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Abstract—Current depth capturing devices show serious
drawbacks in certain applications, for example ego-centric
depth recovery: they are cumbersome, have a high power
requirement, and do not portray high resolution at near
distance. Stereo-matching techniques are a suitable
alternative, but whilst the idea behind these techniques is
simple it is well known that recovery of an accurate disparity
map by stereo-matching requires overcoming three main
problems: occluded regions causing absence of corresponding
pixels; existence of noise in the image capturing sensor and
inconsistent color and brightness in the captured images.

We propose a modified version of the Census-Hamming
cost function which allows more robust matching with an
emphasis on improving performance under radiometric
variations of the input images.

L INTRODUCTION

Stereo-matching for disparity recovery has been used in
a wide range of applications, including object recognition,
object tracking, robotic navigation and even recovery of
landscape topography from aerial photography [11]. This
broadness of scope implies that a good correspondence
matching system has an inherent need to be adaptive to
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different illumination conditions. Basic stereo-matching
systems utilise a simple matching cost function to identify
corresponding points in images taken from multiple
perspectives (often two) with the assumption of identical
intensity level at points of corresponding image locations.
We will refer to this as the Consistency Assumption. As a
result of different illumination conditions, amongst other
factors, the consistency assumption rarely holds and more
complex cost functions are required to account for
radiometric differences.

As mentioned above, several conditions breach the
consistency assumption. The illuminating conditions are a
major issue as they can seldom be controlled. This is as a
result of non-Lambertian surfaces and specular reflection
[5]. The difference in illumination to the light sensor
component of the cameras will result in the same point in
3D space being perceived at different intensity levels.
Another cause of radiometric differences is the
inconsistency of the image capturing devices themselves.
Properties such a salt and pepper noise, Gaussian noise,
vignetting, gain setting (lincar and non-linear) etc. will
generally be inconsistent in multiple devices hence
resulting in radiometric differences. Whilst pre-calibration
is a good remedy to these problems, it could be quite
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tedious and the solution would only be partial. Hence
developing accurate cameras for stereo-matching often
requires expensive techniques and resources.

The above discussion, establishes that the requirement
for robustness against radiometric differences is essential
for a stereo-matching system to be used in real application.
In this paper we propose an improved Census cost function
[3]. It is important to note that we have focused on the cost
function rather than on the matching algorithm. Hence a
basic window to window search is carried out and no
further optimizations are integrated. Our key contribution in
this paper is that we have generalized the Census cost
function by incorporating a quantization term that improves
its robustness to radiometric changes that do not preserve
the relative ordering of pixel values whilst still handling
gain or bias radiometric changes. As a result the proposed
cost function (Quantized Census) is robust against different
types of radiometric distortions. The rest of the paper is
structured as follows: in the next section a survey of region-
based matching cost functions is presented; section 3
introduces the proposed cost function; section 4 describes
the dataset and experiments carried out; and section 5
discusses the results of the experiments. The paper is
concluded and future work is discussed in section 6.The
overall steps of the proposed cost is shown in figure 1
above. First the rectified RGB stereo image pair is
converted to grayscale, (A). In a local neighbourhood
around a pixel, the intensity value of the pixel is deducted
from that of neighbouring pixels, (B) before quantization,
(C), and the resulting transform is used for comparison by
taking absolute difference and comparing with a threshold.
This is explained in greater detail in section 3B.

1L RELATED WORK

Generally, region-based matching cost functions are of
three categories, namely: Parametric, Non-Parametric and
Mutual Information [6]. Common parametric matching cost
functions include: Sum of Absolute Differences (SAD), and
Sum of Squared Differences (SSD) each with a Locally-
scaled and Zero-mean version - Locally-scaled Sum of
Absolute Differences (LSAD), Zero-mean Sum of Absolute
Differences (ZSAD), Locally-scaled Sum of Squared
Differences (LSSD) and Zero-mean Sum of Squared
Differences (ZSSD). Another type of parametric matching-
cost is Normalized-Cross Correlation (NCC), (with a Zero-
mean version- ZNCC) [6]. Each of the cost function
assumes an already rectified image pair with corresponding
matching pixel only horizontally displaced in the other
image.

SAD is arguably the simplest of the window-based cost
functions. SAD relies heavily on the consistency
assumption and is calculated by taking the sum of the
absolute difference of all intensity levels between the pixels
within a neighbourhood in the first image and those in a
potentially matching neighbourhood in the second image.
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The cost function can be mathematically described as
follow:

Csap(p,d) = % qu,,|1L(Q) —Ix(q — d)| (1
where a corresponding search is made for pixel, p in the left
image; d denotes the number of pixel-shifts away from the
pixel, p in the horizontal line; and q denotes a pixel within
a neighbourhood around p, called N,

SSD is similar to SAD except that the differences are
squared before summation within the window. This
additional step means that it requires slightly more
computation than SAD. Formally,

Cssp(P,d) =X qe Np{lL (@) — Ix(q — d)}? (2)
The locally-scaled variants of SAD and SSD attempt to
compensate for bias gain by multiplying each pixel value in
one of the two neighbourhoods to be compared by the ratios

of the mean intensity value of both regions. The equations
are as follows.
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where the overbar denotes the mean.

NCC is the most computationally expensive of the
parametric cost functions considered in this paper. The
NCC derived from cross-correlation which is effectively
the integration of the product of two signals. These signals
would have an amplitude distribution about the zero level.
The NCC employs normalization before to the Cross-
Correlation step to ensure that the image intensity values
(which are always positive) are distributed about the zero
level. Formally,

S qen,Uo(@) * In(q — d))
szwmmvwzw%mm—ma

Cnee(p,d) =
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The zero mean variants, ZSAD, ZSSD and ZNCC, also
attempt to account for a constant bias gain radiometric
difference. They achieve this by subtracting the intensity
value of each pixel within the window of interest by the
mean of the window. Hence the transformation is as
follows:

Ir(p) =1(p) - I(p)

1(P) = 155 aen, 1@

(6)
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where n() denote number of pixels in the neighbourhood.
This transformation is applied before the respective
correspondence cost is carried out. There are other variants
of parametric matching cost function for example MNCC
which is an approximation of the NCC but with faster
computation [13].

Non-parametric matching-costs are invariant to
monotonic gray value changes. They rely solely on the
relative intensity levels of pixels within region. This allows
them to tolerate a large class of local and global radiometric
changes [4]. The Rank function and Census function are
two major types of non-parametric matching-cost functions.
The Rank matching cost transforms the intensity level of
each pixel to its intensity ranking within the neighborhood.
This transformation is used as a correspondence match by
computing the absolute difference. This is known to be
sensitive to noise in textureless regions [10]. The Census
function is discussed in Section 3A.

The final category of matching cost function is mutual
information. Statistically, mutual information measures the
strength of association between two random variables. It
conveys the amounts of instances in which two events are
observed together in comparison to when not observed
together. In terms of stereo image correspondence, the
random variables are the pair of potentially matching pixels
points. Egnal [9] proposed the method of using mutual
information for local stereo correspondence. At each pair of
neighborhoods a histogram is generated and used to
compute the joint probability of the intensity levels in both
neighborhoods. Another common variance of MI is HMI
(hierarchical mutual information) [14]. This uses a coarse-
to-fine technique, by scaling down the images and then
gradually scaling up. Starting with a randomly allocated
disparity map, the images are displaced and the cost is
computed.

III. DEVELOPING THE PROPOSED METHOD

A. Census-Hamming Distance

The Census cost function is implemented as a non-
parametric local transformation to the window of interest
whilst the Hamming Distance is the similarity measure that
utilizes the result of this transformation. Consider a local
neighborhood Np with a center pixel p and intensity / (p).
Assuming a rectified stereo pair, with a pixel, p in the left
image, the corresponding pixel in the right image is p-d.
For a single image(left or right) the intensity level of the
center pixel is compared to that of surrounding pixels
(denoted with q) within the considered neighborhood to
generate “a bit string representing the set of neighboring
pixels whose intensity is less than” or greater than / (p) [3].
Formally,

Ic(p) = F{I(q@) > I(p)} (3)
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where F{ } is a Boolean function that returns ‘1’ if the
input is true and ‘0’ otherwise. The binary result from (8) is
concatenated across all the pixels in the neighborhood. The
Hamming distance between the transformed neighborhoods
in both corresponding images is then computed. This is the
number of bit-positions that are different in two bit strings
[3]. The larger this value the more dissimilar the two
neighborhoods in question. Whilst the Census-Hamming
combination is a strong cost function against some
radiometric changes, it has one major flaw in that it is not
invariant to non-monotonic radiometric distortions.
Consider a 1D, image region with 5 pixels shown in Fig.
2a.
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Figure 2.  Intensity levels of a 1D Image region before (a) and after (b)

non-monotonic distortion

Here the Census transform for this region would be: [0
0 I 1]. If the image is distorted non-monotonically, the
relative ordering of intensity level is lost, for example, as
shown in Fig. 2b. This would result in a different Census
transform of [0 1 O 1]. Even though the distortion was
slight, this results in a 50% error.

Other variances of the Census cost function are [16] and
[15]. The first utilizes the mean intensity of the window
instead of the intensity of the center pixel in the
neighborhood while the latter adds a relatively small
number to the mean intensity before comparing with
neighboring pixels.

B.  Quantized Census (QC)

We proposed Quantized Census in an attempt to
compensate for the deficiency in the Census matching cost.
QC applies a less rigid system that accommodates for non-
monotonic distortions to the ordered level of intensity.

Just like in the Census case, QC utilizes the comparative
intensity of the middle pixel and the neighboring pixels, but
is also sensitive to intensity gradient. It transforms the
intensity level at each pixel within the neighborhood of
interest to a quantized equivalent of the difference in the
intensity value of the middle pixel to that of the
surrounding ones. This does not only provide information
on the order of relative intensity but also, to some extent the
magnitude. Continuing with our previous notation, the
transformation is as follows:

D(q) = Qn{I(q) —I(p)} €)
where On{ } denotes N bins of quantization. It is important
to note that the subtraction operation that precedes the



quantization could yield values that range from negative to
positive. Hence quantization is applied in the range of -255
and +255 (intensity color range). For example if 16 bins
were used, then the quantized value would range from -7 to
0 in the negative range and 0 to 7 in the positive domain.
The effect of this equation is that subtle non-monotonic
distortions, that do not preserve the order of pixel intensity,
will not be detected by the cost function. This is significant
as imaging devices would not perfectly capture subtle
intensity changes in a scene. The 1D intensity row plot of a
pair of stereo images shown in Fig. 3 illustrates this. It
shows how the intensity of the pixels in the left image (red
plot) and right image (blue plot) varies along an arbitrary
Tow.

Pixel
Intensity

Figure 3. A ID intensity row plot of the pair of the Tsukuba stereo image
from the Middlebury dataset. [7]

Looking at the plot we can partially identify where some of
the pairs of corresponding points are. However, we would
also note that the relative ordering of intensity is not
consistent especially in the low textured region. This will
also be the case in the presence of distortions like Gaussian
noise. Subtle intensity distortion due to Gaussian noise with
low signal to noise ratio would be ignored as a result of
quantization. For example, looking back at Fig. 2, if a
quantized difference (with 16 bins) is applied then the
resulting transform for both region A and B will be [-1 0 0
1]. Hence, it permits for the subtle non-monotonic
distortion.

Whilst the modification in (9) has improved robustness,
it immediately poses a problem. A key strength of the
Census cost function is that it is robust to distortions like
salt and pepper noise. It achieves this by not using an
aggregative costing technique (in terms of intensity levels)
like in SAD or NCC. Each erroneous pixel contributes
equally to the cost, making it insensitive to outliers. With
our modification, the intuitive cost would have been to
acquire the sum of absolute or square differences. Of course
this would be to the detriment of how well the cost function
performs against outliers. This is because outliers that
instigate huge quantized difference would influence the
sum of absolute difference. Taking inspiration from the
RANSAC algorithm [8], we used the number of outliers as
opposed to summing the cost at each pixel. This has made
the cost function invariant to radiometric changes that do
not preserve the relative ordering of pixel values. Formally,
we define the Quantized Census stereo-matching cost as
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where T is a threshold value. This cost is applied to the
transformed neighborhood pair that 1is tested for
correspondence. Here Dy and Dy refers to the quantized
pixel differences acquired by (10). To illustrate how (10)
tolerates salt and pepper noise, consider a 3-by-3 region in
a first image (region A in Fig. 4), and two potentially
matching 3-by-3 regions in a second image (regions B and
C in Fig. 4. These regions have been chosen to illustrate a
linear gain scenario where the ground truth matching region
is in fact region B with a bias of 30.

147 | 147 | 149 117 | 117 | 119 147 | 147 | 149

146 | 148 | 149 116 | 118 | 119 146 | 148 | 129

234 | 201 | 185 204 | 171 | 155 197 | 201 | 110
egion A Region I Region C

Figure 4. Intensity value of neighborhood

The resulting transformation (with 32 bins of quantization)
for regions A, B and C will be.

0 0 0 0 (1] 0 0 0 0
0 0 0 0 1] -1
5 3 2 5 3 2 3 3 -2
Transformed Transformed Transformed
Region A Region B Region €
Figure 5. Transformed values of neighborhood using (9)

First, note the invariance of the cost function to radiometric
differences, while the relative pixel values are preserved.
Next let us assume that the shaded pixel in region A is a
randomly altered pixel value as a result of noise.

12 4

Region B

10 A

Region C

Sum of Difference

O AT e o B O AT AT N N T AT T T
Intensity of shaded pixel in Region A

Figure 6.  Resulting Cost when sum of the absolute difference of the
transformed regions is used to compare Region A to Region B and C.

Fig. 6 illustrates the effect of the intensity level on the cost
function had the sum of absolute difference been used
instead of a threshold, as in (10). A significant degree of
distortion in a single pixel is enough to affect the result of
the cost function. If the intensity was distorted to less than
112, region C would wrongly be chosen as the best match.
Instead, by considering the number of pixels pairs with
absolute differences less than a particular threshold, this is
rectified. In the above scenario, regardless of the intensity
of the shaded pixel, the number of outliers will be the same.



Fig. 1 gives a general flow diagram of Quantized
Census. For a region in the first image and another
potentially matching region in the second, the difference
between the intensity of the middle pixel and that of
neighborhood pixels are acquired respectively. These
differences are then quantized into an experimentally
determined number of bins. In the case of Fig. 1, 16 bins
were used. The absolute difference of the both transformed
region is taking and the result is compared to a threshold
(that is also experimentally determined) to generate a
binary region. The sum of the binary region is to be
minimized across all potentially matching regions.

Iv. DATASET & EXPERIMENT

In the following experiment we compare the
performance of QC and other cost functions in context of
radiometric differences. We have not augmented cost
functions with any smoothness, occlusion detection factors
or any additional filtering. Hence we only evaluate the
direct performance our cost against others. Both parametric
cost and non-parametric cost functions were used. These
included: SAD, LSAD, ZSAD, SSD, LSSD, ZSSD, NCC
and Census. We use a simple window to window search
algorithm on all of the cost functions. The search span of all
cost functions was set to 10 pixels above the maximum
disparity in the known ground truth.

Both synthetic and non-synthetic data sets were used in
the experiment. The synthetic scene was generated using
OpenGL. Here image pairs were captured from two
perspectives by displacing the synthetic camera
horizontally. This was particularly useful as it allowed the
absolute disparity at each pixel to be computed from the
baseline, FOV of the synthetic camera and the proximity of
the scene to the camera by reversing the parallax equation.
The non-synthetic dataset used were Teddy, Reindeer,
Laundry, Art, Flowerpots and Cones from the Middlebury
dataset [7] (Fig. 8). Each of the cost functions were trained
using the synthetic data to determine the values of the
parameters (such as window size, the threshold value and
the quantization bin) that best optimized their performance.
This ensured that the results indicated how well the cost
functions were able to generalize, which is the key
motivation for using Quantized Census. The data sets were
altered to model five radiometric changes and the cost
functions tested against these radiometric changes using
implementation from [17]. These included a linear and non-
linear distortion to the global intensity of the dataset;
synthetized vignetting effect; Gaussian noise; and salt and
pepper noise. Different levels of each distortion were used
in the test. The linear and non-linear global intensity
distortion; and the vignetting effect were applied to only
one of the stereo image pairs while the Gaussian and salt
and pepper noise were applied to both images in the pair.

All the tests and trainings were carried out on grayscale
images. However the proposed cost method can easily be
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implemented for RGB data by, for example, applying the
transformation at each color channel and then
marginalizing to get the best match. For the evaluation, the
resulting disparity maps were compared against the ground
truth by taking an absolute difference. A disparity value
with an absolute difference error less than 1 pixel is
considered to be right and vice versa. The Quantitative
results are shown in Fig. 7, portraying the average
percentage of rightly recovered disparity values over all six
datasets. Occluded and non-occluded regions were not
considered in the test as we only aim to compare relative
performance. The resulting disparity for the Cone stereo
pair is shown in Fig. 9.

V. RESULT & DISCUSSION

Based on the training results, QC’s performance was
optimized with 16 bins of quantization at a threshold value
of 2.These parameters, as well as a 3-by-3 window size
were used in the previously described testing that followed.
The results (Fig. 7) demonstrate how different cost
functions are suited to specific radiometric differences. The
locally scaled variants are theoretically suited for linear
gain global distortion as the mean ratio explicitly counters
this distortion. The same applies in the cases of: the NCC
cost function in compensating for Gaussian; and Census in
compensating salt and pepper noise. Quantized Census is
able to generalize and be invariant to different types of
radiometric changes. Although it does not outperform all
other cost functions, it maintains a good performance
across the different range of distortions. This makes it
invaluable to the scenario where various radiometric
distortions can exist - as is the case in most real-world
applications. To illustrate the consistency of QC, an overall
performance index has been computed across all the test
results. This is shown in the table shown in Table 1. Here,
for each radiometric distortion, the percentages of rightly
recovered pixels are averaged and then normalized across
each cost function. This provides an indication of the
relative effectiveness of each cost function against the
radiometric distortions. The overall performance index (in
the bottom row of the table) is the sum of relative
performance of each cost function across all the radiometric
distortions. The performance index does not only indicate
the superiority of QC over the other cost functions (in terms
of consistency and generalization) but also the vast
improvement that the proposed modification has made to
the Census cost.

It is worth noting that QC maintains a good
performance initially and then drops quite abruptly as the
level of distortion increases. This is a positive factor as
most distortions in real-life applications would not be as
severe as those applied in the extremes of the tests carried
out. Another feature of QC noted during testing was that,
unlike other region-based costs, its performance was
independent of the neighborhood window size. This is



another positive factor as small window size could be used, performance.
so as to reduce computation without any detriment to
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Figure 7. Performance of the compared cost functions on Teddy, Laundry, Reindeer, Art, Flowerpots and Cones dataset. All plots show the
percentage of rightly recovered disparity values by each cost function as different radiometric distortions are applied.
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Figure 8. The left images of the Synthetic scene (used for training); and the Reindeer, Cones, Art, Flowerpots Teddy, and Laundry (used for
testing)

Figure 9.  Recovered disparity for the Cone pair without radiometric distortion applied: (a) SAD (b) LSAD (c) ZSAD (d) SSD (e) LSSD (f) ZSSD
(g)NCC (h)QC (i) Census (j) Ground Truth

TABLE 1. TABLE OF OVERALL PERFORMANCE INDEX

SAD LSAD ZSAD SSD LSSD ZSSD NCC QC Census

Gaussian 0.14915 0.08350 0.11086 0.09335 0.08612 0.11762 0.15675 0.12066 0.08194

S&P 0.11415 0.12094 0.09128 0.09229 0.0587 0.06790 0.06274 0.18777 0.20420

Vignetting 0.06113 0.14109 0.133958 0.070519 0.139875 0.139629 0.139901 0.13181 0.04207

Gamma 0.0428 0.099 0.19421 0.05204 0.09893 0.19477 0.10542 0.16757 0.04518
Gain 0.04423 0.15011 0.13969 0.05348 0.14874 0.14785 0.14877 0.13592 0.03117
Total 0.41154 0.59466 0.67001 0.36169 0.53237 0.66779 0.61360 0.74374 0.40457
A.  Threshold value Effect 10 illustrates this relationship and in turn explains how the

Quantized Census was able to compensate for Gaussian
In this section we explored how the performance of the QC noise. As the standard deviation increases so does the
cost function reacts to different levels of radiometric noise,  optimum threshold value that produced the best result.
as the threshold value chosen is altered. There was no
significant relationship in the case of the linear and non-
linear gain; vignetting; and the salt & pepper noise.
However, the Gaussian noise showed some correlation. Fig.
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Figure 10. Performance of different threshold values for QC against
different standard deviations of Gaussian noise

The threshold value implicitly determines the level of error
the cost permits for when deciding what is conceded as a
correct match. Subsequently, as the standard deviation
(Signal-to-Noise) of the Gaussian noise increases the
threshold value would need to increase to accommodate the
increased error level.

VL CONCLUSIONS

We have proposed, developed and evaluated an

improved variant to the Census cost function, Quantized
Census. A comparison has been made both experimentally
and theoretically with other cost functions. The proposed
cost function has been shown to have significantly improved
performance of the Census cost function against different
radiometric differences. Although Quantized Census does
not outperform other cost functions against all distortions, it
has proved to be the most consistent. This makes it more
robust and more suited for real-world applications where
different radiometric distortions appear.
As with every technique that employs some form of
threshold or weighting there is an inherent disadvantage in
having to decide the right threshold or weight to use. This is
indeed the case with Quantized Census, with particular
sensitivity to the threshold value. In future work we aim to
propose and develop a technique of automatically selecting
threshold values based on the intensity distribution in the
scene. One approach would be to detect the level of noise in
texture-less regions and alter the threshold accordingly.
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