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Abstract—In this paper, a new CT lung nodule 

Computer-Aided Detection (CAD) method is proposed for 

detecting both solid nodules and Ground-Grass Opacity (GGO) 

nodules (part-solid and non-solid). This method consists of several 

steps.  First, the lung region is segmented from the CT data using a 

fuzzy thresholding method. Then, the volumetric Shape Index 

map, which is based on  local Gaussian and mean curvatures, and 

the “Dot” map, which is based on the Eigenvalues of a Hessian 

matrix, are calculated for each voxel within the lungs to enhance 

objects of a specific shape with high spherical elements (such as 

nodule objects). The combination of the shape index (local shape 

information) and “dot” features (local intensity dispersion 

information) provides a good structure descriptor for the initial 

nodule candidates generation. Anti-geometric diffusion, which 

diffuses across the image edges, is used as a preprocessing step. 

The smoothness of image edges enables the accurate calculation of 

voxel based geometric features. Adaptive thresholding and 

Modified Expectation Maximization methods are employed to 

segment potential nodule objects. Rule-based filtering is first used 

to remove easily dismissible non-nodule objects. This is followed 

by a weighted Support Vector Machine (SVM) classification to 

further reduce the number of false positive objects. 

The proposed method has been trained and validated on a 

clinical dataset of 108 thoracic CT scans using a wide range of tube 

dose levels which contain 220 nodules (185 solid and 35 GGO 

nodules) determined by a ground truth reading process. The data 

was randomly split into training and testing datasets. The 

experimental results using the independent dataset indicates an 

average detection rate of 90.2%, with approximately 8.2 false 

positives per scan. Some challenging nodules such as non-spherical 

nodules and low contrast part-solid and non-solid nodules were 

identified, while most tissues such as blood vessels were excluded. 

The method’s high detection rate, fast computation, and 

applicability to different imaging conditions and nodule types 

shows much promise for clinical applications 

 

Index Terms— Anti-Geometric Diffusion, Computer-Aided 

Detection (CAD), CT, Expectation-Maximization, Lung Nodule, 

Shape Analysis 

 

I. INTRODUCTION 

HERE has been growing interest in the development of 

Computer-Tomography (CT) as a tool for detecting lung 

cancer. Lung nodules can be classified into two categories: 
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solid nodules characterized by their high contrast and 

Ground-Glass Opacity (GGO) nodules with faint contrast and 

fuzzy margins [1]. Generally speaking, nodules with GGO 

characteristics are either part-solid (consisting of solid 

components and GGO components) or non-solid (pure-GGO). 

GGO nodules are more likely to be malignant than solid nodules 

[2]. Studies on lung nodule Computer-Aided Detection (CAD) 

are reported frequently in the literature [3]-[17]. However, most 

attention has been given to solid nodule detection. As pointed 

by Sluimer et al. in a review of computer analysis of CT lung 

scans [11], research leading to improved detection of GGO 

nodules should have top priority. Recently, there are a number 

of papers that describe GGO nodule detection. But most of the 

work focuses on detection with high-dose CT imaging. As 

discussed in [2], lung cancer screening using low-dose CT 

(LDCT) has been reported to be effective at detecting lung 

cancer. This paper describes a new CT lung CAD method that 

aims to detect both solid nodules and GGO (part-solid or 

non-solid) nodules using a range of tube dose levels. 

A. Previous Work on Nodule Detection 

Existing approaches in the literature for detecting potential 

nodules can be roughly categorized into intensity- and model- 

based detection methods. Intensity based detection methods are 

usually based on the assumption that lung nodules have 

relatively higher intensity than those of lung parenchyma and 

employ techniques such as multiple thresholding [3]; clustering 

[4]; artificial neural networks [5]; and mathematical 

morphology [6], to identify nodules in the lung area.  

For model-based detection methods, techniques such as 

template-matching [7][8], object-based deformation [9], and the 

anatomy-based generic model [10] have been proposed to 

separate spherical shaped nodules from elongated structures 

such as blood vessels. Lee et al.[7] proposed a Genetic 

Algorithm (GA) Template Matching (GATM) technique for 

detecting nodules within the lung area. Shape and gradient 

features rules were used to reduce FPs. They achieved 72% 

sensitivity with 31 FP/ scan. Farag et al.[8] proposed a similar 

GATM approach based on Gaussian templates, while the 

Gaussian parameters were automatically estimated from the 

given data. They achieved the detection rate of 82.3% with the 

FP rate of 9.2%.  

 Recently, several approaches to lung CAD that combine 

geometric and intensity models to enhance local anatomical 

structure (e.g spherical objects) have been proposed. Paik et al. 

[13] proposed surface normal overlap (SNO) method to capture 

the concentration of normals by calculating derivatives of 

Shape Based Computer-Aided Detection of Lung 

Nodules in Thoracic CT Images 

Xujiong Ye
1
, Xinyu Lin

1
, Jamshid Dehmeshki

2
, Member IEEE, Greg Slabaugh

1
, Senior Member IEEE, 

Gareth Beddoe
1
, Member IEEE  

T 



> TBME-00691-2008.R1 < 

 

2 

intensity images. They report results on 8 chest datasets with 

90% sensitivity and 5.6FP/scan for solid nodules. Zhang et 

al.[14] integrated surface curvature features into the voting 

procedure of normal overlap. They tested on 42 thoracic CT 

cases and showed improvement compared to the original SNO 

method, with sensitivity of 92% at the same false positive rate. 

Mendonca et al.[15] also analyzed surface curvature by using 

the eigenanalysis of the curvature tensor to detect nodules, 

which achieved a sensitivity of 67.5% at 9.3 FP/scan  (for 

nodules above 4mm) on 50 low-dose images. Pereira et al. [16] 

extracted a set of rotation invariant features from a multi-scale 

and multi-orientation filter bank and those features were then 

used in a multi-classifier for the false positive reduction.  

Most of the above algorithms have been developed for solid 

nodules. For detection of GGO nodules, Kim et al.[12] used 

texture features and a three-layered neural network to detect 

GGOs. They tested on 14 scans with tube dose from 200mA to 

400mA and achieved a sensitivity of 94.3%. Zhou et al.[17] 

developed a boosting k-NN classifier for automatic detection of 

GGO. The detected GGO region was then automatically 

segmented by analyzing the texture likelihood map. They 

applied their method to chest CT with 10 GGOs. The method 

detected all of the 10 nodules with only one false positive. 

Despite much effort being devoted to the computer-aided 

nodule detection problem, lung CAD systems remain an 

ongoing research topic [18]. One of the major difficulties is the 

detection of GGO nodules with low-dose thin-slice CT 

screening. Another two difficulties are the detection of nodules 

that are adjacent to vessels or the chest wall when they have very 

similar intensity; and the detection of nodules that are 

non-spherical in shape. In such cases, intensity thresholding or 

model based methods might fail to identify those nodules. 

B. Our Approach 

This paper proposes a new and effective approach to lung 

CAD by calculating 3D local geometry and statistical intensity 

features for potential solid and GGO nodule detection.  It aims 

to build a unified lung CAD framework with clinically 

acceptable performance for the detection both of solid and GGO 

nodules using a wide range of tube dose levels. The main 

contributions of the paper are summarized below: 

• A unified lung CAD framework for the detection of solid and 

GGO nodules using a wide range of tube dose level (e.g. 

30mA—250mA). Incorporating GGO detection into a lung 

CAD framework has great potential for clinical application. 

• The components of our algorithm utilize some existing 

methods in new ways. In particular, new efforts have been made 

to adapt the methods into our lung CAD framework as follows: 

o An adaptive fuzzy thresholding method is presented for the 

segmentation of the lung region. 

o The application of anti-geometric diffusion [19] to the 

image prior to computing geometric features. The smoothness 

of the edges generated by anti-geometric diffusion is better 

suited to the accurate calculation of the voxel based features 

(such as shape index features). 

o The combination of features is well suited to detect solid 

and GGO nodules.  In particular, the shape index [20] (local 

shape information) and “dot” features [21] (local intensity 

dispersion information) provide a good structure descriptor 

that can detect most of the nodules.   

o The accurate segmentation of the nodule object is very 

important for the extraction of features. Our solution to 

efficiently segment the potential nodule object involves two 

steps: a) an adaptive thresholding for a coarse segmentation; 

b) a Modified Expectation Maximization algorithm (MEM) 

for accurate segmentation. 

The proposed method has been evaluated on a clinical dataset 

of 108 thoracic CT scans with tube range from 30mA to 250mA. 

The experimental results demonstrate the high performance of 

the proposed method, with an overall detection rate of 90.2% 

(including solid and GGO nodules), false positives at 

approximately 8.2/scan. 

II. METHODOLOGY 

Fig.1 gives an overview of our proposed lung nodule 

detection scheme. In the following sections, each stage is 

described in detail.  

 
Fig.1 Block diagram of the proposed nodule detection system 

A. Lung Segmentation 

Due to the different scanning protocols, it is challenging to 

choose a threshold for lung image segmentation. Vinhais et al. 

[22] presented a fully automated method for extracting the lung 

region based on material decomposition. They applied the 

method on 30 thoracic CT images and it provided a 

reproducible set of thresholds for accurate extraction of the 

lungs. Hu et al.[23] used optimal thresholding to automatically 

segment lungs. 

In this paper, a two-step segmentation method is proposed for 

lung extraction. First, a 3D adaptive fuzzy thresholding [24] is 

used to obtain the initial lung mask; then a 2D-based 

post-refinement process on the lung contour chain code is 

applied to obtain a complete lung mask; both described below. 

Let )(iTlow  and )(iM low denote the cumulative histogram and 

first moment starting from the minimum intensity minI  of the 

image, respectively; while )(iThigh  and )(iM high  starting from 

the maximum intensity maxI . In this paper, to exclude the voxels 

outside the thorax, a simple thresholding (e.g. -1000HU) is first 

applied on the whole image to produce a processing mask 

image. minI and maxI  are then the minimum and maximum grey 
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level of the original image over the voxels in the mask.  

Given a particular gray level i, the histogram can be divided 

into two regions. For each of the two regions, the mean value 

can be calculated as: 

)(

)(
)(

iT

iM
i

low

low
low =µ ,

)(

)(
)(

iT

iM
i

high

high
high =µ  (1) 

In order to determine an optimum threshold, a cost function is 

calculated at each grey level i [24],  
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where ( )tmi  is a membership measurement at each grey level t   

to one of two regions separated in the histogram by the grey 

level i. The closer the data point (t) is to the mean of its region, 

the higher its membership value. The gray level I0 that provides 

a minimum cost function is chosen as a threshold for 3D lung 

image segmentation. 

Based on the threshold I0, the initial thorax object is 

identified from the original CT image. A morphological flood 

fill operation [25] is then used to obtain a hole-free lung mask. 

Fig.2 (b) shows an example of the initial segmented lung mask 

from the first step of the lung extraction. It is noted that a nodule 

attached to the lung wall and some other attached tissues such as 

vessels are initially excluded from the lung mask at this step.  

The aim of the second step of the lung extraction process is to 

obtain those attached objects.  For each 2-D slice of the 

segmented lung object, a chain code [25], is employed to 

represent the initial lung contour. Alternatively, each code can 

be considered as an angular direction, in multiples of 45 

degrees. 1-D Gaussian smoothing is then applied to the chain 

codes to remove the noise from the initial lung contour. By 

specifying a threshold value on the smoothed angle code 

(e.g.180), each point can be classified as a concave point (above 

180), or a convex point (below 180), or a smooth point (180). A 

concave section is specified by its critical points (such as A and 

B in Fig. 3). These points are detected by examining the chain 

code and identifying each transition point for which the angle 

increases [26]. By using this chain code representation, the pairs 

of critical points are then detected on each segmented lung slice. 

The next step of the lung contour refinement is to join 

corresponding pairs of critical points and fill in the resulting 

polygons formed by all the points in the contour in between the 

pair of critical points, which are endpoints of a concave region. 

Fig.2(d) shows the final segmented lung image. The subsequent 

nodule detection is calculated within the segmented lung mask. 

B. Potential Lung Nodule Concentrations Extraction 

The volumetric shape index [20] is a measure of local shape 

characteristics. Given the fact that a nodule is generally either 

spherical or has local spherical elements, while a blood vessel is 

usually oblong, the volumetric shape index, which identifies 

spherical elements, can be used as the first step to detect 

potential nodule candidates. It is noted that, compared to solid 

nodules, GGO nodules have irregular shapes and vague 

boundaries. In this paper, it is assumed that there are some 

spherical elements embedded in those irregular shapes. We 

define spherical elements as a local grouping of voxels 

recognized by high volumetric shape index values. For 

example, while a GGO nodule may not be entirely spherical, it 

can still be detected by identifying small spherical elements 

concentrated within the GGO object. The goal in this section is 

to detect the potential nodules based on these spherical 

elements. In the next section, we will address the complete 

segmentation of potential nodules. An example of pure GGO 

using spherical elements concentrated in parts of the object is 

given in Fig.7. 

 
Fig.2 Lung segmentation based on a fuzzy thresholding method; processing 

goes from left to right. (a) Original CT lung image; (b) Lung mask extraction 

from fuzzy thresholding; (c) Segmented concave regions (an attached nodule 

and other attached tissues) based on critical points; (d) Final segmented lung 

mask formed by adding the (b) and (c) to produce the final lung mask. 

 
Fig.3. Lung post-processing based on critical points 

In this subsection, an anti-geometric diffusion model, 

proposed by Manay et al. [19] is used prior to the shape index 

calculation. This model differs from Gaussian smoothing 

suggested in [27] or geometric diffusion models (including 

anisotropic diffusion) introduced by Perona and Malik [28] for 

image smoothing and denoising. The anti-geometric diffusion 

model diffuses across image edges. The advantages of diffusing 

across image edge include better localization, less sensitivity to 

noise, and better connectivity of the shape index map.   

1) Pre-Processing using Anti- Geometric Diffusion 

The anti-geometric diffusion model was introduced in the 

context of adaptive thresholding and fast segmentation [19]. A 

brief description of this method is as below. 

Given the iso-intensity contours of an image ),,( zyxI , let η  

and ξ  denote the gradient and the tangent directions, 

respecitively. Recall that the linear heat equation is described as  

ηηζζ III
t

I
+=∇⋅∇=

∂

∂
. In the case of anti-geometric 

diffusion, the tangential diffusion is excluded and only the 

normal diffusion is applied, the anti-geometric diffusion is 

defined as: 
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where, xI  and yI  are the first derivatives along x and y. 

The result of diffusion in the normal direction is that the 

image edges are smeared. The smoothness of the edge is very 

important for accurate voxel based geometry feature calculation 

(such as shape index). This will be discussed in the next 

subsection, where examples of shape index calculation on one 

GGO nodule with different diffusion models are also given for 

comparison. 
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2) Shape Index: A 3D Geometric Feature  

The volumetric shape index (SI) at voxel ),,( zyxp  can be 

defined as [20][27]: 

( )
( ) ( )
( ) ( )pkpk

pkpk
pSI
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−=

π
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where ( )pk1  and  ( )pk 2  are principal curvatures at voxel p. 

Every distinct shape, except for the plane, corresponds to a 

unique shape index [20]. Five well-known shape classes have 

the following shape index values: cup (0.0), rut (0.25), saddle 

(0.5), ridge (0.75), and cap (1.0).  For example, the shape index 

value is 1.0 indicates a sphere-like shape which represents a 

“cap”, and 0.75 indicates a cylinder-like shape which represents 

a “ridge”. Volumetric shape index directly characterizes the 

topological shape of an iso-surface in the vicinity of each voxel. 

To illustrate the characteristics of the shape index, Fig.4(a) 

shows an example of one small lung nodule attached to a blood 

vessel. It is noted that different shape index values between the 

sphere-like nodule and the cylinder-like blood vessel at each 

voxel are obtained; the average of shape index values for the 

nodule is higher than that for the blood vessel.  

Figure 5 demonstrates the influence of the different diffusion 

models on the shape index calculation of a GGO nodule.  It can 

be seen that, by using the anti-geometric diffusion, the average 

shape index value at voxels close to nodule edge are higher than 

that of geometric diffusion or Gaussian smoothing. This is 

because the anti-geometric diffusion smears the image edge, 

providing better localization and connectivity of the shape index 

at nodule edges. Later, in the Section III of this paper, we will 

present results showing that the use of anti-geometric diffusion 

in the overall CAD system yields better performance than the 

use of Gaussian smoothing as a pre-processing step. 

3) Potential Nodule Candidates Detection Based on the 

Shape Index Feature 

A sphericity region is defined as a region for which, for 

sji ℜ∈∀ , , (i, j are 3D connected voxels) we have: 

11 )(,)( ϑϑ ≥≥ jSIiSI  (5) 

where 1ϑ is a high shape index threshold chosen 

experimentally. In this paper, we refer to clusters of spherical 

elements as potential nodule concentration regions, which can 

be extracted using the following steps: 

• Based on the calculated shape index map using (4), all the 

high sphericity regions (
shℜU ) that satisfy the condition set in (5) 

are identified, with [ ]1,9.01 ∈ϑ  . The size of each shℜ  is set to 

be larger than 1δ  voxels. Fig.6(b) is the detected high sphericity 

concentration regions with 1ϑ  and 1δ chosen to be 0.92 and 3. 

• Find all the low sphericity regions ( slℜU ) that satisfy (5) 

with )9.0,8.0[1 ∈ϑ . The size of each slℜ is set to be larger than 

2δ  voxels. Fig.6 (c) is the detected low sphericity regions with 

1ϑ  and 1δ chosen to be 0.82 and 20. 

• The region slℜ is regarded as a potential nodule region if the 

region slℜ  contains at least one high sphericity region 

shℜ as slsh ℜ⊂ℜ . Fig.6(d) shows an example of the detected 

potential nodule regions. 

 
Fig.4. Shape index map with a nodule attached to a vessel.  (a) Original CT 

image; (b) Shape index map; Shape index map values for the nodule (c) and for 

the blood vessel (d). 

 
Fig.5. Shape index maps produced using different diffusion models. (a) One 

slice of a GGO nodule; Shape index map with Gaussian smoothing 

)0.1( =σ (b) Geometric diffusion )0.1( =∆t (c) and anti-geometric diffusion 

)0.1( =∆t (d); (e)~(g) Example of corresponding shape index values at the 

same voxels adjacent to the nodule edge. 

 
Fig.6. An example of solid nodule regions extraction. (a) shape index map; (b) 

high sphericity regions; (c) low sphericity regions; (d) detected potential nodule 

candidates from step (3). 

 
Fig.7. An example of pure GGO nodule regions extraction. (a) GGO sub-image; 

(b) shape index map of the GGO; (c) high sphericity regions; (d) detected 

potential nodule candidates from step (3). 

Fig.6 and Fig.7 are the examples of potential nodule 

concentration extraction based on the shape index for both solid 

and GGO nodules. Compared to the nodule concentration in 

Fig.6(d) for the solid nodule which the spherical elements 

covers most of the nodule object,  the high spherical elements 

shown in Fig.7(d) only cover a small part of the GGO. This 

demonstrates that, although the GGO nodules have irregular 

shapes and vague boundaries, they still contain small spherical 

elements that can be detected by the shape feature.  

4) Multi- Scale Dot Enhancement Filtering  

The Dot enhancement (DE) algorithm can be used to enhance 

the objects of a specific shape (such as dot-like nodule objects). 

For each voxel, the Dot value is defined as [21]: 

( )       

Otherwise0

0 0, 0, if,, 321
1

2
3

321







<<<= λλλ

λ
λ

λλλdotZ  (6) 

where 1λ , 2λ and 3λ  ( 321 λλλ ≥≥ ) are three eigenvalues of 

the Hessian matrix calculated from second derivatives of image.  
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To reduce the effect of the noise and also to take into account 

different object sizes, Gaussian image smoothing with a variety 

of scales is performed prior to the calculation of the second 

derivatives. Assuming that the diameters of nodule objects to be 

enhanced are in a range [ ]10 ,dd (e.g [2mm, 20mm]), the N 

discrete smoothing scales ( Nσ ) in the range of [ ]4/,4/ 10 dd can 

be calculated as: 

4/,,,4/ 11
1

1201 drrd N
N === −

= σσσσσ K (7)

where ( ) ( )11
01

−= Nddr . It is noted that image resolution is 

considered in the calculation of Gaussian smoothing with 

different scales and each of the enhancement filters enhances 

objects with a specific scale. The maximum Dot value 

calculated using (6) among the different scales (7) is chosen to 

be the final dot value for each voxel in the Dot map.  

In this paper, the Dot map is calculated on each CT 

sub-image, which contains one potential nodule region slℜ . 

Three Gaussian scales are used to remove the noise. The region 

is kept as a potential nodule candidate if the number of voxels 

whose Dot values are larger than a pre-defined threshold. By 

using the Dot filtering, most of the FP regions (e.g. joint of 

vessel) with high spherical elements can be removed from the 

nodule candidates 

C. 3D Potential Nodule Segmentation 

In this subsection, two methods are proposed to segment the 

potential nodule objects: (a) Segmentation based on an adaptive 

thresholding; (b) Segmentation based on a Modified 

Expectation Maximization (MEM) algorithm. The former is an 

intensity-based method for fast segmentation of potential 

nodule objects (referred to as a coarse segmentation), especially 

for low contrast nodules such as GGOs; while the latter is used 

to segment the potential nodule objects considering the 

neighboring intensities (referred to as a fine segmentation). 

1) Adaptive Thresholding based Segmentation 

An adaptive thresholding method is applied to the extracted 

sub-image from the potential nodule concentration ( slℜ ) to 

segment the potential nodule objects. The high and low intensity 

thresholds can be calculated as follows: 

1.0*min MMTL ffff −−= , 1.0*maxminmax ffffTH −+= (8)

where, fM and maxf are the mean and maximum intensities in the 

region slℜ , respectively. minf  is the minimum intensity in the 

sub-image. Fig.8 shows a segmented potential GGO nodule 

based on the adaptive thresholding. A 3D region labeling 

technique [25] is applied on the segmented image and the 3D 

connected region that has the largest overlap with the 

concentration mask is used as the final segmented nodule object 

as shown in Fig.8(c). 

 
Fig.8. Potential nodule segmentation based on adaptive thresholding; (a) One 

2D cross-section of 3D original nodule image; (b) Potential nodule 

concentration slℜ from shape index map; (c) Segmented nodule region. 

The adaptive thresholding is a fast segmentation method. 

Based on (8), the low threshold (fTL) for the nodule 

segmentation is mainly estimated based on the intensity 

statistics (such as mean intensity) of the region concentration 

slℜ . Therefore, the algorithm can provide a better object 

boundary when these intensity statistics are similar to that of the 

segmented nodule. As discussed in the previous subsection, the 

region slℜ  represents lower sphericity concentration that is 

obtained from shape index map. It usually covers the core part 

of the segmented object. This is the main reason why this 

adaptive algorithm can segment most of the potential nodules 

that have smaller intensity variance within the nodule objects 

(e.g. most low contrast nodules). However, in the case of some 

potential nodules which have relatively larger intensity 

variance, the algorithm fails to properly identify the object 

boundary. An example can be seen in Fig.10(b), which shows 

underestimation of nodule boundary. To solve this problem, a 

MEM-based segmentation method is discussed below. 

2) MEM based Segmentation 

To properly segment the potential nodule object, a mixed 

statistical model taking into consideration spatial properties is 

used. This method is based on the combination of a Markov 

Random Field (MRF) and an Expectation–Maximization (EM) 

algorithm to iteratively estimate the model parameters and then 

calculate the probability that each voxel represents the object 

(potential nodule) [29]. A brief description of this method and 

how it is applicable to the nodule segmentation are given below. 

We assume an intensity image { }MiyY i ,...,2,1, ==  with M 

voxels of intensity iy  and K different classes },...2,1{ˆ KL = . In 

this paper, a special case of two classes (K=2): object (potential 

nodule) and background, is considered. The ranges of image 

intensities can be modelled as Gaussian distributions with 

parameters ),( lll σµφ = , here 2,1=l :  

( ) ( ) ( )
   

2
exp

2

1
,

2

2
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Gyp

σ

µ

σπ
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(9) 

According to the Bayesian probability theory, the posterior 

probability ( )il yp ϕ  can be obtained as:  

( )
( ) ( )( )

( ) ( )( ) 2,1=
⋅

⋅
=
∑

l
pyp

pyp
yp

l

illil

illil
il

ϕϕ

ϕϕ
ϕ  

(10) 

Here, ( )( )ilp ϕ  is a spatial prior probability. The spatial 

constraints can be imposed by a Markov Random Field (MRF) 

and Gibbs Random Field (MRF-GRF) [29]. 

The posterior probability ( )il yp ϕ  in (10) represents the 

probability that the given voxel i belongs to one class Ll ˆ∈ . In 

the case of nodule object segmentation, the class ]2,1[
* ∈il  

which maximizes ( )il yp ϕ  is chosen to be the class label for that 

voxel. Namely, ( )il
l

i ypl ϕmaxarg* = . 

Fig.9 shows an example of the potential nodule segmentation 

based on MEM algorithm. It can be seen that the potential 

nodule boundary can be properly separated from the attached 

blood vessel. 
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Fig.9. Potential nodule segmentation based on MEM; (a) One 2D cross-section 

of 3D original nodule image; (b) Potential nodule concentration slℜ from 

shape index map; (c) Segmented nodule region. 

 
Fig.10. A comparison of segmentation results of a non-uniform nodule based 

on adaptive thresholding and MEM; (a) Original nodule image; Segmented 

result based on adaptive thresholding (b) and based on MEM (c). 

Fig.10 shows the segmentation results of a mixed GGO 

nodule based on the adaptive thresholding and MEM methods. 

In this example, it can be seen that due to the heterogeneity of 

the nodule, there is a “dark” area surrounding the core part (high 

contrast) of the nodule in Fig.10(a). Using the adaptive 

thresholding, those pixels in the “dark” area are wrongly 

identified as background so that the segmented nodule object is 

underestimated (Fig.10(b)); while by using the MEM algorithm, 

those pixels can be correctly identified as being part of the 

nodule object, as seen in Fig.10(c). This is because the 

MRF-GRF is used as a spatial constraint. The segmentation not 

only depends on the intensity but also the spatial information. 

To speed up the overall computation time, we make use of the 

assumption discussed in the previous subsection that most low 

contrast nodules have smaller intensity variance within the 

nodule objects so that the fast adaptive algorithm can properly 

segment those potential nodules. In this paper, for each potential 

nodule region, the adaptive thresholding is firstly applied to 

obtain the initial segmented object. The intensity mean of each 

segmented object is then calculated.  For the region that have a 

high intensity mean (e.g larger than -500HU), the MEM is then 

employed to properly segment the potential nodule object.  

It is worthwhile to emphasize that, in the case of nodules with 

vasculature attachment, theoretically, the MEM based method 

which takes into account spatial information provides better 

segmentation results (e.g. this may separate the nodule from 

adjoining vessel), compared to the adaptive based method. 

However, for the nodule attached to the lung wall (pleural 

nodule), both the adaptive and MEM based methods can not 

properly segment those nodules. In this paper, those nodules are 

segmented in the process of lung segmentation; where the chain 

code based critical point method is used which is discussed in 

Section 2. An example of segmented attached nodule is shown 

in Fig.2(c). Below is the summary of the potential nodule 

segmentation.  

For each potential nodule region from Section 2B: 

Step 1 (Pleural nodules): If the region overlaps with a critical 

point region detected during lung segmentation, the potential 

nodule is considered to be attached to the lung wall.  The critical 

point region is used as the segmented region. 

Step 2 (Non-pleural nodules):  If the nodule is not attached to 

the lung wall (not overlaps with a critical point region), segment 

the region based on the adaptive thresholding and calculate the 

intensity mean of the segmented region.  If the mean intensity is 

less than -500 HU, stop; otherwise: refine the segmentation 

using the MEM method. 

D. Local 3D Geometric Features and Rule-based Classifier 

In this step, geometric features are calculated on each 

segmented potential nodule object. A rule-based classifier is 

then applied on each potential nodule object in order to quickly 

remove easily dismissible non-nodule objects. 

1) 3D Maximum Distance based on Distance Transform 

For each potential nodule object ( segℜ ), a 3D distance map is 

calculated based on the Euclidean distance transform [25]. 

Fig.11 shows an example of the distance transform map; 

Fig.11(c) is the corresponding distance map within the 

segmented object. The pixel with the highest grey leveling in 

Fig.11 (c) has the maximum distance to the boundary within the 

object. This maximum distance value can be used as one feature 

which represents the object thickness. This feature can be used 

to remove regions with small maximum distance value, which 

are often vessels. It is noted that, in this paper, the distance 

transform is calculated with consideration of the anisotropy of 

the image data.  

 
Fig.11. An example of distance transform map; (a) Original sub-image; (b) 

Segmented object; (c) Grey-level distance transform map. 

2) 3D Object Filtering Based on Motion Tracking 

Assuming that the 3D potential nodule object contains more 

than one 2D blob (a blob is a cross-sectional object defined in 

x-y plane, also referred as scan plane) along the scanning (z) 

direction, an object is defined as a blob-moving object if its 2D 

blobs on different continuous slices are moving along the x-y 

plane. Blob-moving objects are typically indicative of vessels. 

Fig.12 shows an example of a blob-moving object.  

 
Fig.12. An example of a blob-moving object; (a) 3D view of the object (blood 

vessel); (b) 2D view of each blob on continuous slices (along scan direction). 

The aim of the rule described in this subsection is to detect 

3D blob-moving objects by calculating the overlap kernel (core) 

regions between the 2D blobs on consecutive slices. The 2D 

kernel region is calculated based on 2D distance transform. Let  

i
DKernel2

ℜ  the kernel region of the ith 2D blob, for each pixel p 

in ith 2D blob i
DBlob2

ℜ , i
DBlobseg RpandRp

2
  ∈∈∀ , we have: 

i
DKernel

Rp
2

∈ if kff DDistMaxpDDist *2_2 ≥  (11) 

Here, pDDistf _2  is the distance value at the pth pixel in the 

2D distance map; while DDistMaxf2  is the maximum distance 
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value within the 2D blob in the 2D distance map, and k is a 

positive constant which controls the size of the core region, 

)1,0(∈k . In this paper, k is 0.6 which is determined 

experimentally.  A brief description of how to choose an optimal 

value for parameter k is given in the section 2D (5).  

For each 3D object segℜ , the kernel region of each 2D blob 

is calculated based on (11),  then the object segℜ  is kept as a 

nodule candidate if:  

( ) nRR
n

i

i
DKernel

i
DKernel

*5.0,
1

1

1
22

>





∑

−

=

+
Iδ  (12) 

where n is the total number of the 2D blobs; the operator ( )⋅I  is 

the AND operation: ( )




=

>
=

0 xif      0

0 xif      1
xδ  . 

That is to say, if the number of the overlap regions is less than 

a preset threshold (e.g. half of total number of 2D blobs), the 

region is defined as a 3D blob-moving object and removed from 

the nodule candidates.  

3) Sphericity 

The sphericity is defined as the ratio between the object 

volume size and the circumscribed (minimum enclosing) sphere 

volume size.  The sphericity can be used to remove the 3D 

objects that are elongated.  

4) Effective Diameter 

The effective diameter is defined as the diameter of a sphere 

with the same volume of the segmented object. This feature is 

used to remove very small (e.g. 2mm or less) nodule candidates. 

5) Parameter Selection 

The above features are used in a rule-based classifier to 

remove easily dismissible non-nodule objects. Each feature is 

associated with one rule. The output from one rule will be 

employed as the input to a subsequent rule. To determine the 

threshold for each rule, clinical knowledge, i.e. the size of the 

region (e.g. 2mm), the degree of sphericity, etc, can be 

considered to obtain the initial threshold value; then the 

threshold that provides a good cutoff in ROC curve is chosen to 

minimize the overtraining effect for the rule-based classifier. As 

an example, we illustrate how to determine k in Equation 11 

(Section 2D(2)).  For all the potential nodule objects obtained 

from Section 2B, 3D filtering based on the detection of the 3D 

blob-moving object (Section 2D(2)) is used as one rule to 

remove false positive regions. Fig.13 shows the ROC curve 

based on different k values on 54 training scans. It can be seen 

that k=0.6 gives good detection performance with regards to 

sensitivity and false positives. 

E. SVM-based Classification 

The rule-based classifier is employed in order to quickly 

remove obvious false positive (outliers) so that their influence 

on the training of the second classifier was eliminated. In this 

subsection, a weighted support vector machine (SVM) [30] 

classification method is applied to further separate nodules from 

non-nodule candidates. 

For the feature space in d-dimensions, we are given training 

dataset ),(),...,,( 11 ll yxyxS = , where dxl ∈ , and the class label 

}1,1{ −+∈ly  (where +1 corresponds to a nodule and -1 to a 

non-nodule). The decision function of the weighted-SVM is 

given as [30]:  ( )













+= ∑

=

*

1

*
,sgn)( bxxKayxf i

l

i

ii  

where ( )yxK , is a non-linear kernel function, R∈b  and a is 

constrained as follows: +≤≤ Cai0 ,  for 1+=iy , and 

−≤≤ Cai0 , for 1−=iy . Where +C  and −C  are penalties for 

class +1 and -1, respectively.  

In this paper, the LibSVM [31] was used with a radial basis 

function kernel, defined as ( ) 









−−=

2
'exp, xxxxK γ , for 

.0>γ The input parameters are determined through 5-fold cross 

validation via parallel grid-search. Each subset is created based 

on subtractive clustering [32].   

Fifteen features which are listed in Table 1 are empirically 

used in this study to characterize the remaining nodule 

candidates. All the input features are normalized to [-1, 1]. 

 
Fig.13 ROC curve on 54 training scans by using 3D blob-moving as only one 

rule with different k values (11). (Here, it is assumed the sensitivity before the 

rule filtering is 100%) 

Table 1. Features for the classification 

 

III. EXPERIMENTAL RESULTS 

A database of 108 thoracic CT scans from several different 

hospitals was used to evaluate the effectiveness of the proposed 

method.  Slice thickness varied from 0.5mm to 2.0mm and the 

total slice number for each scan varied from 79 to 396 with an 

average of 199 per-scan. The X-ray tube current ranged from 

30mA to 250mA. Among those 108 scans, 58 scans have 30mA 

tube current, 10 scans at 50 mA, and the rest are above 100mA. 

Each scan was read individually by members of a qualified 

panel and then a consensual gold standard was defined by the 

panel. This process defined ground truth of 220 nodules (185 

solid nodules and 35 GGO nodules). All the GGO nodules are in 

the scans with 30 mA tube current.  
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The whole data set was processed using the method described 

in Section II.  Potential nodule candidates were first generated 

based on shape index features, where the high shape index 

threshold 1ϑ  in Equation 5 was set to be 0.91 with size 

threshold 1δ =3. A ROC curve with different 1ϑ  is also given in 

Fig.17 in the discussion section, which indicates 1ϑ =0.91 

provides an optimal overall performance regarding to the 

sensitivity and false positives. The low shape index threshold in 

Equation 5 was 0.82 with 2δ =12; the “dot” filtering was then 

used to remove FP regions, 3-scales Gaussian with 1σ =0.5mm, 

2σ =1.6mm; 3σ =5mm (in Equation 7), were used to remove 

noise. For each region from shape index, if the total number of 

3D connected voxels with high dot value are larger than 6, the 

region is kept as a potential nodule region. By using this dot 

filtering, in total, 4639 nodule candidates were generated at the 

initial stage (4419 non-nodule regions and 220 nodule regions). 

The dataset was randomly split into training and testing datasets 

with the same number of scans (54 scans each). The latter was 

used as the independent testing for evaluating the performance 

of the trained classifiers, which has 2393 nodule candidates. 

This includes 122 nodule regions (104 solid nodules and 18 

GGO nodules) and 2271 non-nodule regions. 

For the training dataset, the rule based classifier was firstly 

used to remove easily dismissible false regions. As discussed in 

the parameter selection Section 2D (5), the parameter for each 

rule that provides good cutoff in an ROC curve is chosen to 

minimize the overtraining effect for the rule-based classifier. 

For example, the threshold for the sphericity filtering in Section 

2D (3) is set to be 0.8. The threshold for the effective diameter is 

chosen to be 2mm. After the rules filtering, for the remaining 

nodule candidates, the weighted SVM was then employed to 

further remove false positive regions.  

The weighted SVM was trained using the following scheme.  

Subtractive clustering was used to estimate the number and 

location of cluster centres in the training dataset. 5-fold 

cross-validation (with roughly equal sized folds) was performed 

based on the results of the subtractive clustering.  Due to the 

imbalanced data, and to reduce the computational cost,  for each 

fold, the non-nodule regions (majority class) were randomly 

down-sampled to 5 times of the number of the nodule regions 

(minority class). The model was trained 5 times, each time 

leaving out one of the folds from the training.  

Table 2 shows final nodule detection performance (after 

rule-based filtering and the weighted-SVM) on the training 

scans. It can be seen that 93 (78 solid and 15 GGO nodules) out 

of the total 98 nodules (81 solid and  17 GGO nodules) were 

detected by the proposed method, resulting the average 

detection rate of  about 95%, with the FP rate of 6.2/scan.  
The trained model was tested on the independent data.  Table 

3 shows the results of the rule based classifier applied to 54 

independent testing scans. The first row of the Table is the 

detection performance for the solid nodules; while the second 

row of the table is for the GGO nodules. The remaining nodule 

candidates (1068 regions in total) are then fed into the 

weighted-SVM for the further reduction. Table 4 shows the 

performance of the trained weighted SVM on independent data. 

As it can be seen that, 95 out of 101 solid nodules are detected 

by the weighted-SVM resulting the sensitivity of 94%, while 15 

of 17 GGO nodules can be found with the sensitivity of 88.2%. 

1828 non-nodule regions were removed from the candidates, 

resulting the final average FP at about 8.2/scan.  

Table 5 shows the final detection sensitivity based on the 

different nodule size groups for the solid and GGO nodules, by 

using the proposed method on the independent testing data. 

Table 2. Detection performance of the trained models (rule based filtering and 

the weighted-SVM) on the training dataset (54 scans with 98 nodules) 

 

Table 3. Detection performance for the rule based classifier on the independent 

dataset (54 scans with 122 nodules) 

 

Table 4. Detection performance for the weighted-SVM on the independent 

dataset (54 scans with 118 nodules, including 101 solid and 17 GGO). 

 

Table 5. Sensitivity of the proposed method based on the different nodule sizes 

on independent testing data 

 

Table 6. Comparison of detection performances with Gaussian smoothing and 

anti-geometric diffusion followed by the rule based filtering and the weighted 

SVM on the independent dataset (54 scans) containing 122 nodules  

 

In the second experiment, the detection performances of 

different pre-processing methods were evaluated (Table 6). 

Two smoothing methods were used: Gaussian smoothing and 

the proposed anti-geometric diffusion.  The first row of the 

Table shows the final nodule detection results with using 

Gaussian smoothing as a pre-processing step on independent 

testing data (54 scans), where 96 out of the 122 (78.7%) nodules 

were detected, with an average FP rate of 12.7/scan. For 

comparison, the second row of Table 6 gives the results of the 

whole proposed method on the same independent testing data. 

As indicated in Table 4, 110 (among which, 95 solid and 15 

GGO nodules) of the 122 nodules were detected, with the 

average detection rate of 90.2%. These results demonstrate that 

by using the anti-geometric diffusion pre-processing, the 

sensitivity of the nodule detection rate increases from 78.7% to 

90.2%, while the FP reduces from 12.7/scan down to 8.2/scan. 

Some vascular nodules or pleural nodules (such as those shown 

in Fig.14), were missed when Gaussian pre-processing was 

used, but can be detected with the proposed algorithm.  

Fig.15 shows examples of different types of detected nodules. 

Some challenging nodules such as non-spherical nodules with 

spherical elements, as shown in Fig.15 (a)~(c), or attached 

nodules with similar intensity shown in Fig.15 (d)~(f) can be 

detected with the proposed shape based method.  
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Fig.14. Nodules detected by using anti-geometric diffusion pre-processing (and 

missed with Gaussian smoothing). 

 
Fig.15. Different types of nodules detected with the proposed method. (a)~(c) 

non-spherical nodules; (d)~(f) nodules attached to vessels with similar 

intensity. 

 
Fig.16. Example of nodules missed by the proposed method 

As discussed in Section II, a high spherical concentration can 

be obtained by thresholding the shape index map as in (5). 

Therefore, different shape index thresholds produce different 

nodule detection performances. Fig.17 shows the detection 

performance curves with regards to the different shape index 

thresholds, in which 11 sets of high shape index thresholding 

values were used, ranging from 0.89 to 0.99. It is noted that, a 

shape index thresholding value 1ϑ  of 0.91 provides an optimal 

overall performance with a higher detection rate (about 90.2%) 

and a relatively smaller FP rate (about 8.2/scan).  

The proposed CAD algorithm was tested on the computer 

with 2.39GHz CPU and 2GB Memory. On average, it takes 

about 2.5mins/scan. Table 7 shows the average computation 

time required for each major step. Since our objective is to build 

a commercial lung CAD system, the fast computation time is 

important for the practicality of the method for clinical 

application. 

 
Fig.17. Performance evaluation with different high shape index thresholding 

values ranging from 0.89 to 0.99 

Table 7. The average computation time (in seconds) at each major step 

 

IV. DISCUSSION 

The result in Fig.17 shows a optimal detection rate of 90.2% 

(110 out of total 122 nodules detected including solid and GGO 

nodules) for the whole proposed method using the independent 

dataset. Examples of different types of detected nodules are 

shown in Fig.14 and Fig.15. As mentioned before, one 

advantage of the local shape feature is that it characterizes the 

local geometric feature and favors regions with high spherical 

elements. This is the main reason that the proposed algorithm is 

able to detect not only spherical nodules, but also non-spherical 

nodules with aspects of high local spherical elements. The 

second advantage of using the shape index is that, theoretically, 

it only represents the local shape feature, while being 

independent of the image intensity. This is one of the reasons 

why low contrast GGO nodules can be detected using the 

proposed system. 

Some examples of nodules missed (false negatives) by the 

proposed method are shown in Fig.16. Typically, these nodules 

are very low contrast or close to the chest wall. The shape index 

favors regions with high spherical elements. However, nodules 

could be missed if they do not include local spherical elements 

or if the sizes of the elements are too small.  

As mentioned in the beginning of Section 3, there are 68 

scans with low tube current, among which 58 scans are at 30mA, 

and 10 scans are at 50 mA. By using the proposed method, for 

the scans at 30mA, the average detection sensitivity is 91.7% 

with FP rate of 8.6/scan; while for the scans at 50 mA, the 

average detection sensitivity is 90.6% with FP rate of 6.5/scan. 

For low dose screening, most CAD schemes in the literature are 

developed for thick-slice CT images, e.g. slice thickness 10mm. 

There are only a small number of papers that describe the 

detection with low-dose and thin-slice data. Mendonca et al. 

[15] applied the curvature tensor method on 50 low-dose CT 

scans at 40mA with reported sensitivity of 67.5% (for the 

nodules above 4mm) and false rate at 9.3FP/scan. By using the 

same low-dose data, they compared their method with the 

Hessian method proposed by Sato et al. [33], at the same rate of 

9.3FP/scan, the Hessian method achieved a sensitivity of 40%. 

They also applied their method on 192 low-dose scans at 20mA 

with sensitivity of 62.9% at 10.3FP/scan.  Although the 

databases are different, the performance of our proposed 

method on the low dose data indicates the effectiveness of the 

method with low-dose CT screening. We attribute the ability of 

our method to handle low dose data to the anti-geometric 

diffusion, which is used as a pre-processing step to remove 

noise and provides a good base for the accurate calculation of 

shape index features.  In addition, the “dot” feature is calculated 

on multiple scales of Gaussian smoothed images. However, 

very noisy reconstructed images due to very low-dose tube 

current might lead to inaccurate calculation of the local shape 

feature. To further improve the detection performance, an 

adaptive smoothing method needs to be further investigated. 

By using the proposed method, Table 8 shows the variation in 

sensitivity and false positive rate over all cases on the 

independent testing data. As it is known that different imaging 

parameters (e.g. different slice thickness and different tube 

currents) may affect the nodule detection performance, the 

proposed method tries to limit the influence by tuning the model 

(choosing the optimal parameters) on a wide range of nodules 

with different sizes, slice thickness and radiation. The 

experimental results on the independent dataset demonstrate the 

generalizability of the proposed method.  
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Table 8 The variation of nodule detection performance over all cases on 

independence testing data based on the proposed method. ([] indicates the 

number of the detected nodules among the total nodules in one scan.) 

 

V. CONCLUSION 

This paper proposed a new approach to lung CAD by 

calculating 3D local geometric and statistical intensity features 

for potential solid and GGO nodule detection. The method has 

been built in a commercial lung CAD system. The experimental 

results demonstrate the high nodule detection performance of 

the proposed algorithm, with an overall detection rate of about 

90.2% (including solid and GGO nodules), and FP at 8.2/scan.  

Despite some challenging nodules such as non-spherical, low 

contrast part-solid, and non-solid nodules, the detection 

sensitivity is high with a low rate of FP regions. Most of the 

tissues (blood vessels, apical scarring, etc) can be excluded as 

nodule candidates. The method’s high performance for the 

detection both of solid and GGO nodules, applicability to 

different tube currents, and fast computation time shows much 

promise for clinical applications.  
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