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Diagnosing and Preventing Instabilities in
Recurrent Video Processing

Thomas Tanay, Aivar Sootla, Matteo Maggioni, Puneet K. Dokania, Philip Torr, Aleš Leonardis
and Gregory Slabaugh

Abstract—Recurrent models are a popular choice for video enhancement tasks such as video denoising or super-resolution. In this
work, we focus on their stability as dynamical systems and show that they tend to fail catastrophically at inference time on long video
sequences. To address this issue, we (1) introduce a diagnostic tool which produces input sequences optimized to trigger instabilities
and that can be interpreted as visualizations of temporal receptive fields, and (2) propose two approaches to enforce the stability of a
model during training: constraining the spectral norm or constraining the stable rank of its convolutional layers. We then introduce
Stable Rank Normalization for Convolutional layers (SRN-C), a new algorithm that enforces these constraints. Our experimental results
suggest that SRN-C successfully enforces stablility in recurrent video processing without a significant performance loss.

Index Terms—Video enhancement, recurrent convolutional neural networks, lipschitz stability, spectral normalization.
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1 INTRODUCTION

LOW-LEVEL computer vision problems such as denois-
ing, demosaicing or super-resolution can be formalised

as inverse problems and approached with modern machine
learning techniques: a degraded input is processed by a con-
volutional neural network (CNN) trained in a supervised
way to produce a restored output. The input is typically
a single frame [1], [2], [3], [4], [5], [6]—but significantly
better results can be obtained by leveraging the temporal
redundancy of sequential images [7], [8], [9], [10], [11], [12].
There are two main categories of video processing CNNs.
Feedforward models operate in a sliding-window fashion and
process multiple frames jointly to produce a current output.
Recurrent models operate in a frame-by-frame fashion but
have the ability to store information internally through
feedback loops. Recurrent processing is appealing because
it reuses information efficiently, potentially over a large
number of frames. At the same time, Recurrent Neural
Networks (RNNs) are dynamical systems that can exhibit
complex and even chaotic behaviors [13]. In the context of
sequence modelling for language or sound understanding
for instance, RNNs are known to suffer from vanishing
and exploding gradient issues at training time [14], and to
be vulnerable to instabilities through positive feedback at
inference time [15].

1.1 Motivation
In the context of video processing too, recurrent CNNs
have been observed to suffer from instabilities at inference
time on long video sequences. This is the case for instance
of the Deep Burst Denoising network of [10] (referred to
as DBDNet in the following), consisting of a single-frame
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branch processing frames independently, and a multi-frame
branch where each convolution+ReLU block takes its own
output as an additional input at the next time step. To
illustrate the instability phenomenon, we retrain DBDNet
on the Vimeo-90k dataset [16] and we evaluate it on 3
sequences of 1600 frames (i.e. roughly one minute of video
at 24 fps) downloaded from vimeo.com. In Figure 1, we
plot the performance of the model measured by the peak-
signal-to-noise-ratio (PSNR) as a function of the frame num-
ber and we observe instabilities on all 3 sequences: the
PSNR plunges permanently at some unpredictable time in
the sequence. Visually, these instabilities correspond to the
formation of colorful artifacts at random locations, growing
locally until the entire output frame is covered. Numerically,
they correspond to diverging or saturating pixel values.

Our working hypothesis is that recurrent connections
create positive feedback loops prone to this type of di-
vergent behaviour. As a proof of concept, we consider a
backbone architecture made of five convolutional layers
interleaved with ReLU non-linearities, and we augment it
with various strategies for temporal processing. We consider
single-frame and multi-frame inputs, and four types of tem-
poral connections inspired from existing video processing
works: feature-shifting where features are extracted and fed
back at the same level [17], [18], feature-recurrence where
features are extracted and fed back at a lower level [10],
[17], [19], frame-recurrence where the output frame is fed back
as an input [11], [20] and recurrent latent space propagation
(RLSP) where the latent space at a high level is fed back
as an input [12] (see Figure 2a). We then initialize all
the models randomly and feed them with random inputs.
We see that feedforward architectures (single-frame, multi-
frame, feature-shifting) produce stable outputs while re-
current architectures (feature-recurrence, frame-recurrence,
RLSP) produce outputs that diverge (see Figure 2b). Note
that feature-shifting is non-recurrent since information can-
not flow indefinitely inside a feedback loop.
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Fig. 1. The recurrent video denoiser from [10] is applied to 3 sequences of 1600 frames downloaded from vimeo.com. Above: The PSNR per frame
is stable for a number of frames varying between 200 and 1500, before plunging below 0 on all 3 sequences (indicated by red stars). Below: The
performance drops manifest themselves in the form of strong colorful artifacts and black masks on the output images (see also Appendix A).
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(a) From left to right: feature-shifting [17], [18], feature-recurrence [10],
[17], [19], frame-recurrence [11], [20], RLSP [12].
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(b) Norm of the output frame over a random sequence of 50 frames,
for six architectures initialized with a Gaussian distribution (σ = 0.1).

Fig. 2. For untrained models over random inputs, feedforward architectures produce stable outputs (single-frame, multi-frame, feature-shifting) while
recurrent architectures diverge (frame-recurrence, feature-recurrence, RLSP).

The instability phenomenon described here is a serious
concern for the deployment of recurrent video processing
models in real-world applications. A number of coping
strategies can be considered to operate an unstable model
in a stable manner at inference time but none of them are
truly satisfying (see Section 3.4). In this paper, we propose to
solve the instability problem altogether by enforcing math-
ematically derived stability constraints during training.

1.2 Contributions

The main contributions of this paper are as follows:

• We identify a serious vulnerability affecting RNNs for
video processing: they can be unstable at inference time
and fail catastrophically on long video sequences.

• To test stability, we introduce a fast and reliable diagnostic
tool that produces input sequences optimized to trigger
instabilities, and that can be interpreted as temporal re-
ceptive fields.

• We investigate two approaches to enforce the stability
of recurrent video processing networks: constraining the

spectral norm or constraining the stable rank of their
convolutional layers.

• We extend a recently proposed weight normalization
scheme called Stable Rank Normalization (SRN) [21] that
simultaneously constrains the spectral norm and the sta-
ble rank of any linear mapping, to convolutional layers.
We call it Stable Rank Normalization for Convolutional
layers (SRN-C)—as opposed to stable rank normalization
applied to the convolutional kernel.

1.3 Related Work
A number of approaches have been proposed in the liter-
ature for extending the connectivity of a CNN in the time
domain. In [22], the authors identify three classes of feedfor-
ward models: early fusion where the frames over a fixed time
window are concatenated and processed simultaneously,
late fusion where the frames are processed independently
and only their latent space representations are concatenated,
and slow fusion where intermediary features are concate-
nated at multiple levels such that higher layers get access to
progressively more global information in both spatial and
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temporal dimensions. Variants of slow fusion were intro-
duced a number times under different names: conditional
convolutions in [17], 3D convolutions in [23], progressive fusion
in [24] and feature-shifting in [18] all fuse features from
different time steps at multiple levels of the network. For
video restoration tasks, most standard models implement a
form of early fusion [7], [8], [9], [25], [26] but late fusion [27]
and two-level fusion [28] have also been used.

In contrast with the feedforward fusion approaches
above, recurrent models contain feedback loops where the
features are fed back to the same processing block multiple
times. One of the earliest applications of RNNs in video
restoration was in [17]. The architecture proposed for video
super-resolution used a large number of temporal connec-
tions, with forward and backward subnetworks processing
inputs in temporal and reverse-temporal order, each using
both conditional and recurrent connections corresponding to
feature-shifting and feature-recurrence respectively according
to our taxonomy from Figure 2a. Feature recurrence was
used again for video denoising in [19] on a deep but non-
convolutional RNN, and in [10] on the multi-frame branch
of a hybrid architecture constituted of a single-frame de-
noiser and a multi-frame denoiser. Frame-recurrence, where
the previous output frame is fed back as an additional
input at the next time step, was introduced for video super-
resolution in [11]. This type of recurrence was studied
further in [20] where a connection was made with the
concept of Kalman filtering [29]. Recently and still in super-
resolution, recurrent latent space propagation (RLSP) was
introduced [12]. RLSP can be interpreted as maximizing
the depth and width of the recurrent connection, compared
to feature-recurrence and frame-recurrence. Iterative ap-
proaches [30], [31], [32] are conceptually similar to recurrent
ones, but the feedback loop is part of a refinement mecha-
nism that occurs for a fixed number of iterations, chosen as a
hyperparameter by the user independently of the temporal
length of the video sequence. State-of-the-art performance in
video restoration has regularly shifted between feedforward
and recurrent architectures in the literature [9], [10], [11],
[28], [33], [34], the current state-of-the-art [35], [36] making
use of multiple recurrent connections [34], [37]. We illustrate
the advantage of using a recurrent architecture over a feed-
forward one in Appendix B.

Training Recurrent Neural Networks (RNNs) is notori-
ously difficult due to the vanishing and exploding gradients
problem: RNNs are trained by unrolling through time,
which is effectively equivalent to training a very deep net-
work [14], [38]. Relatedly, RNNs are vulnerable to instabilities
at inference time on long sequences. This phenomenon was
studied in the context of 1-layer fully connected networks
in [39], and in the context of multi-layer and LSTM networks
in [15], where it was shown that the RNN is stable if its
Lipschitz constant is less than 1. In [15], it was proposed
to enforce this stability constraint by projecting onto the
spectral norm ball of the recurrence matrix (i.e. by clipping
its singular values to 1) and a number of recent works
have sought to avoid vanishing and exploding gradients
by enforcing orthogonality (i.e. setting all the singular val-
ues to 1) [40], [41], [42], [43], [44], [45]. In the context of
CNNs however, enforcing the Lipschitz constraint is chal-
lenging. In [46], it was proposed to clip singular values

of the convolutional (but non-recurrent) layer, which was
flattened into a matrix using the doubly block circulant
matrix representation. However, the optimization method
does not have formal convergence guarantees and requires
computing all singular values of the flattened kernel. In [47],
it was proposed to normalize the kernel of the convolutional
(but non-recurrent) layer during training, the 4-D kernel
being first reshaped into a 2-D matrix by flattening its first
three dimensions. Normalization is performed by an elegant
iterative scheme employing the power iteration estimating
the maximal singular value of the flattened kernel. However,
as discussed in [48] and [49], this approach is not suitable
for Lipschitz regularization due to the invalid flattening
operation used, and as a result is not suitable for stability
enforcement using [15] either. To solve this issue, Gouk et
al. [49] suggested replacing the 2-D matrix products in the
power iteration with convolution and transpose convolution
operations using the 4-D kernel tensor directly. This method
was applied with success in [50] to train invertible ResNets.

Recently, Sanyal et al. (2020) [21] proposed Stable Rank
Normalization (SRN), a provably optimal weight normal-
ization scheme which minimizes the stable rank of a linear
operator while constraining the spectral norm. They showed
that SRN, while improving the classification accuracy, also
improves generalization of neural networks and reduces
memorization. However, SRN operates on a 2-D reshaping
of the convolutional kernel, instead of operating on the
convolutional layer as a whole.

2 STABILITY IN RECURRENT VIDEO PROCESSING

In this section we define the notion stability, we introduce
the Temporal Receptive Field (TRF) diagnostic tool and the
two stability constraints, and we present our Stable Rank
Normalization for Convolutional layers algorithm (SRN-C).

2.1 Definitions
Partially reusing notations from [15], we define a recur-
rent video processing model as a non-linear dynamical
system given by a Lipschitz continuous recurrence map
φw : Rn × Rd → Rn and an output map ψw : Rn → Rd
parameterized by w ∈ Rm. The hidden state ht ∈ Rn and
the output image yt ∈ Rd evolve in discrete time steps
according to the update rule1{

ht = φw(ht−1, xt)

yt = ψw(ht)
(1)

where the vector xt ∈ [0, 1]d is an arbitrary input image
provided to the system at time t.

In Section 1.1, we showed examples of models that
produced diverging outputs and called them “unstable”. In
the following, we propose to use the notion of Bounded-Input
Bounded-Output (BIBO) stability to formalize this behaviour.
Definition 1. A recurrent video processing model is BIBO

stable if, for any admissible input {xt}∞t=0 for which there
exist a constant C1 such that supt≥0 ‖xt‖ ≤ C1, there
exists a constant C2 such that supt≥0 ‖yt‖ ≤ C2.

1. The case where yt = ht corresponds to the frame-recurrent
architecture of [11].
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This definition is well suited for models using ReLU acti-
vation functions and the diagnostic tool we introduce in the
next section relies on it. However, it fails to capture a stricter
notion of stability for models with bounded activation func-
tions, which are BIBO stable by construction2. Therefore, we
will use the stricter notion of Lipschitz stability for stability
enforcement, as in [15].

Definition 2. A recurrent video processing model is Lipschitz
stable if its recurrence map φw is contractive in h, i.e. if
there exists a constant L < 1 such that, for any states
h, h′ ∈ Rn and input x ∈ Rd,

‖φw(h, x)− φw(h′, x)‖ ≤ L‖h− h′‖. (2)

The constant L is called the Lipschitz constant of φw. We
show easily that Lipschitz stability implies BIBO stability,
but the reciprocal is not always true.

2.2 Diagnosis

Consider a trained recurrent video processing model
(φw, ψw). A prerequisite to use it in real-world applications
is to determine whether it is stable or not. Unfortunately,
proving that a model is BIBO stable is difficult: in principle,
this requires to perform an exhaustive search over the
(infinite) set of valid inputs, and check that none of them
are unstable. Alternatively, one could try to show that the
model is Lipschitz stable instead. However, computing the
Lipschitz constant for a neural network is, in general, NP-
hard [48] and therefore intractable.

In practice, one realistic test is to run the model on hours
of video data and report possible instabilities—effectively
performing a random search for unstable sequences over the
set of valid inputs. When an unstable sequence is found,
this test constitutes a formal guarantee that the model is
unstable. When no unstable sequence is found, however,
nothing can be concluded with certainty: the model could be
stable, or the search could simply have failed. It is not clear
what type of input data should be used and how long the
search should last before concluding reliably that the model
is, indeed, stable. As Figure 1 shows, these are not trivial
questions: instabilities do not occur after the same number
of frames on all video sequences and it can easily take more
than a thousand frames before an instability occurs.

Here, we propose to approach the problem in a different
way and to search for unstable sequences by gradient descent.
We introduce a stress test that actively tries to trigger
instabilities by maximising the output of the RNN at a
given time step with respect to its temporally unrolled
input. More precisely, we fix a sequence length 2τ + 1 and
an image size d, and consider the finite input sequence
X = (x−τ , ..., xτ ) with the corresponding finite output
sequence Y = (y−τ , ..., yτ ) such that h−τ−1 = 0 (i.e. the
initial hidden state is null) and for all t ∈ [−τ, τ ]:

ht = φw(xt, ht−1) φw is unrolled over the sequence
yt = ψw(ht) ψw maps to the output image

2. Simply applying a sigmoid function to the output of an unstable
model technically makes it BIBO stable, yet in practice, the model still
suffers from instabilities and its output simply saturates.

We then search for an unstable sequence by optimizing:

max
0≤X≤1

|p| (3)

where p is the pixel in the centre of y0, the output frame at
time t = 0. In words, we search for an input sequence X
such that the corresponding output sequence Y diverges
maximally in p. This optimization process affects all the
pixels in X having an influence on p, revealing the flow
of information from past pixels to the current one, and
therefore it can be interpreted as a visualization of the
Temporal Receptive Field (TRF) of the model. Computing the
TRF can then be used as a diagnostic tool for stability, and
we observe two possible behaviours.

• The TRF is not temporally bounded. Input frames in the
distant past have an effect on p and output frames in the
distant future diverge (see Figure 3a). The input sequence
X constitutes an unstable sequence and we can conclude
with certainty that the model is unstable.

• The TRF is temporally bounded. Input frames in the
distant past have no effect on p and output frames in
the distant future remain unaffected (see Figure 3b). No
unstable sequence has been found and we can conclude
with reasonable confidence that the model is stable.

This type of optimization on the output of a model with
respect to its input is related to the work on adversarial
examples in image classification [51], [52], [53], [54], [55] and
on feature visualization [51], [56], [57], [58], [59]. To the best
of our knowledge however, it has never been used in the
context of recurrent networks and the use we make of it here
to test the temporal stability of a model is novel. In our ex-
periments, we initialise X randomly, we choose a sequence
length 2τ + 1 = 81 and an image size d = 64× 64. We then
solve the optimization problem using the Adam optimizer
for 500 iterations. This test typically takes a few minutes to
complete, which is much faster and more computationally
efficient than running the model on hours of video data (2h
of video data takes approximately 1h to process at 50 fps).
For this reason, it is particularly adapted to perform model
invalidation quickly.

As discussed before, neither running the model on hours
of video data (random search) nor computing the TRF
(gradient descent search) can guarantee stability with cer-
tainty, but we show in the experimental section that the
two tests give consistent answers on the stability of various
models—providing positive evidence that they are able to
identify stable models correctly. TRFs also help visualize
the temporal window of influence of a model, or how long
information can stay in memory, and therefore illustrates the
relationship between stability and memory in RNNs.

2.3 Prevention
Now, consider an untrained recurrent video processing
model (φw, ψw). In order to prevent instabilities from oc-
curring at inference time, we want to enforce a stability
constraint into the model during training. As discussed in
Section 2.1, this can be achieved by ensuring that φw is
contractive with respect to the recurrent variable.

Suppose that φw is made of l convolutional layers sepa-
rated by ReLU non-linearities. Each convolution can be rep-
resented by its 4D kernel tensors K, or by a corresponding
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(a) TRF of an unstable model. The receptive field is not temporally bounded and the output sequence Y diverges.

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

(b) TRF of a stable model. The receptive field is temporally bounded (≈ 17 frames) and the output sequence Y is well-behaved.

Fig. 3. Temporal Receptive Field (TRF) as a diagnostic tool. The input sequence X is optimized to trigger instabilities in the output sequence Y .
The sequences have been horizontally compressed to fit the page width. In the rest of the paper, we plot TRFs every 5 frames for convenience, but
the optimization is always performed on sequences of 81 frames (τ = 40).

2D matrix W obtained from K as a block matrix of doubly-
block-circulant matrices [46]. Then for a layer W with sin-
gular values {σk} assumed to be sorted, the spectral norm
is ‖W ‖ = σ1, the Frobenius norm is ‖W ‖F =

√∑
k σ

2
k and

the stable rank3 is defined as [21], [60]:

srank(W ) =
‖W ‖2F
‖W ‖2

=

∑
k σ

2
k

σ2
1

. (4)

It is a scale independent quantity and can be interpreted
as an area-under-the-curve for the normalized singular value
spectrum. Now, let L be the Lipschitz constant of φw. Since
the Lipschitz constant of the ReLU non-linearity is 1, we
know thatL is upper-bounded by the product of the spectral
norms of the linear layers [48], [51].

Proposition 1. For a recurrent model φw constituted of l
linear layers with weight matrices W1, ...,Wl ∈ Rn×n
interspaced with ReLU non-linearities, the Lipschitz con-
stant L of φw satisfies:

L ≤
l∏
i=1

‖Wi‖. (5)

Using this upper-bound, one can guarantee that φw is con-
tractive (i.e. L < 1) with the following approach.

Approach 1. Hard Lipschitz Constraint
For all i ∈ [1, l], we enforce ‖Wi‖ < 1.

This approach has the advantage of providing a theoreti-
cal guarantee of stability. However, it is overly restrictive
because the upper-bound (5) tends to significantly overesti-
mate the Lipschitz constant L [21]. To illustrate why this is
the case, suppose that φw contains two layers W1 and W2.
Then the only situation in which we have L = ‖W1‖‖W2‖
is when the first right singular vector of W1 is aligned with
the first left singular vector of W2. In other situations, L
depends on the rest of the singular value spectra of W1 and
W2 and hence, on their stable ranks. These considerations
lead us to a second approach to enforce L < 1.

Approach 2. Soft Lipschitz Constraint
For all i ∈ [1, l], we fix ‖Wi‖ = α and minimize srank(Wi).

3. The stable rank is a soft, numerical approximation of the rank
operator. It is stable under small perturbations of the matrix—the name
has nothing to do a priori with the notion of stability studied here.

This approach does not offer any theoretical guarantee of
stability for α > 1. However, we verify empirically in
Section 3 that it is also successful at promoting stability.

2.4 Stable rank normalization for convolutional layers

A few methods have been proposed before to enforce the
constraints of Approaches 1 and 2. Spectral normalization
(SN), introduced by Miyato et al. [47] and popularized in
GAN training [61], [62], allows one to fix the spectral norm
of convolutional layers to a desired value α. Stable rank
normalization (SRN), introduced by Sanyal et al. [21], builds
on top of the previous work and allows one to also control
the stable rank with a parameter β ∈ [0, 1] (Algorithm 1).
However, as observed before in [48], [49], there is an issue
with SN and by extension with SRN: they operate on a 2D
reshaping of the kernel tensor K instead of operating on
the matrix of the convolutional layer W and are therefore
unable to enforce stability through the Hard and Soft Lips-
chitz Constraints, as we verify experimentally in Section 3.2.
Unfortunately, operating on W directly is impossible: the
matrix is too large to be expressed explicitly4. In order to
solve this intrinsic limitation, we introduce a version of
SRN that operates on W indirectly, using K. To distinguish
between the two versions, we refer to our algorithm as
Stable Rank Normalization for Convolutional layers or SRN-C
(Algorithm 2).

The two algorithms are structurally identical—they con-
sist in a power iteration to compute the spectral norm (steps
2,3), a normalization (step 4) and a re-weighting of a rank
one matrix S1 and a residual matrix S2 (steps 5, 6, 7, 8)—
but they present a number of key differences. In SRN-C,
the random vector u has two more dimensions and is the
size of a full input feature map ([1, n, n,m]). The kernel is
not flattened (steps 1, 9). The power iteration is performed
using a convolution (K̃ ∗ ·) and a transposed convolution
(K̃T∗ ·) as suggested in [49], based on the observations that:

v = W̃ Tu ⇔ v = K̃T ∗ u (step 2) and

u = W̃v ⇔ u = K̃ ∗ v (step 3).
(6)

4. For a kernel size k, a number of input and output channels m and
an image size n, the dimension of K is [k, k,m,m] (typically around
103 parameters) while the dimension of W is [nnm,nnm] (typically
around 1013 sparse parameters).
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Algorithm 1: SRN–α–β (Sanyal et al. (2020) [21])
Input: Number of iterations N , learning rate η,

number of channels m, image size n,
initial K ∈ Rk×k×m×m, initial u ∈ Rm.

Parameters : Spectral norm α, stable rank β.
begin

for i = 1, . . . , N do
1 K̃ = Reshape(K, [kkm,m])T

Power iteration:
2 v = K̃Tu/‖K̃Tu‖2
3 u = K̃v/‖K̃v‖2

Spectral normalization:
4 K̃ = K̃/(uT(K̃v) + ε)

Stable rank (β < 1):
5 S1 = uvT

6 S2 = K̃ − S1

7 γ =
√
βm− 1/‖S2‖F

8 if γ < 1 then
K̃ = S1 + γS2

9 K̃ = Reshape(K̃T, [k, k,m,m])
Training step:

10 K =K − η∇KL(α K̃)

Algorithm 2: SRN-C–α–β (Ours)
Input: Number of iterations N , learning rate η,

number of channels m, image size n,
initial K ∈ Rk×k×m×m, initial u ∈ Rn×n×m.

Parameters : Spectral norm α, stable rank β.
begin

for i = 1, . . . , N do
1 K̃ =K

Power iteration:
2 v = K̃T ∗ u/‖K̃T ∗ u‖2
3 u = K̃ ∗ v/‖K̃ ∗ v‖2

Spectral normalization:
4 K̃ = K̃/(uT(K̃ ∗ v) + ε)

Stable rank (β < 1):
5 S1 = ∇

K̃
(uT(K̃ ∗ v))

6 S2 = K̃ − S1

7 γ =
√
βm− 1/n2/‖S2‖F

8 if γ < 1 then
K̃ = S1 + γS2

9

Training step:
10 K =K − η∇KL(α K̃)

The spectral normalization is also performed using a convo-
lution (step 4). The rank one matrix S1 = uvT is expressed
as a 4D kernel tensor through the gradient of uT(K̃∗v) with
respect to K̃ (step 5), based on the observation that:

uvT = ∇W̃ (trace(W̃vuT)) = ∇W̃ (uTW̃v). (7)

Finally, writing ‖W̃ ‖F explicitly yields ‖W̃ ‖F = n‖K̃‖F
and therefore (step 7):

γ =

√
βnnm− 1

n‖S2‖F
=

√
βm− 1/n2

‖S2‖F
. (8)

When β = 1, SRN and SRN-C are equivalent to per-
forming spectral normalization on K and W respectively.
When β < 1, they also have an effect on the stable rank of
their respective matrices. We found experimentally that SRN
multiplies the training time by a factor of ≈ 1.8 and SRN-C
multiplies the training time by a factor of≈ 2.2. At inference
time, the weights are fixed and normalized convolutions
have the same complexity as standard convolutions.

3 EXPERIMENTS

We now illustrate our diagnostic tool on a number of video
processing models and show that our stable rank normaliza-
tion algorithm successfully enforces stability via the Hard
and Soft Lipschitz constraints.

3.1 Unconstrained Models
To reflect the variety of architectures used for video process-
ing tasks, we consider two backbone networks and three
types of recurrence. The two backbone networks consist
in a DnCNN-like [1] stack of 10 convolutions and ReLU
non-linearities (VDnCNN), and a ResNet-like [63] stack of
5 residual blocks containing two convolutions each sepa-
rated by a ReLU (VResNet). The three types of recurrences
are the ones considered in Section 1.1, namely, feature-
recurrence [10], [17], [19], frame-recurrence [11], [20] and

TABLE 1
Size, processing speed and performance of the different video

denoising methods considered, measured on the first frame (PSNR1),
last frame (PSNR7), and averaged over all the frames (PSNRmean) on

the Vimeo-90k septuplet dataset.

# param. fps PSNR1 PSNR7 PSNRmean

BM3D [64] n/a 2 33.86 33.83 33.85
VNLB [65] n/a 0.02 35.24 35.17 35.78
FastDVDnet [28] 2.49M 7 35.25 35.19 36.05
FRVSR [11] 2.49M 6 34.63 36.83 36.24
DBDNet [10] 965k 30 34.16 35.47 35.16
VDnCNN-frame 375k 70 33.94 34.84 34.68
VDnCNN-feat 741k 40 34.05 35.02 34.79
VDnCNN-RLSP 410k 60 33.95 34.98 34.77
VResNet-frame 375k 70 34.23 35.47 35.21
VResNet-feat 557k 50 34.35 35.74 35.41
VResNet-RLSP 410k 60 34.25 35.80 35.42

recurrent latent space propagation (RLSP) [12]. More archi-
tectural details are provided in Appendix C. We focus on
video denoising first, and show in Section 3.3 that our main
results also apply to video super-resolution.

We train our models using the Vimeo-90k septuplet
dataset [16], consisting of about 90k 7-frame RGB sequences
with a resolution of 448×256 downloaded from vimeo.com.
We generate clean-noisy training pairs by applying Gaus-
sian noise with standard deviation σ = 30. The recurrent
networks are trained using backpropagation through time
on sequences of 7 frames—making use of the full length
of the Vimeo-90k sequences—on image crops of 64 × 64
pixels. We train using the Adam optimizer with a batch size
of 32 for 600k steps. For comparison, we also consider the
traditional patch-based methods BM3D [64] and VNLB [65],
the feedforward model FastDVDnet [28] and the recurrent
models FRVSR [11] and DBDNet [10], which we train in
the same conditions as the other recurrent models. In Ta-
ble 1, we show the numbers of parameters and processing
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TABLE 2
Instabilities in 6 models with 2 backbone architectures and 3 types of recurrences. For each model, we show the performance on the 7th frame of

the Vimeo-90k validation dataset (PSNR7), the 1st and 9th deciles of the instability onsets on a sequence of about 2h20min (∞ means no
instabilities observed). We also show the singular value spectrum averaged over the convolutions of the model, computed as in [46], and the

temporal receptive field computed using our method.

model
PSNR7

1st dec.
9th dec.

Average
Singular Value

Spectrum
Temporal Receptive Field

VDnCNN
–frame

34.84
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

VDnCNN
–feat

35.02
157
5709

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

VDnCNN
–RLSP

34.98
74
271

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

VResNet
–frame

35.47
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

VResNet
–feat

35.74
29
75

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

VResNet
–RLSP

35.80
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

speeds5 (fps) of each method, as well as their denoising
performances as measured by the PSNR on the first frame
(PSNR1), last frame (PSNR7) and averaged over all the
frames (PSNRmean) on the first 1024 validation sequences of
the Vimeo-90k septuplet dataset. The recurrent architecture
FRVSR significantly outperforms other methods on the last
frame and in average, while the feedforward architecture
FastDVDnet performs best on the first frame. In general,
recurrent architectures go through a “burn-in” period where
performance increases over the first few frames before
plateauing to their expected performance on a long se-
quence. For that reason, we focus on the PSNR7 metric in the
rest of the paper. Our VDnCNN and VResNet models can be
considered as simplified versions of FRVSR, with the optical
flow alignment network removed and with significantly less
parameters. The VResNet backbone systematically outper-
forms the VDnCNN one, possibly partly because VDnCNN
is slower to converge. Frame-recurrent architectures are the
lightest and fastest, but feature-recurrence and RLSP yield
better performance. Interestingly, VResNet-RLSP performs

5. We use the authors’ implementations of BM3D (Matlab) and VNLB
(C++). All other networks are implemented in TensorFlow. The process-
ing speeds are indicative of an order of magnitude only.

better than DBDNet [10] (+0.33dB on PSNR7) with about
60% less parameters.

To evaluate the stability of each recurrent model, we
apply them to one long video sequence lasting approxi-
mately 2h20m consisting of several clips downloaded from
vimeo.com and concatenated together (2×105 frames). Each
time the PSNR drops below 0, we consider that an instability
occurs and we reset the recurrent features to 0. We call in-
stability onset the number of frames leading to an instability.
In Table 2, we report the 1st and 9th decile of the instability
onsets for each model (∞ means no instability observed).
According to this test, VDnCNN-frame, VResNet-frame and
VResNet-RLSP are stable while VDnCNN-feat, VDnCNN-
RLSP and VResNet-feat are unstable. For VDnCNN-feat in
particular, the instability onset is above 5709 frames in 10%
of the cases, highlighting the necessity to run this test on
very long video sequences. We show examples of output
sequences for the 3 unstable models in Appendix A. In an
attempt at explaining why certain models are stable and
others are not, we compute the singular value spectra of all
their convolutional layers as in [46]—this gives us access to
their spectral norms or maximum singular value (leftmost
value in each spectrum). Unfortunately, the spectra all have
comparable profiles and are therefore uninformative, with
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TABLE 3
SRN and SRN-C with different values of α and β on VResNet-feat. The table is organized in the same way as Table 2.

model
PSNR7

1st dec.
9th dec.

Average
Singular Value

Spectrum
Temporal Receptive Field

SRN
α = 1.0
β = 1.0

35.64
69
295

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 1.0

35.71
74
264

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 1.5
β = 1.0

35.58
84
285

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 1.0
β = 1.0

35.31
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 0.5
β = 1.0

34.58
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 0.4

35.69
50
258

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 0.2

35.63
26
110

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 0.1

35.59
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 0.05

35.48
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

frame 80 frame 120 frame 160 frame 200 frame 240 frame 280frame 40 frame 320

No 
constraint

SRN-C
-2.0-0.1

Fig. 4. Outputs produced by VResNet-feat in video denoising. Without SRN-C (No constraint), instabilities appear between frame 40 and frame 80
of the chosen video sequence. With SRN-C-2.0-0.1, the outputs are artifact-free on the entire video sequence.



9

spectral norms typically around 6: too high to conclude
anything about the contractiveness of the recurrent maps
using the upper-bound (5). Finally, we compute the tem-
poral receptive fields of each model using the approach
described in Section 2.2. In accordance with the previous
test, VDnCNN-feat, VDnCNN-RLSP and VResNet-feat ex-
hibit the characteristic behaviour of unstable models, with
long-range temporal dependencies accumulating in the in-
put sequences X , resulting in unstable output sequences
Y diverging at frame +40. The temporal receptive fields
of VDnCNN-frame, VResNet-frame and VResNet-RLSP on
the other hand, are well-behaved: the information flow is
limited to a finite temporal window, input frames in the
distant past have no influence on the current frame and
future output frames do not diverge. Frame-recurrent mod-
els appear to have a short temporal receptive field (≈ 10
frames) compared to other models, possibly making this
type of recurrence more stable in practice.

3.2 Constrained models

We saw in the previous section that various models with
different backbone architectures and types of recurrence
trained in standard conditions are unstable on long video
sequences at inference time. We have also discussed in
the introduction how the instabilities observed constitute
catastrophic failures that are a serious concern for real-world
deployment. Now, we show that inference-time stability can
be enforced during training, with the help of our stable rank
normalization for convolutional layers algorithm (SRN-C). We
focus on the VResNet-feat architecture, as it appeared to be
the most vulnerable to instabilities with 80% of the onsets
happening between 29 and 75 frames only.

First, let us consider the model trained with SRN-1.0-1.0
in the first line of Table 3. According to the average singular
value spectrum, its convolutional layers have spectral norms
that are significantly larger than 1 at around 2.5, and which
vary significantly (±0.2). This observation confirms that
normalizing a 2D reshaping of the convolutional kernel K
is a poor approximation of normalizing the convolutional
layer W : SRN fails to set the spectral norm of W to the
desired value α, motivating the introduction of SRN-C.

Now, let us consider the models trained with
SRN-C-α-1.0 for α ∈ {2.0, 1.5, 1.0, 0.5} in lines 2 to 5 of
Table 3. As expected, the spectral norms of all the convolu-
tional layers are now precisely set to their respective values
of α. Our test on the long video sequence and our tem-
poral receptive field diagnostic then show that the models
trained with α > 1 are unstable while the models trained
with α < 1 are stable. This observation confirms that our
Hard Lipschitz Constraint is effective at enforcing stability.
Interestingly, reducing α < 1 shortens the temporal length
of the receptive field, a side effect of the recurrence map
becoming more contractive. However, reducing α also hurts
performance, as measured by the PSNR7 (−0.4dB from
α = 2.0 to α = 1.0), and this motivates the introduction
of the Soft Lipschitz Constraint.

Finally, let us consider the models trained with
SRN-C-2.0-β for β ∈ {0.4, 0.2, 0.1, 0.05} in lines 6 to 9
of Table 3. As expected, varying β has no effect on the
spectral norm of the convolutional layers, but it has an effect

TABLE 4
Summary Table. We compare the performances of VResNet-feat

stabilised with different variants of SRN-C.

VResNet-feat with . . . PSNR7 (↑) LPIPS7 (↓) Stable

No Constraint 35.74 0.080 7
SRN-C-1.0-1.0 (Hard Cons.) 35.31 0.079 3
SRN-C-2.0-0.1 (Soft Cons.) 35.59 0.083 3
SRN-C-3.0-0.025 (Soft Cons.) 35.54 0.075 3

on their stable rank, or the area-under-the-curve of their
singular value spectra. Again, our test on the long video
sequence and our temporal receptive field diagnostic show
that there is a value of β for which the stability of the model
changes: models trained with β > 0.1 are unstable while
the models trained with β < 0.1 are stable. This observation
confirms that our Soft Lipschitz Constraint is also effective
at promoting stability. Interestingly, reducing β also short-
ens the temporal length of the receptive field but the effect
is softer than with α, suggesting that controlling the stable
rank of the linear layers of a model has a softer effect on
its Lipschitz constant than controlling their spectral norms.
Importantly, the cost of stability in terms of performance
is now lower, and we obtain a stable model that performs
better than with the Hard Lipschitz Constraint approach
(+0.18dB between α = 1.0, β = 1.0 and α = 2.0, β = 0.1).
We show another illustration of the Soft Lipschitz Constraint
with α = 3.0 in Appendix D. Results are summarized in
Table 4, were we also evaluate each model in terms of the
LPIPS metric [66], confirming that SRN-C has a neglible
impact on the perceptual quality of the outputs. An example
of outputs produced by VResNet-feat trained without and
with SRN-C is shown in Figure 4.

3.3 Super-resolution
To demonstrate that our results generalize to video enhance-
ment tasks other than video denoising, we reproduce here
the main results on video super-resolution. We start by train-
ing a VResNet-feat model without constraint on the Vimeo-
90K dataset for the task of 2× upsampling (a depth-to-space
operation is added at the end). We see in Table 5 that the test
on the long video sequence and the temporal receptive field
diagnostic both confirm that this model is unstable, with
80% of the instability onsets occuring between 22 and 51
frames only. We then train two more VResNet-feat models,
one with a Hard Lipschitz constraint (SRN-C-1.0-1.0), and
one with a Soft Lipschitz constraint (SRN-C-2.0-0.05). As
expected, both models are now stable according to our two
tests. In this case, we do not observe a significant drop of
performance for the models trained with constraints, and
even observe a slight performance improvement for the
model trained with a Soft Lipschitz constraint (+0.06 dB).
An example of outputs produced by VResNet-feat trained
without and with SRN-C is shown in Figure 5.

3.4 Discussion
In the previous sections, we showed that inference-time
stability can be enforced during training by constraining the
Lipschitz constant of the model to be lower than 1. In this
section, we discuss possible alternative strategies.



10

TABLE 5
Video Super-Resolution. The table is organized in the same way as Tables 2 and 3.

model
PSNR7

1st dec.
9th dec.

Average
Singular Value

Spectrum
Temporal Receptive Field

No
Constraint

32.58
22
51

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 1.0
β = 1.0

32.57
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 2.0
β = 0.05

32.64
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

frame 40 frame 60 frame 80 frame 100 frame 120 frame 140frame 20 frame 160

No 
constraint

SRN-C
-2.0-0.05

Fig. 5. Outputs produced by VResNet-feat in video super-resolution. Without SRN-C (No constraint), instabilities appear between frame 20 and
frame 40 of the chosen video sequence. With SRN-C-2.0-0.05, the outputs are artifact-free on the entire video sequence.

Given a pre-trained model known to be unstable, one
could consider ways to operate it in a stable manner. One
approach consists in running the model burst by burst—
either without overlap (e.g. running frames 1 to 10, then 11
to 20, then 21 to 30, etc.), or with overlap (e.g. frames 1-10, 6-
15, 10-20, etc.)—while resetting the recurrent features to zero
between each burst. This strategy prevents instabilities from
building up, but it presents a number of issues. Without
overlap, the performance fluctuates, the model constantly
having to go through a new burn-in period. With over-
lap, the approach becomes computationally expensive (see
Appendix E). Another approach consists in dampening the
recurrent features by a factor λ < 1, allowing a smooth
transition between a stable, single frame regime (λ = 0), and
an unstable fully recurrent regime (λ = 1). This approach is
explored in Appendix F, where we show that the price of
stability in terms of performance is much higher than with
our Hard and Soft Lipschitz Constraints.

The instabilities studied in this paper could also be
interpreted as a domain adaptation problem. For instance,
one hypothesis is that models trained on short sequences
fail to generalize to sequences of several hundred frames.
However, it is unrealistic to train large recurrent video pro-
cessing models on sequences of more than 10 to 20 frames—
the training process involves backpropagation through time,
which has large memory requirements—and even if it was
possible, collecting the required data would quickly become
impractical. To work around these issues, we perform exper-
iments on a small VDnCNN model where the number of in-

ternal convolutions has been reduced to only one, allowing
us to unroll the model up to 56 times through time during
training, and we generate long sequences with synthetic
motion from single frames. We show in Appendix G that,
not only does the model trained on sequences of 56 frames
still suffer from instabilities at inference time, but it also
suffers from instabilities at training time due to exploding
gradients. Another hypothesis is that instabilities are trig-
gered by abrupt scene changes. We show in Appendix H
that in fact, instabilities are more likely to occur on static
sequences than on sequences with a lot of scene changes.

4 CONCLUSION

We have identified and characterized a serious vulnerability
affecting recurrent networks for video restoration tasks: they
can be unstable and fail catastrophically on long video
sequences. To avoid problems in practice, we recommend
adhering to some guidelines. (1) The stability of the model
should always be tested, either by evaluating it on hours of
video data, or preferably by actively looking for unstable se-
quences, using our temporal receptive field diagnostic tool.
(2) In safety-critical applications, stability can be guaranteed
by applying a Hard Lipschitz Constraint on the spectral
norms of the convolutional layers (SRN-C with α < 1 and
β = 1). (3) In non safety-critical applications, stability can be
obtained with minimal performance loss by applying a Soft
Lipschitz Constraint on the stable rank of the convolutional
layers (SRN-C with α > 1 and β < 1).
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APPENDIX A: UNSTABLE SEQUENCES

We reported in Section 3.1 that VDnCNN-feat, VDnCNN-
RLSP and VResNet-feat are unstable on long video se-
quences at inference time. To illustrate their behaviour in
more details, we apply them in Figure 6 to the 3 sequences
of 1600 frames already used in Figure 1. We can make a
number of observations:

1) Each model is characterized by a distinct “instability
pattern” that appears at random locations and grows
locally until the entire frame is covered.

2) VDnCNN-RLSP and VResNet-feat are unstable on all
3 sequences after around 120 frames only. VDnCNN-
feat is unstable on sequences 1 and 2 after 1200 frames,
and it is stable on sequences 3. In this context, it would
be easy (but dangerous) to mistake VDnCNN-feat for a
stable model.

3) Motion is not necessary to trigger instabilities. The
beginning of sequence 2 consists in the static title “fall’s
arrival” and we see that this is enough to trigger an
instability on VResNet-feat.

APPENDIX B: FEEDFORWARD VERSUS RECURRENT
ARCHITECTURES

Recurrent video processing networks can be unstable at
inference time and fail catastrophically on long video
sequences. We argue in Section 1.1 that this vulnerability
is due to the presence of recurrent connections, and
that feedforward architectures do not suffer from it. In
practice then, what is the motivation for using recurrent
architectures over feedforward ones? A first answer is
that recurrent architectures perform particularly well
in practice, the current state-of-the-art in various video
processing applications [35], [36] making heavy use of
recurrent connections [34], [37]. A more detailed answer
is that recurrent processing is particularly adapted to the
type of dense information processing over temporally short
sequences required for video restoration tasks. To illustrate
this, we train VResNet backbones with various temporal
connections on Vimeo-90k.

frame 400 frame 600 frame 800 frame 1000 frame 1200 frame 1400frame 200 frame 1600

seq.
1

seq.
2

seq.
3

(a) VDnCNN-feat

frame 80 frame 120 frame 160 frame 200 frame 240 frame 280frame 40 frame 320

seq.
1

seq.
2

seq.
3

(b) VDnCNN-RLSP

frame 80 frame 120 frame 160 frame 200 frame 240 frame 280frame 40 frame 320

seq.
1

seq.
2

seq.
3

(c) VResNet-feat

Fig. 6. Images generated by the three unstable recurrent video denoisers studied in Section 3.1, when applied to four sequences of 1600 frames
downloaded from vimeo.com. VDnCNN-RLSP and VResNet-feat are unstable on all four sequences after around 120 frames only. VDnCNN-feat is
unstable on sequences 1 and 2 after 1200 frames and 800 frames respectively, and it is stable on sequences 3 and 4.



14

We consider two feedforward architectures:
• VResNet-mf3. Using three consecutive frames as input.
• VResNet-mf7. Using seven consecutive frames as input.
And six recurrent architectures:
• VResNet-RLSP. Using an RLSP connection.
• VResNet-RLSP-mf3. Using an RLSP connection and three

consecutive frames as input.
• VResNet-RLSP-mf7. Using an RLSP connection and

seven consecutive frames as input.
• VResNet-BiRLSP. Using an RLSP connection implement-

ing bidirectional recurrence as done in [17], [37]: the
sequence is processed once in the temporal direction and
once in the reverse temporal direction.

• VResNet-BiRLSP-mf3. The same as above, with three
consecutive frames as input.

• VResNet-BiRLSP-mf7. The same as above, with seven
consecutive frames as input.

For each model, we then plot the PSNR per frame over the
test set in Figure 7. We see that adding an RLSP connec-
tion to feedforward architectures improves performance by
about 0.5dB (the computational cost is negligible: the num-
ber of input channels to one convolution is simply doubled).
Using bidirectional recurrence improves performance by
another 0.4dB (although this time the computational cost is
doubled). Note that the feedforward architecture VResNet-
mf7 and the recurrent architecture VResNet-RLSP-mf7 have
access to the same information at all time (the seven input
frames), hence the superior performance of VResNet-RLSP-
mf7 can only be attributed to recurrent processing.
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VResNet-BiRLSP-mf7

Fig. 7. PSNR per frame over the Vimeo-90k test set for σ = 30.
Using uni-directional or bi-directional recurrence significantly improves
performance over using multi-frame inputs only.

APPENDIX C: ARCHITECTURAL DETAILS

The two backbone networks (VDnCNN and VResNet) and
the three types of recurrences (feature-recurrence [10], [17],
[19], frame-recurrence [11], [20], RLSP [12]) studied through-
out the paper are illustrated in more details in Figure 8.

… xt yt

Feature recurrence

RLSP

Frame recurrence

(a) VDnCNN

… xt yt

Feature recurrence

RLSP

Frame recurrence

(b) VResNet

element-wise
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connection
forward
connection

ReLU
3x3x3x64 
convolution

3x3x64x64 
convolution

3x3x64x64
recurrent conv.

3x3x64x3 
convolution

Fig. 8. The two architectures and three types of recurrence considered.

APPENDIX D: SRN-C-3.0-β
Our SRN-C algorithm allows one to set the spectral norm of
a convoluational layer to a desired value α and to control its
stable rank with the parameter β ∈ [0, 1]. For a given model,
stability can then be achieved by setting the spectral norms
of all the convolutional layers to 1 (Hard Lipschitz Con-
straint), or by allowing the spectral norms to be larger than 1
and by constraining the stable ranks instead (Soft Lipschitz
Constraint). We showed in Table 3 that a stable VResNet-
feat model can be obtained by setting α = 2.0 and β = 0.1.
We now show in Table 6 that a stable VResNet-feat model
can also be obtained by setting α = 3.0 and β = 0.025. As
expected, increasing α relaxes the stability constraint and
needs to be compensated by a smaller value of β. In terms
of PSNR7, both models perform very similarly: 35.59 with
(α = 2.0, β = 0.1) versus 35.54 with (α = 3.0, β = 0.025).

APPENDIX E: BURST-BY-BURST PROCESSING

The instabilities studied in this paper occur at inference time
on long video sequences. One simple way to prevent them
from occurring is to run recurrent models burst by burst,
effectively cutting long video sequences into multiple short
ones. Assuming that instabilities never occur on sequences
of less than 10 frames for instance, one can run a recur-
rent model in bursts of 10 frames, resetting the recurrent
features to zero at the beginning of each burst. There is a
serious drawback with this approach, however: resetting
the recurrent features to zero erases all past information
fed to the model and the performance can drop by several
dBs. A simple solution then consists in running two models
burst by burst with an overlap between bursts, only keeping
the outputs at the end of each burst. For instance, Model 1
starts at frame 1, Model 2 starts at frame 6, and the output
is taken from Model 1 on frames 1-10, 16-20, 26-30, etc.,
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TABLE 6
SRN-C-3.0-β for β ∈ {0.4, 0.2, 0.1, 0.05, 0.025}. The table is organized in the same way as Tables 2, 3 and 5.

model
PSNR7

1st dec.
9th dec.

Average
Singular Value

Spectrum
Temporal Receptive Field

SRN-C
α = 3.0
β = 0.4

35.75
27
49

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 3.0
β = 0.2

35.77
51
164

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 3.0
β = 0.1

35.71
48
173

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 3.0
β = 0.05

35.63
62
164

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

SRN-C
α = 3.0
β = 0.025

35.54
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40
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Fig. 9. Comparison of burst-by-burst processing with a model stabilised with SRN-C on a video sequence of 700 frames. Burst-by-burst processing
without overlap results in a fluctuating performance. Burst-by-burst processing with overlap requires to run two models in parallel, each being 50%
smaller to match the computational budget. The model stabilised with SRN-C outperforms the other models on average.

and from Model 2 on frames 11-15, 21-25, 31-35, etc. This
approach avoids the performance drops, but it still has
drawbacks: matching the computational budget requires to
run two models that are 50% smaller, therefore affecting the
overall performance, and the final output alternates between
the outputs of two different models, affecting temporal
consistency and potentially introducing flickering artifacts.
In contrast, enforcing a Soft Lipschitz Constraint into the
model during training offers comparable performance with-
out suffering from these drawbacks (see Figure 9).

APPENDIX F: FEATURE DAMPENING

Given a trained model with Lipschitz constant L, one brute-
force approach to enforce L < 1 is to reduce the magnitude
of the recurrent weights K ← λK for some λ < 1.
Interestingly, this is equivalent to reducing the magnitude
of the recurrent features ht−1 ← λht−1 in the convolutions:

(λK) ∗ yt−1 = K ∗ (λyt−1).

For this reason, we refer to this approach as feature damp-
ening. This idea is illustrated on a sequence of 700 frames
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in Figure 10 for λ ∈ [1.0, 0.95, 0.85, 0.]. We see that the
model behaves in a stable way for λ = 0.85. A more
detailed study on the number of instabilities measured on
a long video sequence and on the temporal receptive fields
is provided in Table 5, showing that the model is unstable
for λ ∈ [0.95, 0.85, 0.75, 0.65] and only starts to be reliably
stable for λ ≤ 0.55 (note that the recurrence is turned off
completely for λ = 0.0). The price to pay in terms of PSNR7

is high: 34.62 with λ = 0.55 versus 35.74 with λ = 1.0
(−1.12 dB). In comparison, our model trained with SRN-C-
2.0-0.1 obtains a PSNR7 of 35.59 (−0.15 dB).
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Fig. 10. Feature dampening of VResNet-feat for four dampening factors
λ on a video sequence of 700 frames. Decreasing λ improves stability
but has a strong negative impact on performance.

APPENDIX G: TRAINING ON LONG SEQUENCES

In their brief discussion of the instabilities affecting their
model, Godard et al. [10] suggested that they were due
to an inability of the recurrent models to generalize be-
yond their training length sequences. To test this hypothesis
however, we face computational and data constraints. It is
unrealistic to train large recurrent video denoising models
on sequences of more than 10 to 20 frames—the training
process involves backpropagation through time, which has
large memory requirements—and even if it was possible,
collecting the required data would quickly become imprac-
tical. To work around these issues, we perform experiments
on a small VDnCNN model where the number of internal
convolutions has been reduced to only 1. This allows us
to unroll the model up to 56 times through time during
training. We also generate long sequences with synthetic
motion from single frames in Vimeo-90k using the technique
described in [67]. We train our models on gray-scale patches
of 32 × 32 pixels using Gaussian noise with standard devi-
ation σ = 20, for 300k training steps. We show in Figure 11
the training curves of four models trained on sequences of
7, 14, 28 and 56 frames. Their profile is similar for the first
three models but we observe sharp drops in the training
curve of the model trained on sequences of 56 frames, likely
due to the onset of instabilities during training resulting in
gradient explosions. In Table 8, we report the performance
and stability of each model. Even the model trained on
sequences of 56 frames is vulnerable to instabilities.
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Fig. 11. Validation PSNR on synthetic motion sequences as a function of
the training step for four models trained on sequences of varying lengths.

APPENDIX H: INFLUENCE OF SCENE CHANGES

The long video sequences used in this paper sometimes
present scene changes where the content of the video
switches between two distinct scenes. Could such scene
changes trigger the instabilities observed? To answer this
question, we consider synthetic sequences of 2048 frames
made of a number n of distinct frames, randomly chosen
from a large set of videos. When n = 1, the sequence
simply consists in one long static scene. When n = 2, the
sequence presents one scene change in the middle. When
n = 2048, the sequence consists in a random succession of
unrelated frames. We run VResNet-feat over such sequences
a hundred times for n ∈ [1, 2, 8, 32, 128, 512, 2048] and
report the 1st and 9th deciles of the instability onsets in
Figure 12. Contrary to what one could expect, the instabil-
ity onsets increase with the number of scene changes, i.e.
VResNet-feat tends to be more stable on sequences with scene
changes. One likely explanation for this phenomenon is
that scene changes interrupt the propagation of meaningful
information from one frame to the next, and therefore tend
to decrease the risk of positive feedback loops creating
diverging outputs.
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Fig. 12. 1st and 9th deciles of the instability onsets as a function of the
number n of distinct frames.
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TABLE 7
Feature Dampening by a factor λ with VResNet-feat. The table is organized in the same way as Tables 2, 3, 5 and 6.

model
PSNR7

1st dec.
9th dec.

Average
Singular Value

Spectrum
Temporal Receptive Field

λ = 0.95
35.31
30
93

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

λ = 0.85
34.93
38
257

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

λ = 0.75
34.78
59

1024

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

λ = 0.65
34.69
181

38097

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

λ = 0.55
34.62
∞
∞

t
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λ = 0.45
34.56
∞
∞

t

X
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λ = 0.0
34.32
∞
∞

t

X

Y

−40 −30 −20 −10 0 +10 +20 +30 +40

TABLE 8
Influence of the length of the training sequence. The table is organized in the same way as Tables 2, 3, 5, 6 and 7.

7 frames
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56 frames
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