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ABSTRACT

This paper presents a joint spatial-intensity-shape (JSIS)
feature-based method for the segmentation of CT lung
nodules. First, a volumetric shape index (SI) feature based
on the second-order partial derivatives of the CT image is
calculated. Next, the SI feature is combined with spatial and
intensity features to form a five-dimensional feature vectors,
which are then clustered using mean shift to produce
intensity and shape mode maps. Finally, a modified
expectation-maximization (MEM) algorithm is applied on
the mean shift intensity mode map to merge the neighboring
modes with spatial and shape mode maps as priors.

The proposed method has been evaluated on a clinical
dataset of thoracic CT scans that contains 80 nodules. A
volume overlap ratio between each segmented nodule and
the ground truth annotation is calculated. Using the proposed
method, the mean overlap ratio over all the nodules is 0.81
with standard deviation of 0.05. Most of the nodules,
including challenging juxta-vascular and juxta-pleural
nodules, can be properly separated from adjoining tissues.

Index Terms— Mean shift, mode map, expectation-
maximization (EM), lung nodule, shape index, shape prior.

1. INTRODUCTION

Accurate lung nodule segmentation provides a solid base for
detection, feature calculation, classification in lung
Computer Aided Detection (CAD) systems. However,
nodule segmentation is a challenging task in medical
imaging, particularly when the object has low contrast, a
small size, or is located within an area of complicated
anatomy [1]. For example, it becomes difficult to properly
separate a nodule from adjoining tissues that have similar
intensity characteristics, such as a blood vessel (juxta-
vascular nodule) and the lung wall (juxta-pleural nodule).
Several approaches have been reported in literature for the
segmentation of lung nodules [2-5]. Most of them are based
on the pixel intensity in the image domain and use either
region growing or model-based methods to segment the
nodule boundary. In [2], an adaptive sphericity oriented
contrast region growing method was used to segment the
nodule boundary. The region growing operates on the fuzzy
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connectivity map within a volumetric mask. Other
approaches based on deformable surfaces can be found in
[3]. To increase robustness, several methods impose an a
priori model; for example, the approaches described in
[4][5] utilize shape models for spherical and ellipsoidal
nodules respectively. However, such models are limiting in
that not all types of lung nodules are accurately represented
with these shapes.

In this paper, we have developed a novel segmentation
method that combines shape, image intensity, and spatial
position to automatically segment lesions. The proposed
algorithm has the following steps: it (1) calculates volumetric
shape index (SI) at each voxel; (2) combines the SI with the
intensity and the spatial position (X, y, z) to form a five-
dimensional feature vector; (3) computes both the intensity
mode map and shape index mode map (the densest regions)
using the five-dimensional mean shift framework; (4)
employs modified expectation-maximization algorithm
(MEM) to merge the neighbouring modes on the intensity
mode map. The MEM algorithm combines both the spatial
intensity as well as the shape mode in the prior probability.
The joint spatial-intensity-shape (JSIS) feature provides rich
information for the object segmentation. The experimental
results on a CT lung nodule dataset demonstrate the high
performance of the proposed method.

2. METHODOLOGY
2.1. Volumetric shape index: a 3D geometric feature

The volumetric shape index (SI) at voxel p(x,y,z)can be
defined as [6][7]:
ki (p)+ Ky (p)

ki(p) =k, (p)
where k (p) and ko (p) are the principal curvatures at

SI(p)z%—%arctan (€))

voxel p, which are defined as:

ki (p)=H(p)+\H*(p)-K(p). ka(p)=H(p)—H*(p)-K(p)
where K ( p)and H ( p)are the Gaussian and mean curvatures.

The calculation of the Gaussian and mean curvatures are
based on the first and second fundamental forms of
differential geometry. A practical approach is to use the
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smoothed first and second partial derivatives of the image as
described in [7].

Shape index represents the local shape feature at each
voxel while being less sensitive to the image intensity. Every
distinct shape, except for the plane, corresponds to a unique
SI. For example, the SI value is 1.00 indicates a sphere-like
shape (e.g. nodule), and 0.75 indicates a cylinder-like shape
(e.g. vessel). Based on the definition, volumetric shape index
directly characterizes the topological shape of an iso-surface
in the vicinity of each voxel without explicitly calculating the
iso-surface. This feature provides rich information for
automated object segmentation in medical images, especially
when image intensities of different shapes are very similar to
each other (e.g. adjoining nodule).

2.2. Joint spatial-intensity-shape feature under the mean
shift framework

The mean shift framework provides a very effective
methodology for feature space analysis. Initially developed
by Fukunaga and Hostetler [8], mean shift has recently been
exploited in low level computer vision tasks by Comaniciu
and Meer ([9]). In this paper, the joint spatial-intensity-shape
(JSIS) feature is clustered using five-dimensional mean shift
framework.

For each voxel, 3D spatial location, intensity and
volumetric shape index features are concatenated in the joint
spatial-intensity-shape domain of dimension d=5. Given n

data points x;, i=1,...,n on a five-dimensional space R> ,

(where n is the total number of voxels), the multivariate
kernel is defined as the product of three radially symmetric

kernels:
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where €, 5is a normalization constant which assures K(x)

integrates to 1. x* is the spatial location, x” is the intensity

and x*is the shape index feature; k(x)is the common
profile used in all the domains; &g, h, and hg; are the kernel

window size for spatial, intensity and shape index kernel
function, respectively. The Normal kernel is used in this
paper, where k(x)=(27)"4/? exp(— %"x"z] :

By using the mean shift framework, the shape index
feature can be combined with the intensity for object
segmentation. The mean shift vector with three kernel
windows (spatial, intensity and shape index) can then be
calculated as:
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where g(s) = —k'(s).

It is noted that mean shift procedure is an adaptive
gradient ascent method. It always points toward the direction
of the maximum increase in the density function. The mean
shift algorithm estimates the modes (the densest regions) of
the multivariate distribution underlying the feature space.
The set of points that converge to the same mode is defined
as the attraction basin. Mean shift maps all the data samples
to the local maxima of their corresponding attraction basin,
which is called mode map.

In this paper, two mode maps are calculated based on the
joint JSIS mean shift clustering, namely an intensity mode
map (M) and a shape index mode map (M ). Both mode

maps represent the local densest regions under

corresponding intensity and shape features in the five-
dimensional feature space.
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Fig.1. One attached nodule with its intensity and shape mode maps
determined with five-dimensional mean shift clustering. (a)
Original CT sub-image; (b) Shape index map based on Eq. (1); (c)
and (d) Intensity mode map and shape index mode map; (e) and (f)
Intensity values and intensity mode values at the same voxel in the
nodule; Shape index values for the nodule (g) and the attached
vessel (i); and its corresponding shape index mode values for the
same voxel in the nodule (h) and vessel (j), respectively.
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To illustrate the characteristics of both mode maps, Figure
1 shows an example of one nodule attached to vessels and its
corresponding intensity and shape index mode maps by using
five-dimensional JSIS mean shift clustering; (e) and (f) are
the intensity values and intensity mode values for the same
voxel in the nodule. (g) and (i) are shape index values for the
nodule and vessel, respectively; while (h) and (j) are the
corresponding shape index mode values. Compared to (e),
(g) and (i), it is noted that the mode maps ((f), (h) and (j))
from five-dimensional JSIS mean shift clustering can be seen
as “filtered” images and are less contaminated by outliers.

2.3. Modified expectation-maximization with spatial and
shape priors using mean shift mode maps

The intensity mode map (M ;) obtained by the above JSIS

mean shift algorithm expresses the local structure of the data
in the feature space. The number of modes depends on the
kernel window size and the data structure. Although this
number is a large compression of the initial data, sometimes
it is still larger than the targeted number of classes (as shown
in Figure 1 (¢) or (f)). In this sub-section, to merge
neighboring modes, a mixture Gaussian model with modified
expectation-maximization (MEM) that considers not only
spatial but also shape information is applied on the intensity
mode map from mean shift clustering. Based on the Bayesian
probability theory, for each mode, the probability of the
mode belonging to one class is defined as:

_ Pz(Mi ¢1)'P(¢1(i)) . “4)
,.)_ Jd=12,...,m
zpl(Mi ?’;)'P(("l(,-))

where, m is the total number of the modes in the mean shift
intensity mode map, [ is the class number, here, three classes
(le[1,3]) for object (nodule), vessel and background (lung

P(‘/’I‘M

tissue), is considered. p, (M i|¢,) is I/th Gaussian model with
parameter ¢ =(4;,0;) (mean g; and standard deviation
oy), and p(@(i)) is a prior probability.

The prior probability p(@(i)) plays an important role in

Equation (4). The prior can be constrained by spatial
information, which can be imposed by a Markov Random
Field and Gibbs Random Field (MRF-GRF) [10] as follows:

exp[—Zvc (3 )}
2, exp{—Zvc 13 )}

where N(i) is the neighbourhood of mode i. v (l;) is a

&)

l =
N

p(¢’1(i) ) = p(li

potential function associated with the clique ¢ which is

defined as )= ~5 plo,u,)- ©)
In Equation 6, f is an important factor that controls the

size of clustering. Usually, a fixed value is used. In this
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paper, we adaptively control the size of clustering based on
the neighboring shape information. The details are as below.
From Figure 1 (d), (h) and (j), it is noted that the shape
index mode map (,, ) from mean shift clustering can be seen
as a “filtered” image of shape index map. A shape weighting

factor (W, ) is defined as

M (i) )
N#memm

w, (i) =

c

where M, (i)is shape index mode value at mode i, and N (i)
is the neighbourhood of mode i in shape index mode map.

The weighting factor W measures the local shape

variance. If a voxel under consideration has a similar shape
as that of the neighborhood voxels, the weighting factor is
closer to 1. We define £ in Equation (6) as:

a-w,(i), ifw,>1

Bi)= , ®)

;, if w, <1
w,; (i) ‘
Here, a is a positive constant.

From Equation (8), it is noted that, for each voxel, the size
of the neighbourhood is chosen based on the shape weighting
factor. If the voxel has a similar shape as that of the

neighbourhood voxels, then £ is small, which means a small
size of the neighbourhood is used. Otherwise, when fis
large, it indicates different shapes between the voxel and its
neighbourhood, and a larger size is used in the MRF-GRF.
Since the shape weighting factor controls the size of
clustering in Equation (6), the prior probability in Equation
(5) can be rewritten as follows:

exp{z B plp,M, )}
>, exp{g B plom, )}

By adaptively controlling the size of clustering based on
its local shape features from the shape index mode map
(m ), the prior probability not only depends on the spatial

&)

lN(z) )=

P(("z(i))z P(li

information, but also the shape feature. This provides better
segmentation compared to only considering the spatial
information using the intensity mode map (M ;).

3. EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated with a database
of clinical chest CT scans, containing 80 different types
nodules with a slice thickness ranging from 0.5mm to
2.0mm. The size of the nodules ranged between Smm to
20mm in diameter. The X-ray tube current ranged from
30mA to 250mA. To produce the ground truth, each nodule
boundary was manually delineated by experienced
radiologists.



Figure 2 shows examples of nodule segmentation on three
different attached nodules. For comparison, the segmentation
results based on four-dimensional mean shift without the
shape index feature are given in the second column of this
figure. Also, the results from the proposed shape based
method are shown in the third column of Figure 2. It is noted
that, there is no explicit threshold applied to the shape index
for the segmentation. This feature is combined into mean
shift framework, and the produced shape index mode map
from five-dimensional mean shift clustering is then used in
prior probability for MEM-based segmentation. By using the
proposed method the nodules (third column in Figure 2) can
be properly delineated from the lung parenchyma despite the
presence of other non-target structures such as vessels. This
is because the shape index characterizes the local shape
while being independent of the image intensity.

Fig.2. Examples of nodule segmentation. 1% column:
original sub-image; 2™ column: segmentation based on
mean shift without the shape feature; 3™ column:
segmentation results based on the proposed method.

e JSIS mean shift with shape as prior
volume overlap ratio
P —a— mean shift with no shape

nodule number

Fig.3. Volume overlap ratio based on the two different methods.

To evaluate the overall performance of the proposed
algorithm, each nodule is segmented and compared to a
ground truth manual segmentation. An overlap ratio between
the segmented nodule and the ground truth annotation is
calculated. Figure 3 shows the overlap ratios based on the
proposed method with and without shape index feature. It is
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noted that, without shape features, the mean overlap ratio for
the whole dataset is 71% with standard deviation (std) of 0.1.
However, the mean overlap ratio has been increased to 81%
with the std decreasing to 0.05, by using the proposed five-
dimensional JSIS mean shift clustering with shape feature as
prior. This indicated the segmentation based on our proposed
method is stable and accurate for different types nodules
(such as non-spherical nodules or attached nodules).

5. CONCLUSION

We have presented a new method for nodule segmentation
by integrating five dimensional spatial-intensity-shape
features into the mean shift framework. Additionally, we
present MEM-based segmentation that uses both shape and
intensity in the prior probability. The joint JSIS feature
provides rich information for nodule segmentation. Both
visual inspection and quantitative measurement on a clinical
dataset of thoracic CT scans demonstrates the potential of
the proposed method. The method can successfully segment
lesions adjacent to structures of similar intensity but different
shape. The approach can also be applied to lesion
segmentation in other anatomies, such as polyps in the colon.
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