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Abstract. In this paper, we present efficient and simple image segmentations
based on the solution of two separate Eikonal equations, each originating from
a different region. Distance functions from the interior and exterior regions are
computed, and final segmentation labels are determined by a competition crite-
rion between the distance functions. We also consider applying a diffusion partial
differential equation (PDE) based method to propagate information in a manner
inspired by the information propagation feature of the Eikonal equation. Experi-
mental results are presented in a particular medical image segmentation applica-
tion, and demonstrate the proposed methods.

1 Introduction

Content extraction from images usually relies on a segmentation, i.e., extraction of the
borders of target structures. Accurate segmentation may be hampered by noise in the
image acquisition, the complexity of the arrangement of the target objects with respect
to the surrounding structures, and the computational cost of the algorithm used. In this
study, a new algorithm to segment the boundary of a closed structure is developed based
on ideas of propagation and diffusion of image information. Our work is motivated
by anatomical structures such as lymph nodes, (see Figure 1), whose extraction from
medical images, such as Magnetic Resonance (MR) images, is an important task for
subsequent quantitative analysis. Clinically useful segmentations should be fast and
accurate, so that quick and precise interpretation of the anatomical structures can be
obtained.

Segmentation methods based on information propagation have been performed us-
ing the fast marching algorithm. For example, in Cohen et al. [1], simultaneous prop-
agations are performed to estimate two potentials between two points to extract a path
in a vessel. The minimal paths between two pointsp0 andp1 are computed by simul-
taneous propagations from the two points until they meet at a common pointp2, and
by back-propagating fromp2 to bothp0 andp1, then joining the two paths. They also
described an approach to build a path given only a starting point and a given path length
to reach. While this approach is suitable for the extraction of tubular structures, our goal
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is different. Although we also make use of two distance maps, we do not need to extract
a minimal path through a back-propagation from the point where the two fronts meet,
but we seek for the result of the competition of the two fronts in reaching a given point.
Similarly, Cohen et al. [2, 3] used a fast marching algorithm for segmenting tubular
structures like vessels, incorporating geodesic distance of the points on the propagation
path to the seed point as a freezing measure. Similarly, a multiphase fast marching al-
gorithm was utilized in [4], where all distinct regions are propagated simultaneously
according to their respective velocities, which depend on posterior probability densities
of each region.

There are also similarities between watershed algorithms and the fast marching al-
gorithms. The Eikonal PDE has been used in [5] for modeling watershed segmentation
that is constructed by flooding the gradient image. Different segmentation results have
been obtained by changing the flooding criteria [6] such as constant height, area or
volume. A form of diffusion has been used for image segmentation in [7] by a random-
walker concept. This technique differs from our approach in that it was introduced in
a graph theoretic framework [8], and formulated as a linear system of equations solved
through conjugate gradients.

In this paper we present four methods. The first three methods compute distance
functions treating image edge or image gradient information as locally slower to prop-
agate information or as high local distance. These three methods employ the Eikonal
equation and thus can be computed rapidly by the fast marching algorithm. Inspired by
the same distance ideas, we also present a fourth method based on diffusion PDEs, in
which edge information is propagated from the interior or exterior of the structure.

Fig. 1. Example of an MR image with a region of interest (ROI) around a lymph node.

2 Segmentation by Interior/Exterior Distance Competition

The first step in the proposed segmentation method is to compute two distance func-
tions. One distance function represents the distance of any point in the image domain
to the nearest of a set of prespecified points interior to the structure and the other dis-
tance function represents the distance of any point in the image domain to the nearest
of a set of prespecified points exterior to the structure. We will defer choice of the
prespecified interior and exterior points until later, but for now we will state that they
should respectively be clearly inside and outside the boundaries of the target structure.
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For instance a rectangular region of interest (ROI), completely surrounding the desired
structure, whose borders are exterior points and center are interior points, can be se-
lected. The local distance depends on the image intensity variation of the region that
we want to segment. Regions that are more likely to be edges should be interpreted as
regions in which distance information propagates more slowly. This idea will be imple-
mented in several different ways. In the first, we weight the distance function directly
on the binary map resulting from an edge detection on the image, for instance using a
Canny edge detector. Edges in the edge map correspond to obstacles when the distance
function is computed. The second method generalizes the first method, by defining the
local distance as the gradient magnitude of the image. The third method combines the
different weights on the distance function. The fourth method in inspired by distance
propagation ideas and uses a diffusion PDE as will be explained.

The first three methods comprise a propagation of information using a weighted
shortest distance, they can be implemented by solving an Eikonal PDE. To achieve fast
computation of the two different distance functions, we used the fast marching algo-
rithm. Our fourth idea requires a diffusion PDE as we will explain. The next subsec-
tions describe briefly the fast marching algorithm, how to adapt it to fit our ideas, and
the diffusion method.

2.1 Method

The fast marching algorithm [9] is designed to compute the position of a propagating
front with position varying speed given by the functionF > 0. Let a functionD : Ω ∈
Rn −→ R describe the arrival time of the front when it crosses each pixel (x,y), where
n = 2 for an image function,n = 3 for an image volume. Fast marching solves the
Eikonal equation which can be represented by

|∇D| = F, D = 0 onG

whereG is a prespecified subset ofRn.
If the speed functionF is constant, thenD represents the distance function toG. In

our segmentation method the speed of the motion will be selected differently based on
intensity variation as explained previously.

Our method proceeds as follows:

1. Compute the two distance functions: one for the interior by settingG = Di and the
other for the exterior by settingG = De needed in our segmentation algorithm.

2. Set up the image information propagation algorithm either through a propagation
operation with fast marching or through a diffusion equation. The starting points
set are the set of seeds, which we are sure that they belong to the background
that surrounds the structure to segment (Knownpoints). These are the boundary
conditions for both the Eikonal PDE and the diffusion PDE.
The Eikonal PDE:

– In fast marching [9], after we label theKnownpixels, pixels that are neighbors
of the alreadyKnownpoints are labeled asTrial. All other image pixels are
labeled asFar points.
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– Exterior: Run the fast marching algorithm by computing theL1 distances with
specific weights as will be explained in the next subsections. The value of each
pixel then corresponds to the distance to the exterior set and is denoted asDe.

– Interior: Run the fast marching a second time for the interior set to obtain dis-
tance functionDi. The method starts this time with interior points asKnown
set.

Similarly, the diffusion PDE is solved twice with two different set of boundary
conditions to obtain two distance functionsDi andDe at its steady state solution.

3. The region interior is considered the set of points where the interior distance is less
than the exterior distance, i.e.,{(x, y) : Di(x, y) < De(x, y)}
The different weights of the distance function as well as the diffusion are explained

in the following sub-sections.

2.2 Fast Marching with Edge Map

Our first approach is to compute the distance function where edge pixels represent
points where the information is propagated slowly in the shortest path between a pixel
and the starting set of points,G. The Eikonal equation then transforms to:

|∇D| = (1 + Edge Map) . (1)

Any edge detection algorithm with binary output can be used to obtain the edge
map. In our results, we use a Canny edge detector. In the fast marching algorithm the
edge pixels are marked as having infinity as their initial distance and are labeled as
known. In this way they will not be processed during the distance function computation.
The first column in Figure 2 depicts the two distance functions computed by starting
from both the interior and the exterior seed points.

2.3 Fast Marching with Gradient

In the second method, we treat regions with high gradient magnitude as having high
local distance, and regions with low gradient magnitude as having low local distance.
The Eikonal equation then takes the form:

|∇D| = (|∇I|) (2)

The second column in Figure 2 depicts the two distance functions computed in this
way.
2.4 Diffusion Equation

The linear heat equation on a functionD is given bydD
dt = ∆D with initial conditions

D(x, y)|t=0 = D0(x, y). A finite difference approximation to this equation forn = 2,
that is obtained by implementing a forward Euler numerical scheme with the maximally
stable time step is,

D(x, y) =
1
4
D(x + 1, y) +

1
4
D(x− 1, y)

+
1
4
D(x, y − 1) +

1
4
D(x, y + 1) , (3)
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Fig. 2. Rows 1. Interior distance; 2. Exterior distance function. Columns 1. with edge map; 2.
with gradient; 3. with diffusion.

hence diffusing edge information from the boundaries towards the non-boundary re-
gions.

Inspired by the Eikonal equation and fast marching techniques, where we propagate
the information from the boundaries or the seeds of the domainΩ towards unlabeled
points, diffusion equations can also be utilized for segmentation with a similar twist
for creating two smooth distance functions for the interior seeds and the exterior seeds.
To introduce image dependent terms to the diffusion equation, our intuition is that the
diffusion takes the path of least resistance, that is the path where the one-sided image
gradient in a given direction is low. The definition of the four one-sided image gradients
or sub-gradients around a pixel are given by

I−x (x, y) = I(x, y)− I(x− 1, y), I+
x (x, y) = I(x + 1, y)− I(x, y)

I−y (x, y) = I(x, y)− I(x, y − 1), I+
y (x, y) = I(x, y + 1)− I(x, y)

We can create an image-based discrete diffusion equation by introducing the image-
driven weights to the discrete Laplacian equation as follows,

D(x, y) =
wE

∑
wi

D(x + 1, y) +
wW

∑
wi

D(x− 1, y)

+
wN

∑
wi

D(x, y − 1) +
wS

∑
wi

D(x, y + 1), (4)

wE = e−β(I+
x )2 , wW = e−β(I−x )2 ,

wN = e−β(I−y )2 , wS = e−β(I−y )2 , i ∈ {E, W,N, S}.

Hence, using the set of seeds for the exterior region and the interior region as two
distinct set of boundary conditions, we estimate the two distance functionsDe andDi

corresponding to the exterior and interior after a set amount of diffusion time. Similar
to our approach using Eikonal equation, we form the segmentation map by taking the
minimum of the distance functions at each point. The last column in Figure 2 depicts
the resulting distance functions estimated by the diffusion method.
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This image-weighted diffusion we seek for our distance functionD is similar in
spirit but also quite different in the basic idea and the application from the work of
Perona-Malik et al. [10] who used anisotropic diffusion for filtering images respecting
image gradient directions. Using a similar weighted diffusion equation based on image
gradients∂I/∂t = ∇ · (w(|∇I|)∇I), they actually solve for the image functionI not
the distance functionD as we do.

2.5 Combined Method

In the second method explained in Section 2.3, which uses the gradient magnitude as the
local distance function, we found some cases where the algorithm leaked. This is partly
explained by the fact that for some interior regions, their edges are quiet weak, so the
gradient is lower as expected. To prevent those leaks and increase robustness, one can
combine the first two methods in Section 2.2 and 2.3. This corresponds to weight the
distance function also by edge information. The method consists of first computation
of the edge map as explained before to result in a binary image of the ROI. This binary
image is then directly added to the gradient image by a factorα. The Eikonal equation
then takes the form:

|∇D| = (|∇I|+ α ∗ E) , (5)

where E is the binary edge map. This will result in increased gradient effects where
there are edges.

The algorithm described is very flexible in that it is possible to have different dis-
tance functions for the foreground and background set of points. This flexibility may
help for segmentation of textured interior regions for example. One can add, to the
foreground distance function, some interior intensity information, which will smooth
the local gradient and decrease some texture or noise influence. We do not smooth the
background distance function, because exterior region may include other structures.
The idea is to compute the mean intensity of the foreground set of points, sayImean.
The image at each pixel p will then have a local weight of(I [p]− Imean)2, which we
add to the foreground Eikonal equation by a factorβ:

∣∣∇Di
∣∣ =

(
|∇I|+ α ∗ E + β ∗ (I − Imean)2

)
, (6)

where E is the binary edge map andImean is the mean intensity of the foreground set
of points.

3 Results and Conclusions

The Eikonal PDE-based approaches presented in this paper, as expected, are very fast.
With the Eikonal PDEs (through fast marching), on a2563 image volume with a vol-
ume of interest of603, the segmentation is completed in less than 0.03 seconds for the
2D algorithm, and 0.76 seconds for the 3D algorithm on a Pentium 4 2.4 GHz proces-
sor. With the diffusion PDE, the segmentation is completed in 1.75 seconds for a 2D
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implementation. Although we extended the diffusion approach to 3D as well, the com-
putation times increased to order of 1 to 2 minutes, therefore, we have not utilized the
diffusion-based approach for the 3D experiments.

Placement of interior and exterior seeds is flexible, and can be done by for instance
a mouse brush. However, we opted a simple mouse drag operation on an image slice
that sets exterior seeds in the form of a 2D rectangular border, then the interior seeds
are automatically set to the set of pixels in the center of this rectangle. This type of 2D
initialization is used in our both 2D and 3D experiments.

In Figure 3, sample segmentation results (labeled as blue contours) are presented for
lymph node structures in MR images under different situations. By analyzing the results
based on the edge map algorithm, in some cases the segmentation is not as precise as
the other methods. The Canny edge detector propagates strong edges and discards the
weak ones, and this leads to either edge noise (row 3, 4 and 5), or “holes” in the edge
map (row 1). This will influence directly the distance functions and in turn the final seg-
mentation. Still the result can be acceptable as an initialization to a more sophisticated
segmentation algorithm. Those errors are reduced by our second approach that uses
image gradient in the Eikonal PDE. The distances found are then smoother, and our
segmentation matches the node contour better. In cases where a strong edge is situated
near the node contour, the gradient method may be slightly attracted to it (rows 1 and
5), and comes from the fact that the gradient is a local intensity variation characteristic.
Despite small incoherences, the results have very good quality. Finally the diffusion
method performs well in strong edge neighborhoods, but easily smears the information
when objects are merged, hence obtains a mid-way distance estimation (rows 1 and 3 in
Fig. 3). This can be explained by the fact that the algorithm is based on a diffusion of in-
tensity variation around pixels, so merged structures will affect the segmentation more
than other structures in the neighborhood of the node. Finally our combined method
optimizes the results, in difficult nodes. The edge information restrains the leak that we
could see in the gradient method, for example row 3 and 5 in Fig. 3.

The results are confirmed by the statistics we found during our tests(see Table 1).
We compute the mean of falsely rejected pixels (Type II error) and falsely accepted
pixels (Type I error) on the resulting contours of the presented four segmentation meth-
ods compared with the manually delineated node contours. The very low value in the
Type I error of the edge map method is explained by its conservative behavior due to
binary edge information onto which the propagating front can get stuck. This implies
that we missed part of the interior area, hence a high value for the Type II error. On
the other hand the Gradient and Diffusion methods are more prone to leaks and have
then a higher Type I error. Finally the combined method is a good compromise between
leaking and conservative error. Of course this appreciation depends on how we want
to use the segmentation and we may prefer one algorithm over another because of its
evolution characteristics. We want to note that the ground truth of each node was drawn
using a mouse and by our own learned interpretation from clinicians,where the bound-
aries should be, this may then cause some result discrepancies due to imprecisions.

Segmentation in 3D through Eikonal PDEs is easily achieved by extending the fast
marching, and the gradient computations to the third dimension. Example results from
two nodes are shown in Fig. 4.
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We perform the segmentation also on other type of images, like for example in
Fig. 5 on Computed Tomography (CT) sequences to segment a tumor in the liver as
shown on the right. The 3D tumor extraction results are shown in Fig. 6. The Fig. 7
is an example of a breast mass segmentation in an ultrasound image. As we can see,
ultrasound images have speckle noise, that hampers segmentation, therefore we had to
pre-process the image with high level of smoothing, to reduce it. The results show that
our algorithm works for different types of images and may be tuned for applications
other than lymph node segmentation.

In conclusion, we presented efficient and simple image segmentations based on
ideas from the Eikonal and diffusion PDEs, by computing the distance functions for
the exterior and interior regions, and determining the final segmentation labels by a
competition criterion between the distance functions for reaching a given point. Each
method has its pros and cons, according to the image characteristics, but our exper-
iments demonstrated that among the presented methods, the combined fast marching
method achieved a better speed vs. accuracy ratio, hence the best utility when com-
pared to the other three methods.
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Fig. 3.Segmentation Results. Columns(a-f): a. ROI image; b. Node manually delineated; c. Edge
Map Method; d. Gradient Method; e. Diffusion Method, f. Combined Method.

Table 1.Error type I and II statistics over the Data Base (≈50 nodes)

Edge Map MethodGradient MethodDiffusion MethodCombined Method

Type I 0.015 0.247 0.256 0.081
Type II 0.453 0.115 0.189 0.257

Fig. 4. 3D Segmentation of anatomic structures based on Eikonal PDEs.
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Fig. 5. A liver tumor is segmented using the Combined Algorithm on a CT volume.

Fig. 6. 3D Segmentation results on CT sequences of Fig. 5

Fig. 7. A breast mass segmented using the Combined Algorithm on a Ultrasound image.


