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ABSTRACT

Accurate staging of nodal cancer still relies on surgical explo-
ration because many primary malignancies spread via lym-
phatic dissemination. The purpose of this study was to uti-
lize nanoparticle-enhanced lymphotropic magnetic resonance
imaging (LN-MRI) to explore semi-automated noninvasive
nodal cancer staging. We present a joint image segmentation
and registration approach, which makes use of the problem
specific information to increase the robustness of the algo-
rithm to noise and weak contrast often observed in medical
imaging applications. The effectiveness of the approach is
demonstrated with a given lymph node segmentation problem
in post-contrast pelvic MRI sequences.

Index Terms— biomedical image processing, image seg-
mentation, biomedical magnetic resonance imaging, medical
diagnosis

1. INTRODUCTION

Accurate staging of nodal cancer still relies on surgical explo-
ration because many primary malignancies spread via lym-
phatic dissemination [1]. Particularly, accurate detection of
lymph-node metastases in prostate cancer is an essential com-
ponent of the approach to treatment [2]. MR nodal stag-
ing with lymphotropic magnetic nanoparticles (LN-MRI) has
the potential to provide highly accurate non-invasive cancer
staging. Images are currently assessed by qualitative visual
analysis or by quantitative measurements with manual outlin-
ing. These approaches are laborious and impractical given
the large number of lymph nodes. A practical solution to the
problem is an automated process that can quickly and accu-
rately support the physician in gathering the disease specific
information from the magnetic resonance images.

The problem addressed in this paper is: given high resolu-
tion MR images with nanoparticles, to segment lymph nodes
using computer algorithms and extract lymph node features
for classification. The challenge of the problem is that the
appearance, geometry, and location of lymph nodes have a

Fig. 1. MR images obtained after the contrast agent administra-
tion of results in a homogeneous and low signal intensity for benign
lymph nodes (left),and a high intensity for a malignant lymph node
(right).

huge variation over the MR images. Fig. 1 shows properties
of benign and malignant nodes after administration of LN.
The segmentation algorithm has to account for these varia-
tions in delineation of lymph nodes. The feature extraction
algorithm should then identify discriminative features for a
subsequent node classification. Complete solutions for an au-
tomated process currently do not exist.

An automatic or semi–automatic detection of anatomic
structures provides faster and more precise diagnostic infor-
mation to clinicians than manual outlining, and therefore in-
creases the efficiency of the clinical work–flow. In the given
lymph node detection in LN-MRI, multiple MR image se-
quences such as pre- and post-contrast agent images, differ-
ent settings such as T2-, T2*-, and T1-weighted are avail-
able. In such situations, a detection usually refers to a seg-
mentation for outlining a target structure and a registration in
the presence of multiple images. Deformable models have
been popular in medical image segmentation problems, see
[3] for a survey. Medical images present a challenge to most
segmentation algorithms due to clutter from the surrounding
structures and noise inherent to medical imaging equipment,
therefore shape priors are usually incorporated. Specifically,
an ellipse is a powerful parametric form used in many com-
puter vision tasks [4, 5]. A parametric maximum likelihood



fit to the medical data, particularly cardiac scintigrams, using
an ellipse parameterization was developed in [6]. Other para-
metric approaches to segmentation include Fourier descrip-
tors in [7], and spherical harmonics in [8]. For registration
of medical structures, a tremendous amount of work has been
done, see [9]. Recently, there has been an interest in combin-
ing segmentation and registration problems due to their strong
interdependence [10, 11, 12, 13, 14, 15].

Our contribution in this study is a problem specific semi-
automatic lymph node segmentation and feature extraction
system, which couples the information from MR T2- and mul-
tiple T2*-weighted images for a joint segmentation and reg-
istration. In this way, our method utilizes all the information
available in multiple images segmenting the target structure
and registering it simultaneously in all images, thereby ac-
counting for missing and weak information in some modali-
ties. We hence simultaneously capture the boundaries of the
lymph node in all the volumes. For surgical planning, we ob-
tain a segmentation in three-dimensions and output the final
lymph node surface for visualization along with the vascular
anatomy using the T1 volume. Later, we automatically ex-
tract lymph node features that are explained in the work of
Harisinghani&Weissleder [1], for lymph node classification.

In Fig. 2, a lymph node appears as a roughly homoge-
neous region on a T2–weighted MR image sequence, whereas
the same node shows hardly visible boundary characteristics
with no difference in the region information of its inside from
outside on the T2*-MR images. An uncoupled segmentation
is likely to fail due to an expected mis-registration among the
different sequences although they were acquired during the
same scan study, and due to missing information (Fig. 2a).
The coupling of the information from multi-modal images
through a joint segmentation and registration is therefore im-
portant (Fig. 2b). Utilization of prior information on such a
challenging problem is critical, however, we did not resort
to training since a common general shape of lymph nodes is
hardly existent. On the other hand, an ellipse being a powerful
approximator for shapes led us to make use of this parametric
form for our multiple registration and segmentation problem.

The organization of the paper is as follows: we present the
ellipse evolution models for joint registration and segmenta-
tion in Section 2. Results, validation studies, and conclusions
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Fig. 2. The lymph node shows very different region and boundary
characteristics in T2, T2* gradient echo 1 and 2 images (top from
left to right). (a)Uncoupled segmentation (b)Coupled segmentation.

are given in Section 3 and Section 4.

2. COUPLED ELLIPTICAL FLOWS

2.1. Region-Based Ellipse Evolutions

Given a finite number of imagesIi : Ωi −→ Rn∈{2,3}, i =
1, . . . ,m, the goal is to find a contourC ∈ Ω that propagates
on an independent domainΩ whereas a contourCi corre-
sponding to the mappingCi = gi(C ) propagates on theith

image domainΩi with a region–based energy:

E(C , g1, ..., gm) =

mX
i=1

Z
Ci

in

f i(gi(x))|g′
i|dx (1)

whereg′i denotes the Jacobian ofgi, f i = f i
in − f i

out, and
f i

in and f i
out are the region descriptors inside and outside

the transformed contourgi(C) respectively (x ∈ Ωi). A
piecewise constant model for the target regions can be uti-
lized by choosingf i = (Ii − meanin)2− (Ii − meanout)2

as in [16]. The evolution of the contourC is given by :
∂C
∂t =

∑m
i=1 f i(gi(x))|g′i|N , whereN denotes the unit

normal toC [10]. The ellipse flows will eliminate the need
for a regularization on the unknown contourC, which shrinks
C with a speed depending on its curvatureκ.

The parametrization of a 2D elliptical contourε (p) by
p ∈ [0, 2π), given its translation vectort = (d, e)T , rotation
angleθe, and radiia andb, is given by:

ε (p) = a

(
cos θe

− sin θe

)
cos p+b

(
sin θe

cos θe

)
sin p+

(
d
e

)
.

(2)
Utilizing this parametrization, the variation of the energy

in Eq. (1) w.r.t. ellipse parametersλj ∈ {a, b, d, e, θe}, j =
1, . . . , 5 yields the gradient flows:

dλj

dt
=

m∑
i=1

∮
ε

f i(gi(x))〈∂gi(x)
∂λj

, gi(x)N 〉|g′i|dp (3)

for an evolution of the ellipse (
∮
ε denotes an integration along

the ellipse). The variation of the ellipse with respect to its pa-
rameters∂ε /∂λj are computed by taking the partial deriva-
tives of the ellipse equation in Eq.(2) with respect to each of
the five parameters. In addition, for each of the rigid registra-
tionsgi, we have(gi)k = wk, k = 1, ..., 4 for two parameters
of translation vectorT , one parameter of rotation matrixR ,
and one parameter for uniform scales. Similarly, we derive
the variation of the rigid registration∂g i(x)/∂wk with re-
spect to eachwk. In the end our goal is to obtain a set of
equations to evolve the registration parameters, and to evolve
the ellipse parameters, both based on region and edge-based
energy terms as shown next.

2.2. Edge-based Ellipse Evolutions

The total edge-based energy of an ellipse can be given by:

E(ε , g1, ..., gm) =
m∑

i=1

∮
ε

Φi(gi(x))‖g′i(ε p)‖dp (4)



whereΦ is a weighting function that is usually designed to
slow down the propagation of the contour at high image gradi-
ents. Taking the derivative of the energy w.r.t. an independent
time variablet yields the evolution:

∂λj

∂t
=

mX
i=1

I
ε
〈∇Φi(gi(x))−Φi(gi(x))T i

p,
∂gi(x)

∂λj
〉‖g′

i(ε p)‖dp

(5)
of the ellipse parametersλj , whereT p is the derivative of
the tangent vector along the ellipse. Taking a closer look at
this flow, one can note the similarity to the geodesic contour
flow [17], where the second term in the inner product is the
curvature term weighted by the conformal factorΦ, and the
first term is the gradient of the conformal factor which pulls
the contour back to the real boundary. In the above equation
though, the integration around the ellipse provides a signifi-
cant increase in robustness of the flow, allowing the contour to
escape from local minima more easily, in contrast to a generic
contour with geodesic energy.

Similarly, the evolution of the registrationgi can be ob-
tained as follows:

∂(gi)k

∂t
=

∂E

∂(gi)k
=

I
ε
〈∇Φi(gi(x)),

∂gi(x)

∂wk
〉‖g′

i(ε
i
p)‖dp. (6)

2.3. Combined Region and Edge-Based Ellipse Flows

We utilize a combination of the region and edge-based flows
to obtain the update equations for both the registration and the
segmentation of the ellipse as follows:

∂(gi)k

∂t
=

I
ε
〈[∇Φi(gi(x)) + f i(gi(x))giN ],

∂gi(x)

∂wk
〉‖g′

i(εp )‖dp,(7)

∂λj

∂t
=

mX
i=1

I
ε
〈
∂gi(x)

∂λj
, [∇Φi(gi(x)) + f i(gi(x))giN ]〉‖g′

i(εp )‖dp(8)

for the kth parameter of the registration,k = 1, . . . , 4, and
the jth parameter of the segmentationj = 1, . . . , 5, and for
theith transformation corresponding to imageIi.

3. RESULTS

We demonstrate the algorithm’s application to a dataset from
MR scans of prostate cancer screening studies. The image
modalities used are post-contrast T2, T2* echoes 1 and 2. An
initialization of a region of interest (ROI) box, i.e. a rectan-
gle, in a slice of one of the volumes triggers a deformable
contour initialization, particularly an ellipse contour. The al-
gorithm propagates in 2D space on all modalities, then ex-
tends to other slices in 3D. We show here 2D slices in many
of the examples for simplicity of discussion.

In Fig. 3, a benign lymph node is merged with the ves-
sels next to it, therefore this example presents a challenge for
a contour that evolves without any shape constraints. This
is shown at the top where a level-set based active contour
that uses region- and edge-based speed terms is utilized. The
ellipse-based evolutions on the other hand successfully seg-
ment the lymph node region of interest. Similarly, for the
malignant node on the right, an active contour method is dis-
tracted by the dark spot in the lymph node and has trouble in

Fig. 3. The active contour leaks to neighboring vessel regions,
and fails to delineate the benign node (row 1 left) and the ma-
lignant node (row 1 right) as opposed to the ellipse (row 2).

Benign LN Example Malignant LN Example
Setting T2 T2*1 T2*2 T2 T2*1 T2*2

Level set contour based 1562 291 199 1716 1609 807
Ellipse based 246 267 200 425 217 493

Table 1. Number of non-overlapping pixels with respect to
manual segmentation for active contour vs. ellipse based seg-
mentation and registration.

estimating the real boundaries in all sequences in contrast to
the ellipse propagation. In Table 1, we display the total num-
ber of pixels that are non-overlapping with the manual seg-
mentation map for both the active contour segmentation and
the ellipse segmentation map summed over the 2D slices of
the lymph nodes. It can be observed from the numbers in the
table that the coupled ellipse flows produce much better re-
sults than that of the active contour due to constrained motion
of the former.

We have 30 lymph node samples taken from 7 patients, of
which 17 are benign and 13 are malignant. We show the semi-
automatic segmentation results from this dataset in Fig. 4. Out
of the 30 lymph node boundary delineations, two malignant
node results were not exact and stayed inside the node without
expanding. With the contrast-agent penetration, the metasta-
tic tumors are expected to stay light in intensity and exhibit
a homogeneous region character, however this may not be
true in all cases. Malignancy may exhibit a partial infiltra-
tion, hence a complex texture in T2* echo images, therefore
the full delineation of node boundaries may be harder. For
the classification of tumors based on nodal intensity changes
inside the node though, even a partial delineation may be use-
ful. To assess the region delineation performance, in Table 2,
we display the error of omission (Type I error) and the error of
commission (Type II error) between the manual segmentation
(by an ellipse) and the automatic ellipse segmentation given
an ROI for each of the 30 lymph nodes in our initial data set.
It can be observed that the noisier modality, particularly T2*
echo 2, results in a higher percentage of error whereas the T2
and T2* echo 1 exhibit around10 − 15% error of omission.
These results show that the coupled ellipse flows provide a
reasonable nodal region delineation for later feature extrac-
tion and diagnosis stages.

From the segmented lymph nodes, we automatically ex-
tract lymph node features proposed in the work of Harising-
hani and Weissleder [1] such as the lymph node variance,
lymph node size, roundedness, and a specific T2 star value
based on the mean nodal intensity inside the lymph node. We
output these features for the lymph node classification stage



T2 T2*1 T2*2
Percent Error avg std avg std avg std
Err. Omission 11.00 11.97 13.05 15.39 19.96 19.95

Err. Commission 23.03 17.29 21.80 17.13 27.70 25.07
Table 2. Summary of validation statistics (average and standard de-
viation values): Percent error of omission (Type I error) and percent
error of commission (Type II error) between the algorithm and man-
ual segmentations.

that uses a Bayesian network model [18]. In addition, for
surgical planning, the visualization of the lymph nodes with
respect to the vascular anatomy of the patient is performed
through the MR-T1 scan as shown in Fig. 5.

For more in depth validation, a bigger database of approx-
imately 300 patients will be acquired, and classification of
lymph nodes with features extracted from the lymph nodes
delineated by our technique will be carried out.

4. CONCLUSIONS

We presented an application-specific lymph node segmenta-
tion and feature extraction system, which couples the infor-
mation from MR T2-, and multiple T2*-weighted images for
a joint segmentation and registration. We hence simultane-
ously capture the boundaries of the lymph node in all the im-
age volumes. For surgical planning, we obtain a segmentation
in 3D and output the final lymph node surface for visualiza-
tion along with the vascular anatomy using the MR T1 vol-
ume. We also automatically extract the lymph node features
for lymph node classification. Current results have shown that
the coupled elliptical registration and segmentation is useful
and will assist in delineation of lymph nodes from multiple
MRI sequences, and in assessment of lymphatic spread for
accurate staging of cancer and surgical planning.
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Fig. 4. Lymph node examples from the database.

Fig. 5. 3D visualization of a benign (small green) and a malignant (big red)
lymph node along with vascular anatomy aids in surgical planning.


