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ABSTRACT 
 
This paper presents a joint spatial-intensity-shape (JSIS) 
feature-based method for the segmentation of CT lung 
nodules. First, a volumetric shape index (SI) feature based 
on the second-order partial derivatives of the CT image is 
calculated.  Next, the SI feature is combined with spatial and 
intensity features to form a five-dimensional feature vectors, 
which are then clustered using mean shift to produce 
intensity and shape mode maps. Finally, a modified 
expectation-maximization (MEM) algorithm is applied on 
the mean shift intensity mode map to merge the neighboring 
modes with spatial and shape mode maps as priors.  
    The proposed method has been evaluated on a clinical 
dataset of thoracic CT scans that contains 80 nodules. A 
volume overlap ratio between each segmented nodule and 
the ground truth annotation is calculated. Using the proposed 
method, the mean overlap ratio over all the nodules is 0.81 
with standard deviation of 0.05. Most of the nodules, 
including challenging juxta-vascular and juxta-pleural 
nodules, can be properly separated from adjoining tissues.  
 

Index Terms— Mean shift, mode map, expectation-
maximization (EM), lung nodule, shape index, shape prior. 
 

1. INTRODUCTION 
 
Accurate lung nodule segmentation provides a solid base for 
detection, feature calculation, classification in lung 
Computer Aided Detection (CAD) systems. However, 
nodule segmentation is a challenging task in medical 
imaging, particularly when the object has low contrast, a 
small size, or is located within an area of complicated 
anatomy [1]. For example, it becomes difficult to properly 
separate a nodule from adjoining tissues that have similar 
intensity characteristics, such as a blood vessel (juxta-
vascular nodule) and the lung wall (juxta-pleural nodule).   

Several approaches have been reported in literature for the 
segmentation of lung nodules [2-5]. Most of them are based 
on the pixel intensity in the image domain and use either 
region growing or model-based methods to segment the 
nodule boundary. In [2], an adaptive sphericity oriented 
contrast region growing method was used to segment the 
nodule boundary. The region growing operates on the fuzzy 

connectivity map within a volumetric mask. Other 
approaches based on deformable surfaces can be found in 
[3]. To increase robustness, several methods impose an a 
priori model; for example, the approaches described in 
[4][5] utilize shape models for spherical and ellipsoidal 
nodules respectively. However, such models are limiting in 
that not all types of lung nodules are accurately represented 
with these shapes.  

In this paper, we have developed a novel segmentation 
method that combines shape, image intensity, and spatial 
position to automatically segment lesions. The proposed 
algorithm has the following steps: it (1) calculates volumetric 
shape index (SI) at each voxel; (2) combines the SI with the 
intensity and the spatial position (x, y, z) to form a five-
dimensional feature vector; (3) computes both the intensity 
mode map and shape index mode map (the densest regions) 
using the five-dimensional mean shift framework; (4) 
employs modified expectation-maximization algorithm 
(MEM) to merge the neighbouring modes on the intensity 
mode map.  The MEM algorithm combines both the spatial 
intensity as well as the shape mode in the prior probability. 
The joint spatial–intensity-shape (JSIS) feature provides rich 
information for the object segmentation. The experimental 
results on a CT lung nodule dataset demonstrate the high 
performance of the proposed method.   
 

2. METHODOLOGY 
 
2.1. Volumetric shape index: a 3D geometric feature 
 
The volumetric shape index (SI) at voxel ),,( zyxp can be 

defined as [6][7]: 
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where ( )pk1  and ( )pk 2  are the principal curvatures at 

voxel p, which are defined as: 

( ) ( ) ( ) ( )pKpHpHpk −+= 2
1 ,  ( ) ( ) ( ) ( )pKpHpHpk −−= 2

2  

where ( )pK and ( )pH are the Gaussian and mean curvatures. 

    The calculation of the Gaussian and mean curvatures are 
based on the first and second fundamental forms of 
differential geometry. A practical approach is to use the 
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smoothed first and second partial derivatives of the image as 
described in [7]. 
    Shape index represents the local shape feature at each 
voxel while being less sensitive to the image intensity. Every 
distinct shape, except for the plane, corresponds to a unique 
SI. For example, the SI value is 1.00 indicates a sphere-like 
shape (e.g. nodule), and 0.75 indicates a cylinder-like shape 
(e.g. vessel). Based on the definition, volumetric shape index 
directly characterizes the topological shape of an iso-surface 
in the vicinity of each voxel without explicitly calculating the 
iso-surface. This feature provides rich information for 
automated object segmentation in medical images, especially 
when image intensities of different shapes are very similar to 
each other (e.g. adjoining nodule). 

 
2.2. Joint spatial-intensity-shape feature under the mean 
shift framework 
 
The mean shift framework provides a very effective 
methodology for feature space analysis.  Initially developed 
by Fukunaga and Hostetler [8], mean shift has recently been 
exploited in low level computer vision tasks by Comaniciu 
and Meer ([9]). In this paper, the joint spatial-intensity-shape 
(JSIS) feature is clustered using five-dimensional mean shift 
framework. 
 
    For each voxel, 3D spatial location, intensity and 
volumetric shape index features are concatenated in the joint 
spatial-intensity-shape domain of dimension d=5. Given n 

data points ix , i=1,…,n on a five-dimensional space 5R , 

(where n is the total number of voxels), the multivariate 
kernel is defined as the product of three radially symmetric 
kernels:  
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where 5,kc is a normalization constant which assures K(x) 

integrates to 1. sx is the spatial location, rx is the intensity 

and six is the shape index feature; )(xk is the common 

profile used in all the domains; sh , rh and sih are the kernel 

window size for spatial, intensity and shape index kernel 
function, respectively. The Normal kernel is used in this 

paper, where ( ) −= − 22/

2
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By using the mean shift framework, the shape index 
feature can be combined with the intensity for object 
segmentation. The mean shift vector with three kernel 
windows (spatial, intensity and shape index) can then be 
calculated as:  
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where ( ) ( )sksg '−= .  

It is noted that mean shift procedure is an adaptive 
gradient ascent method. It always points toward the direction 
of the maximum increase in the density function. The mean 
shift algorithm estimates the modes (the densest regions) of 
the multivariate distribution underlying the feature space. 
The set of points that converge to the same mode is defined 
as the attraction basin.  Mean shift maps all the data samples 
to the local maxima of their corresponding attraction basin, 
which is called mode map.  

In this paper, two mode maps are calculated based on the 
joint JSIS mean shift clustering, namely an intensity mode 
map ( iM ) and a shape index mode map (

siM ). Both mode 

maps represent the local densest regions under 
corresponding intensity and shape features in the five-
dimensional feature space. 
 

   
(a)                    (b)                         (c )                      (d)           

        
(e)                                        (f) 

        
(g)                                         (h) 

           
(i)                                         (j) 

Fig.1. One attached nodule with its intensity and shape mode maps 
determined with five-dimensional mean shift clustering. (a) 
Original CT sub-image; (b) Shape index map based on Eq. (1); (c) 
and (d) Intensity mode map and shape index mode map; (e) and (f) 
Intensity values and intensity mode values at the same voxel in the 
nodule; Shape index values for the nodule (g) and the attached 
vessel (i); and its corresponding shape index mode values  for the 
same voxel in the nodule (h) and vessel (j), respectively.   
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To illustrate the characteristics of both mode maps, Figure 
1 shows an example of one nodule attached to vessels and its 
corresponding intensity and shape index mode maps by using 
five-dimensional JSIS mean shift clustering; (e) and (f) are 
the intensity values and intensity mode values for the same 
voxel in the nodule. (g) and (i) are shape index values for the 
nodule and vessel, respectively; while (h) and (j) are the 
corresponding shape index mode values.  Compared to (e), 
(g) and (i),  it is noted that the mode maps ((f), (h) and (j)) 
from five-dimensional JSIS mean shift clustering can be seen 
as “filtered” images and are less contaminated by outliers. 

 
2.3. Modified expectation-maximization with spatial and 
shape priors using mean shift mode maps  
 
The intensity mode map ( iM ) obtained by the above JSIS 

mean shift algorithm expresses the local structure of the data 
in the feature space. The number of modes depends on the 
kernel window size and the data structure. Although this 
number is a large compression of the initial data, sometimes 
it is still larger than the targeted number of classes (as shown 
in Figure 1 (c) or (f)). In this sub-section, to merge 
neighboring modes, a mixture Gaussian model with modified 
expectation-maximization (MEM) that considers not only 
spatial but also shape information is applied on the intensity 
mode map from mean shift clustering. Based on the Bayesian 
probability theory, for each mode, the probability of the 
mode belonging to one class is defined as: 
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where, m is the total number of the modes in the mean shift 
intensity mode map, l is the class number, here, three classes 
( ]3,1[∈l ) for object (nodule), vessel and  background (lung 

tissue), is considered. ( )lil Mp ϕ  is lth Gaussian model with 

parameter ),( lll σμφ =  (mean lμ  and standard deviation 

lσ ), and ( )( )ilp ϕ  is a prior probability.      

    The prior probability ( )( )ilp ϕ  plays an important role in 

Equation (4). The prior can be constrained by spatial 
information, which can be imposed by a Markov Random 
Field and Gibbs Random Field (MRF-GRF) [10] as follows:                                                
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where ( )iN  is the neighbourhood of mode i. ( )ic lv  is a 

potential function associated with the clique c which is 
defined as ( ) ( )ilic Mplv ϕβ ⋅−= .                                          (6) 

    In Equation 6, β  is an important factor that controls the 

size of clustering. Usually, a fixed value is used. In this 

paper, we adaptively control the size of clustering based on 
the neighboring shape information. The details are as below. 

From Figure 1 (d), (h) and (j), it is noted that the shape 
index mode map (

siM ) from mean shift clustering can be seen 

as a “filtered” image of shape index map. A shape weighting 

factor ( siw ) is defined as 
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where ( )iM si
is shape index mode value at mode i, and ( )iN  

is the neighbourhood of mode i in shape index mode map. 

   The weighting factor siw measures the local shape 

variance. If a voxel under consideration has a similar shape 
as that of the neighborhood voxels, the weighting factor is 
closer to 1. We define β in Equation (6) as: 
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Here, a is a positive constant.  
From Equation (8), it is noted that, for each voxel, the size 

of the neighbourhood is chosen based on the shape weighting 
factor. If the voxel has a similar shape as that of the 
neighbourhood voxels, then β is small, which means a small 

size of the neighbourhood is used. Otherwise, when β is 

large, it indicates different shapes between the voxel and its 
neighbourhood, and a larger size is used in the MRF-GRF. 
Since the shape weighting factor controls the size of 
clustering in Equation (6), the prior probability in Equation 
(5) can be rewritten as follows: 
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By adaptively controlling the size of clustering based on 
its local shape features from the shape index mode map 
(

siM ), the prior probability not only depends on the spatial 

information, but also the shape feature. This provides better 
segmentation compared to only considering the spatial 
information using the intensity mode map ( iM ). 

 
3. EXPERIMENTAL RESULTS 

 
The proposed algorithm has been evaluated with a database 
of clinical chest CT scans, containing 80 different types 
nodules with a slice thickness ranging from 0.5mm to 
2.0mm. The size of the nodules ranged between 5mm to 
20mm in diameter. The X-ray tube current ranged from 
30mA to 250mA. To produce the ground truth, each nodule 
boundary was manually delineated by experienced 
radiologists.  
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     Figure 2 shows examples of nodule segmentation on three 
different attached nodules. For comparison, the segmentation 
results based on four-dimensional mean shift without the 
shape index feature are given in the second column of this 
figure. Also, the results from the proposed shape based 
method are shown in the third column of Figure 2. It is noted 
that, there is no explicit threshold applied to the shape index 
for the segmentation. This feature is combined into mean 
shift framework, and the produced shape index mode map 
from five-dimensional mean shift clustering is then used in 
prior probability for MEM-based segmentation. By using the 
proposed method the nodules (third column in Figure 2) can 
be properly delineated from the lung parenchyma despite the 
presence of other non-target structures such as vessels. This 
is because the shape index characterizes the local shape 
while being independent of the image intensity.  

           

                    

                    

    Fig.2. Examples of nodule segmentation. 1st column: 
original sub-image; 2nd column: segmentation based on 
mean shift without the shape feature; 3rd column: 
segmentation results based on the proposed method. 

    To evaluate the overall performance of the proposed 
algorithm, each nodule is segmented and compared to a 
ground truth manual segmentation. An overlap ratio between 
the segmented nodule and the ground truth annotation is 
calculated. Figure 3 shows the overlap ratios based on the 
proposed method with and without shape index feature. It is 

noted that, without shape features, the mean overlap ratio for 
the whole dataset is 71% with standard deviation (std) of 0.1. 
However, the mean overlap ratio has been increased to 81% 
with the std decreasing to 0.05, by using the proposed five-
dimensional JSIS mean shift clustering with shape feature as 
prior. This indicated the segmentation based on our proposed 
method is stable and accurate for different types nodules 
(such as non-spherical nodules or attached nodules).  
 

5. CONCLUSION 
 
We have presented a new method for nodule segmentation 
by integrating five dimensional spatial-intensity-shape 
features into the mean shift framework.  Additionally, we 
present MEM-based segmentation that uses both shape and 
intensity in the prior probability. The joint JSIS feature 
provides rich information for nodule segmentation. Both 
visual inspection and quantitative measurement on a clinical 
dataset of thoracic CT scans demonstrates the potential of 
the proposed method. The method can successfully segment 
lesions adjacent to structures of similar intensity but different 
shape. The approach can also be applied to lesion 
segmentation in other anatomies, such as polyps in the colon. 
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    Fig.3. Volume overlap ratio based on the two different methods.  
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