c) low sphericity regions; (d) detected potential nodule
candidates from step (3).

(a) (b) (c) (d)
Fig.7. An example of pure GGO nodule regions extraction. (a) GGO sub-image;
(b) shape index map of the GGO; (c) high sphericity regions; (d) detected
potential nodule candidates from step (3).

Fig.6 and Fig.7 are the examples of potential nodule
concentration extraction based on the shape index for both solid
and GGO nodules. Compared to the nodule concentration in
Fig.6(d) for the solid nodule which the spherical elements
covers most of the nodule object, the high spherical elements
shown in Fig.7(d) only cover a small part of the GGO. This
demonstrates that, although the GGO nodules have irregular
shapes and vague boundaries, they still contain small spherical
elements that can be detected by the shape feature.

4) Multi- Scale Dot Enhancement Filtering

The Dot enhancement (DE) algorithm can be used to enhance
the objects of a specific shape (such as dot-like nodule objects).
For each voxel, the Dot value is defined as [21]:

s/
Zaor W20, 23) =] Jay| A <042 <0.43 <0 (6)
0 Otherwise
where 4y, 4 and A3 (|4|2|4|2|4]| ) are three eigenvalues of

the Hessian matrix calculated from second derivatives of image.
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To reduce the effect of the noise and also to take into account
different object sizes, Gaussian image smoothing with a variety
of scales is performed prior to the calculation of the second
derivatives. Assuming that the diameters of nodule objects to be
enhanced are in a range [dy.d;] (e.g¢ [2mm, 20mm]), the N

discrete smoothing scales (o ) in the range of [d( /4,4, /4] can
be calculated as:

O'1=d0/4, 0y =roy, ..., GN:rN_10'1:d1/4 (7)

where r=(d;/dy)" (N=1) It is noted that image resolution is

considered in the calculation of Gaussian smoothing with
different scales and each of the enhancement filters enhances
objects with a specific scale. The maximum Dot value
calculated using (6) among the different scales (7) is chosen to
be the final dot value for each voxel in the Dot map.

In this paper, the Dot map is calculated on each CT
sub-image, which contains one potential nodule region Ry, .

Three Gaussian scales are used to remove the noise. The region
is kept as a potential nodule candidate if the number of voxels
whose Dot values are larger than a pre-defined threshold. By
using the Dot filtering, most of the FP regions (e.g. joint of
vessel) with high spherical elements can be removed from the
nodule candidates

C. 3D Potential Nodule Segmentation

In this subsection, two methods are proposed to segment the
potential nodule objects: (a) Segmentation based on an adaptive
thresholding; (b) Segmentation based on a Modified
Expectation Maximization (MEM) algorithm. The former is an
intensity-based method for fast segmentation of potential
nodule objects (referred to as a coarse segmentation), especially
for low contrast nodules such as GGOs; while the latter is used
to segment the potential nodule objects considering the
neighboring intensities (referred to as a fine segmentation).

1) Adaptive Thresholding based Segmentation

An adaptive thresholding method is applied to the extracted

sub-image from the potential nodule concentration (R ) to

segment the potential nodule objects. The high and low intensity
thresholds can be calculated as follows:

frL=7"m _lfmin _fM|*0~1’ JTH = fmax +|fmin _fmaxl*o'1 (8)
where, fj, and f,,,, are the mean and maximum intensities in the

region R, respectively. fi;, 1s the minimum intensity in the

sub-image. Fig.8 shows a segmented potential GGO nodule
based on the adaptive thresholding. A 3D region labeling
technique [25] is applied on the segmented image and the 3D
connected region that has the largest overlap with the
concentration mask is used as the final segmented nodule object
as shown in Fig.8(c).

P
22

(a) (b) (c)
Fig.8. Potential nodule segmentation based on adaptive thresholding; (a) One

2D cross-section of 3D original nodule image; (b) Potential nodule
concentration R g; from shape index map; (c) Segmented nodule region.

The adaptive thresholding is a fast segmentation method.
Based on (8), the low threshold (f;;) for the nodule
segmentation is mainly estimated based on the intensity
statistics (such as mean intensity) of the region concentration
R, . Therefore, the algorithm can provide a better object

boundary when these intensity statistics are similar to that of the
segmented nodule. As discussed in the previous subsection, the
region R; represents lower sphericity concentration that is

obtained from shape index map. It usually covers the core part
of the segmented object. This is the main reason why this
adaptive algorithm can segment most of the potential nodules
that have smaller intensity variance within the nodule objects
(e.g. most low contrast nodules). However, in the case of some
potential nodules which have relatively larger intensity
variance, the algorithm fails to properly identify the object
boundary. An example can be seen in Fig.10(b), which shows
underestimation of nodule boundary. To solve this problem, a
MEM-based segmentation method is discussed below.
2) MEM based Segmentation

To properly segment the potential nodule object, a mixed
statistical model taking into consideration spatial properties is
used. This method is based on the combination of a Markov
Random Field (MRF) and an Expectation—-Maximization (EM)
algorithm to iteratively estimate the model parameters and then
calculate the probability that each voxel represents the object
(potential nodule) [29]. A brief description of this method and
how it is applicable to the nodule segmentation are given below.

We assume an intensity image y -{y,,i=12...n} With M

voxels of intensity y; and K different classes L={12,.K}. In

this paper, a special case of two classes (K=2): object (potential
nodule) and background, is considered. The ranges of image
intensities can be modelled as Gaussian distributions with
parameters ¢ = (y;,07), here 1=12:

I’l()’[“ﬂl): Gup.o)= \/%0'1 exp [- (i _'ul)z] (&)

20 12
According to the Bayesian probability theory, the posterior
probability p((p,| y,-) can be obtained as:

pi(viler) plory)

)= =12
rloifi) S 0iGiler) plon))

1
Here, p((ol(,-)) is a spatial prior probability. The spatial

(10)

constraints can be imposed by a Markov Random Field (MRF)
and Gibbs Random Field (MRF-GRF) [29].

The posterior probability p(¢1| yi) in (10) represents the
probability that the given voxel i belongs to one class /e L. In
the case of nodule object segmentation, the class l;F e[1,2]

which maximizes p(q)llyi) is chosen to be the class label for that
voxel. Namely, l;l< = arg max p((pll yi).
l

Fig.9 shows an example of the potential nodule segmentation
based on MEM algorithm. It can be seen that the potential
nodule boundary can be properly separated from the attached
blood vessel.
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(a) (b) (©)
Fig.9. Potential nodule segmentation based on MEM; (a) One 2D cross-section
of 3D original nodule image; (b) Potential nodule concentration R 5/ from

shape index map; (c) Segmented nodule region.

(a) (b) (©)
Fig.10. A comparison of segmentation results of a non-uniform nodule based
on adaptive thresholding and MEM; (a) Original nodule image; Segmented
result based on adaptive thresholding (b) and based on MEM (c).

Fig.10 shows the segmentation results of a mixed GGO
nodule based on the adaptive thresholding and MEM methods.
In this example, it can be seen that due to the heterogeneity of
the nodule, there is a “dark” area surrounding the core part (high
contrast) of the nodule in Fig.10(a). Using the adaptive
thresholding, those pixels in the “dark” area are wrongly
identified as background so that the segmented nodule object is
underestimated (Fig.10(b)); while by using the MEM algorithm,
those pixels can be correctly identified as being part of the
nodule object, as seen in Fig.10(c). This is because the
MRF-GREF is used as a spatial constraint. The segmentation not
only depends on the intensity but also the spatial information.

To speed up the overall computation time, we make use of the
assumption discussed in the previous subsection that most low
contrast nodules have smaller intensity variance within the
nodule objects so that the fast adaptive algorithm can properly
segment those potential nodules. In this paper, for each potential
nodule region, the adaptive thresholding is firstly applied to
obtain the initial segmented object. The intensity mean of each
segmented object is then calculated. For the region that have a
high intensity mean (e.g larger than -500HU), the MEM is then
employed to properly segment the potential nodule object.

It is worthwhile to emphasize that, in the case of nodules with
vasculature attachment, theoretically, the MEM based method
which takes into account spatial information provides better
segmentation results (e.g. this may separate the nodule from
adjoining vessel), compared to the adaptive based method.
However, for the nodule attached to the lung wall (pleural
nodule), both the adaptive and MEM based methods can not
properly segment those nodules. In this paper, those nodules are
segmented in the process of lung segmentation; where the chain
code based critical point method is used which is discussed in
Section 2. An example of segmented attached nodule is shown
in Fig.2(c). Below is the summary of the potential nodule
segmentation.

For each potential nodule region from Section 2B:

Step 1 (Pleural nodules): If the region overlaps with a critical
point region detected during lung segmentation, the potential
nodule is considered to be attached to the lung wall. The critical
point region is used as the segmented region.

Step 2 (Non-pleural nodules): If the nodule is not attached to
the lung wall (not overlaps with a critical point region), segment

the region based on the adaptive thresholding and calculate the
intensity mean of the segmented region. If the mean intensity is
less than -500 HU, stop; otherwise: refine the segmentation
using the MEM method.

D. Local 3D Geometric Features and Rule-based Classifier

In this step, geometric features are calculated on each
segmented potential nodule object. A rule-based classifier is
then applied on each potential nodule object in order to quickly
remove easily dismissible non-nodule objects.

1) 3D Maximum Distance based on Distance Transform

For each potential nodule object (R, ), a 3D distance map is

calculated based on the Euclidean distance transform [25].
Fig.11 shows an example of the distance transform map;
Fig.11(c) is the corresponding distance map within the
segmented object. The pixel with the highest grey leveling in
Fig.11 (c) has the maximum distance to the boundary within the
object. This maximum distance value can be used as one feature
which represents the object thickness. This feature can be used
to remove regions with small maximum distance value, which
are often vessels. It is noted that, in this paper, the distance
transform is calculated with consideration of the anisotropy of
the image data.

(a) (b) (c)
Fig.11. An example of distance transform map; (a) Original sub-image; (b)
Segmented object; (c) Grey-level distance transform map.

2) 3D Object Filtering Based on Motion Tracking

Assuming that the 3D potential nodule object contains more
than one 2D blob (a blob is a cross-sectional object defined in
x-y plane, also referred as scan plane) along the scanning (z)
direction, an object is defined as a blob-moving object if its 2D
blobs on different continuous slices are moving along the x-y
plane. Blob-moving objects are typically indicative of vessels.
Fig.12 shows an example of a blob-moving object.

23l O X
ololol o

(a) (b)
Fig.12. An example of a blob-moving object; (a) 3D view of the object (blood
vessel); (b) 2D view of each blob on continuous slices (along scan direction).

The aim of the rule described in this subsection is to detect
3D blob-moving objects by calculating the overlap kernel (core)
regions between the 2D blobs on consecutive slices. The 2D
kernel region is calculated based on 2D distance transform. Let

EKi

2 DKernel the kernel region of the ith 2D blob, for each pixel p

in ith 2D blob %K.

i .
2DBlob? VP E Rseg and pe Ry, ., we have:

i e :
PE R prornel if fappist_ p Z f2DDistMax™k (1)
Here, foppisi_p is the distance value at the pth pixel in the

2D distance map; while f5ppicmar 1S the maximum distance
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value within the 2D blob in the 2D distance map, and k is a
positive constant which controls the size of the core region,
ke(©l) . In this paper, k is 0.6 which is determined
experimentally. A brief description of how to choose an optimal
value for parameter k is given in the section 2D (5).

For each 3D object R the kernel region of each 2D blob

is calculated based on (11), then the object R, is kept as a

seg >

nodule candidate if:
n—1 ( . i+l
1 1
Z JGH R2DKernel ’RZDKernel
i=1

where n is the total number of the 2D blobs; the operator () is
1 ifx>0
0 ifx=0"
That is to say, if the number of the overlap regions is less than
a preset threshold (e.g. half of total number of 2D blobs), the
region is defined as a 3D blob-moving object and removed from
the nodule candidates.
3) Sphericity
The sphericity is defined as the ratio between the object
volume size and the circumscribed (minimum enclosing) sphere
volume size. The sphericity can be used to remove the 3D
objects that are elongated.
4) Effective Diameter
The effective diameter is defined as the diameter of a sphere
with the same volume of the segmented object. This feature is
used to remove very small (e.g. 2mm or less) nodule candidates.
5) Parameter Selection
The above features are used in a rule-based classifier to
remove easily dismissible non-nodule objects. Each feature is
associated with one rule. The output from one rule will be
employed as the input to a subsequent rule. To determine the
threshold for each rule, clinical knowledge, i.e. the size of the
region (e.g. 2mm), the degree of sphericity, etc, can be
considered to obtain the initial threshold value; then the
threshold that provides a good cutoff in ROC curve is chosen to
minimize the overtraining effect for the rule-based classifier. As
an example, we illustrate how to determine k in Equation 11
(Section 2D(2)). For all the potential nodule objects obtained
from Section 2B, 3D filtering based on the detection of the 3D
blob-moving object (Section 2D(2)) is used as one rule to
remove false positive regions. Fig.13 shows the ROC curve
based on different k values on 54 training scans. It can be seen
that k=0.6 gives good detection performance with regards to
sensitivity and false positives.

)>0.5*n (12)

the AND operation: &(x) :{

E. SVM-based Classification

The rule-based classifier is employed in order to quickly
remove obvious false positive (outliers) so that their influence
on the training of the second classifier was eliminated. In this
subsection, a weighted support vector machine (SVM) [30]
classification method is applied to further separate nodules from
non-nodule candidates.

For the feature space in d-dimensions, we are given training
dataset S =(x,y;),...(x;,y;), where x; e d , and the class label

y; € {+1,—1} (where +1 corresponds to a nodule and -1 to a

non-nodule). The decision function of the weighted-SVM is

given as [30]: f(x)= sgn[zl: yiai*K(x,xi)+ b*J
i=1
where K(x,y)is a non-linear kernel function, be R and q is
constrained as follows: 0<q; <C,, for y; =+1, and
0<aq;<C_, for y;=-1.Where C, and C_ are penalties for
class +1 and -1, respectively.
In this paper, the LibSVM [31] was used with a radial basis

2
], for

¥ > 0.The input parameters are determined through 5-fold cross
validation via parallel grid-search. Each subset is created based
on subtractive clustering [32].

Fifteen features which are listed in Table 1 are empirically
used in this study to characterize the remaining nodule
candidates. All the input features are normalized to [-1, 1].

function kernel, defined as K(x,x)= exp[— y‘x —x

Detection performance by filtering based on 3D blob-moving as one rule
120%

oo 4_K502 K=0.6

sensitivity
2

0%

0% 5% 10% 15% 20% 25% 30% 35% 40%
FP reduction

Fig.13 ROC curve on 54 training scans by using 3D blob-moving as only one
rule with different k values (11). (Here, it is assumed the sensitivity before the
rule filtering is 100%)

Table 1. Features for the classification

# Feature Definition

-4 Max_l, Min_I, Mean_I, Std_I Maximum, minimum, mean, standard deviation of intensity

Ratio of volume equivalent radius and spatial deviation equivalent

5 Compactness .
P radius

6 Shape index mean Mean of shape index map in the segmented object

Those texture features calculated in grey level image by using the

749 Skewness, kurtosis, correlation .
segmented object mask

10 Elongation Ratio between the first and second eigenvalues

Number of voxels within the segmented object multiplied by the

1 Volume size .
image resolution

12 Object location Defined as the distance to the lung contour

13-14  Sphericity and effective diameter Defined in subsection D

15 3D maximum distance to the boundary Defined in subsection D

III. EXPERIMENTAL RESULTS

A database of 108 thoracic CT scans from several different
hospitals was used to evaluate the effectiveness of the proposed
method. Slice thickness varied from 0.5mm to 2.0mm and the
total slice number for each scan varied from 79 to 396 with an
average of 199 per-scan. The X-ray tube current ranged from
30mA to 250mA. Among those 108 scans, 58 scans have 30mA
tube current, 10 scans at 50 mA, and the rest are above 100mA.
Each scan was read individually by members of a qualified
panel and then a consensual gold standard was defined by the
panel. This process defined ground truth of 220 nodules (185
solid nodules and 35 GGO nodules). All the GGO nodules are in
the scans with 30 mA tube current.
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The whole data set was processed using the method described
in Section II. Potential nodule candidates were first generated
based on shape index features, where the high shape index
threshold ¢ in Equation 5 was set to be 0.91 with size

threshold &, =3. A ROC curve with different ¢ is also given in
Fig.17 in the discussion section, which indicates ¢ =0.91

provides an optimal overall performance regarding to the
sensitivity and false positives. The low shape index threshold in
Equation 5 was 0.82 with &, =12; the “dot” filtering was then

used to remove FP regions, 3-scales Gaussian with o;=0.5mm,
o, =1.6mm; o3 =5mm (in Equation 7), were used to remove

noise. For each region from shape index, if the total number of
3D connected voxels with high dot value are larger than 6, the
region is kept as a potential nodule region. By using this dot
filtering, in total, 4639 nodule candidates were generated at the
initial stage (4419 non-nodule regions and 220 nodule regions).
The dataset was randomly split into training and testing datasets
with the same number of scans (54 scans each). The latter was
used as the independent testing for evaluating the performance
of the trained classifiers, which has 2393 nodule candidates.
This includes 122 nodule regions (104 solid nodules and 18
GGO nodules) and 2271 non-nodule regions.

For the training dataset, the rule based classifier was firstly
used to remove easily dismissible false regions. As discussed in
the parameter selection Section 2D (5), the parameter for each
rule that provides good cutoff in an ROC curve is chosen to
minimize the overtraining effect for the rule-based classifier.
For example, the threshold for the sphericity filtering in Section
2D (3) is set to be 0.8. The threshold for the effective diameter is
chosen to be 2mm. After the rules filtering, for the remaining
nodule candidates, the weighted SVM was then employed to
further remove false positive regions.

The weighted SVM was trained using the following scheme.
Subtractive clustering was used to estimate the number and
location of cluster centres in the training dataset. 5-fold
cross-validation (with roughly equal sized folds) was performed
based on the results of the subtractive clustering. Due to the
imbalanced data, and to reduce the computational cost, for each
fold, the non-nodule regions (majority class) were randomly
down-sampled to 5 times of the number of the nodule regions
(minority class). The model was trained 5 times, each time
leaving out one of the folds from the training.

Table 2 shows final nodule detection performance (after
rule-based filtering and the weighted-SVM) on the training
scans. It can be seen that 93 (78 solid and 15 GGO nodules) out
of the total 98 nodules (81 solid and 17 GGO nodules) were
detected by the proposed method, resulting the average
detection rate of about 95%, with the FP rate of 6.2/scan.

The trained model was tested on the independent data. Table
3 shows the results of the rule based classifier applied to 54
independent testing scans. The first row of the Table is the
detection performance for the solid nodules; while the second
row of the table is for the GGO nodules. The remaining nodule
candidates (1068 regions in total) are then fed into the
weighted-SVM for the further reduction. Table 4 shows the
performance of the trained weighted SVM on independent data.
As it can be seen that, 95 out of 101 solid nodules are detected

by the weighted-SVM resulting the sensitivity of 94%, while 15
of 17 GGO nodules can be found with the sensitivity of 88.2%.
1828 non-nodule regions were removed from the candidates,
resulting the final average FP at about 8.2/scan.

Table 5 shows the final detection sensitivity based on the
different nodule size groups for the solid and GGO nodules, by
using the proposed method on the independent testing data.
Table 2. Detection performance of the trained models (rule based filtering and
the weighted-SVM) on the training dataset (54 scans with 98 nodules)

FP Per-scan
6.2/scan

Total nodule Nodule detected Detection rate
98 93 95%

Table 3. Detection performance for the rule based classifier on the independent
dataset (54 scans with 122 nodules)

Nodule type  Total nodule Nodule detected  Detection rate FP Per-scan
Solid nodule 104 101 97.1% 17.6/scan
GGO nodule 18 17 94.4% 17.6/scan

Table 4. Detection performance for the weighted-SVM on the independent
dataset (54 scans with 118 nodules, including 101 solid and 17 GGO).

Nodule type Total nodule  Nodule detected  Detection rate  FP Per-scan
Solid nodule 101 95 94% 8.2/scan
GGO nodule 17 15 88.2% 8.2/scan

Table 5. Sensitivity of the proposed method based on the different nodule sizes
on independent testing data

Nodule Type  <=5mm 5-10mm 10-20mm Total
Solid nodule 568%  945% 91% 91.3%
OUANOQWE 3338y (52/55) (1O/11)  (95/104)

84-6% 80% 83.3%
GGO nodule ; (11/13) (45) (15/18)

Table 6. Comparison of detection performances with Gaussian smoothing and
anti-geometric diffusion followed by the rule based filtering and the weighted
SVM on the independent dataset (54 scans) containing 122 nodules

Nodule detected  Detection rate  FP Per-scan
Gaussian based method 96 78.7% 12.7/scan
Anti-geometric based method 110 90.2% 8.2/scan

In the second experiment, the detection performances of
different pre-processing methods were evaluated (Table 6).
Two smoothing methods were used: Gaussian smoothing and
the proposed anti-geometric diffusion. The first row of the
Table shows the final nodule detection results with using
Gaussian smoothing as a pre-processing step on independent
testing data (54 scans), where 96 out of the 122 (78.7%) nodules
were detected, with an average FP rate of 12.7/scan. For
comparison, the second row of Table 6 gives the results of the
whole proposed method on the same independent testing data.
As indicated in Table 4, 110 (among which, 95 solid and 15
GGO nodules) of the 122 nodules were detected, with the
average detection rate of 90.2%. These results demonstrate that
by using the anti-geometric diffusion pre-processing, the
sensitivity of the nodule detection rate increases from 78.7% to
90.2%, while the FP reduces from 12.7/scan down to 8.2/scan.
Some vascular nodules or pleural nodules (such as those shown
in Fig.14), were missed when Gaussian pre-processing was
used, but can be detected with the proposed algorithm.

Fig.15 shows examples of different types of detected nodules.
Some challenging nodules such as non-spherical nodules with
spherical elements, as shown in Fig.15 (a)~(c), or attached
nodules with similar intensity shown in Fig.15 (d)~(f) can be
detected with the proposed shape based method.
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Fig.14. Nodules detected by using anti-geometric diffusion pre-processing (and
missed with Gaussian smoothing).
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G :
(a) (b) (c) (d) (e) (f)
Fig.15. Different types of nodules detected with the proposed method. (a)~(c)
non-spherical nodules; (d)~(f) nodules attached to vessels with similar

intensity.

Fig.16. Example of nodules missed by the proposed method

As discussed in Section II, a high spherical concentration can
be obtained by thresholding the shape index map as in (5).
Therefore, different shape index thresholds produce different
nodule detection performances. Fig.17 shows the detection
performance curves with regards to the different shape index
thresholds, in which 11 sets of high shape index thresholding
values were used, ranging from 0.89 to 0.99. It is noted that, a
shape index thresholding value & of 0.91 provides an optimal

overall performance with a higher detection rate (about 90.2%)
and a relatively smaller FP rate (about 8.2/scan).

The proposed CAD algorithm was tested on the computer
with 2.39GHz CPU and 2GB Memory. On average, it takes
about 2.5mins/scan. Table 7 shows the average computation
time required for each major step. Since our objective is to build
a commercial lung CAD system, the fast computation time is
important for the practicality of the method for clinical
application.

Detection performance for both of Solid and GGO nodules.

0 2 4 3 8 10 12
FPiscan

Fig.17. Performance evaluation with different high shape index thresholding
values ranging from 0.89 to 0.99

Table 7. The average computation time (in seconds) at each major step

Lung Candidate generation 3-scales Dot Potential nodule  Feature calculation
segmentation based on SI filtering segmentation and filtering
38s 28s 32s 25s 28s

IV. DISCUSSION

The result in Fig.17 shows a optimal detection rate of 90.2%
(110 out of total 122 nodules detected including solid and GGO
nodules) for the whole proposed method using the independent
dataset. Examples of different types of detected nodules are

shown in Fig.14 and Fig.15. As mentioned before, one
advantage of the local shape feature is that it characterizes the
local geometric feature and favors regions with high spherical
elements. This is the main reason that the proposed algorithm is
able to detect not only spherical nodules, but also non-spherical
nodules with aspects of high local spherical elements. The
second advantage of using the shape index is that, theoretically,
it only represents the local shape feature, while being
independent of the image intensity. This is one of the reasons
why low contrast GGO nodules can be detected using the
proposed system.

Some examples of nodules missed (false negatives) by the
proposed method are shown in Fig.16. Typically, these nodules
are very low contrast or close to the chest wall. The shape index
favors regions with high spherical elements. However, nodules
could be missed if they do not include local spherical elements
or if the sizes of the elements are too small.

As mentioned in the beginning of Section 3, there are 68
scans with low tube current, among which 58 scans are at 30mA,
and 10 scans are at 50 mA. By using the proposed method, for
the scans at 30mA, the average detection sensitivity is 91.7%
with FP rate of 8.6/scan; while for the scans at 50 mA, the
average detection sensitivity is 90.6% with FP rate of 6.5/scan.
For low dose screening, most CAD schemes in the literature are
developed for thick-slice CT images, e.g. slice thickness 10mm.
There are only a small number of papers that describe the
detection with low-dose and thin-slice data. Mendonca et al.
[15] applied the curvature tensor method on 50 low-dose CT
scans at 40mA with reported sensitivity of 67.5% (for the
nodules above 4mm) and false rate at 9.3FP/scan. By using the
same low-dose data, they compared their method with the
Hessian method proposed by Sato et al. [33], at the same rate of
9.3FP/scan, the Hessian method achieved a sensitivity of 40%.
They also applied their method on 192 low-dose scans at 20mA
with sensitivity of 62.9% at 10.3FP/scan. Although the
databases are different, the performance of our proposed
method on the low dose data indicates the effectiveness of the
method with low-dose CT screening. We attribute the ability of
our method to handle low dose data to the anti-geometric
diffusion, which is used as a pre-processing step to remove
noise and provides a good base for the accurate calculation of
shape index features. In addition, the “dot” feature is calculated
on multiple scales of Gaussian smoothed images. However,
very noisy reconstructed images due to very low-dose tube
current might lead to inaccurate calculation of the local shape
feature. To further improve the detection performance, an
adaptive smoothing method needs to be further investigated.

By using the proposed method, Table 8 shows the variation in
sensitivity and false positive rate over all cases on the
independent testing data. As it is known that different imaging
parameters (e.g. different slice thickness and different tube
currents) may affect the nodule detection performance, the
proposed method tries to limit the influence by tuning the model
(choosing the optimal parameters) on a wide range of nodules
with different sizes, slice thickness and radiation. The
experimental results on the independent dataset demonstrate the
generalizability of the proposed method.
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Table 8 The variation of nodule detection performance over all cases on
independence testing data based on the proposed method. ([] indicates the
number of the detected nodules among the total nodules in one scan.)
Highest Lowest STD
Sensitivity [8/8]100%  [1/2]50% 10.3
False Positive 15 1 4.96

V. CONCLUSION

This paper proposed a new approach to lung CAD by
calculating 3D local geometric and statistical intensity features
for potential solid and GGO nodule detection. The method has
been built in a commercial lung CAD system. The experimental
results demonstrate the high nodule detection performance of
the proposed algorithm, with an overall detection rate of about
90.2% (including solid and GGO nodules), and FP at 8.2/scan.
Despite some challenging nodules such as non-spherical, low
contrast part-solid, and non-solid nodules, the detection
sensitivity is high with a low rate of FP regions. Most of the
tissues (blood vessels, apical scarring, etc) can be excluded as
nodule candidates. The method’s high performance for the
detection both of solid and GGO nodules, applicability to
different tube currents, and fast computation time shows much
promise for clinical applications.
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