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Abstract

Resting state fMRI has emerged as a popular neuroimaging method for automated
recognition and classification of different brain disorders. Attention Deficit
Hyperactivity Disorder (ADHD) is one of the most common brain disorders
affecting young children, yet its underlying mechanism is not completely understood
and its diagnosis is mainly dependent on behavior analysis. This paper addresses
the problem of classification of ADHD based on resting state fMRI and proposes
a machine learning framework with integration of non-imaging data with imaging
data to investigate functional connectivity alterations between ADHD and control
subjects (not diagnosed with ADHD). Our aim is to apply computational techniques
to (1) automatically classify a subject as ADHD or control, (2) identify differences
in functional connectivity of these two groups and (3) evaluate the importance
of fusing non-imaging with imaging data for classification. In the first stage
of our framework, we determine the functional connectivity of brain regions by
grouping brain activity using clustering algorithms. Next, we employ Elastic Net
based feature selection to select the most discriminant features from the dense
functional brain network and integrate non-imaging data. Finally, a Support
Vector Machine classifier is trained to classify ADHD subjects vs. control. The
proposed framework was evaluated on a public ADHD-200 dataset, and our
results suggests that fusion of non-imaging data improves the performance of
the framework. Classification results outperform the state-of-the-art on some
subsets of the data.
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1. Introduction

The human brain can be envisioned as a large and complicated network
efficiently controlling the complex systems of the body. While coordinating

bodily function, the brain regions continuously share information, and regions

exhibiting temporal correlation are assumed to be functionally connected. Recently,

analysis of functional connectivity of brain regions has gained much research
focus as it is assumed that the connectivity plays a key role in cognitive processes
of the brain [I]. Compared with other neuroimaging techniques like Positron
Emission Tomography (PET) and electroencephalogram (EEG), functional MRI
(fMRI) is considered most suitable towards determining functional connectivity
[2].

Research studies have shown that brain disorders such as Alzheimer's disease,
epilepsy, ADHD can alter the functional connectivity of the brain network
[3]. Accurate identification of the altered functional connectivity induced by
a particular disorder is considered an important task that may highlight the
underlying mechanism of the disorder. Recently, resting state f{MRI has emerged
as a promising neuroimaging tool to investigate functional activity of brain
regions [4, [B [6l [7, ]l ©]. In particular, fMRI has been employed to identify the
connectivity alterations induced by disorders such as epilepsy [4, [5], schizophrenia
[6, 7], ADHD [8, [9] and many more.

ADHD is one of the most common neurodevelopmental and mental disorders
found in young children, affecting 5-10% of children []], contributing to lifetime
impairment [I0], poor quality of life [I1] and a long time burden on affected
families [I0, [I1]. Like many other brain disorders, the mechanism underlying

ADHD is still not completely understood [§]. ADHD has received significant

research focus, including studies employing Machine Learning on fMRI to investigate

functional connectivity alterations in ADHD [12, 13, [8, [3] [14].

Garcia et al. [I2] proposed a functional-anatomical discriminative region
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model for identification of the discriminant features and pattern classification
of ADHD. In the study, Independent Component Analysis (ICA) was applied
to extract the brain functional networks. Similarly, Tabas et al. [14] proposed a
variant of ICA to characterize the differences between a healthy control and an
ADHD group. This study used 20 independent components and combined ICA
and a spatial variant of the Fisher's linear discriminant towards characterizing
the differences between the two groups. ICA-based methods need no prior
information about the spatial or temporal patterns of source signals, and therefore
are considered to be well suited for fMRI study. ICA-based approaches have
shown success in the classification tasks, however, there are certain possible
limitations to these methods. First, the independent components are often
perceived as difficult to understand [I]. ICA is based on the assumption of
components (signal sources) independence, whether spatially or temporally.
Violation of the assumption may degrade the performance. Also, selection of
the number of independent components and threshold value for the independent
component maps might emerge as a drawback [2].

Dey et al. [§] proposed attributed graph distance measures for classification
of ADHD. In [§] authors modeled the brain network as a graph and represented
each node of the network as a set of attributes which was termed as the signature
of a node. Correlation was applied for functional network construction and only
positive correlation values were employed for constructing the network. Also, a
threshold was applied on correlation values. The threshold value was arbitrarily

chosen and different values were employed for different imaging datasets. Similarly

Siqueira et al. [3] investigated different graph based measures to assess discriminative

power of the measures.

Regional Homogeneity (ReHo) of brain activity is one of the common measures
used for classification. It estimates how much a voxel functional activity is
homologous with its neighbor voxels. In [I5], authors extracted ReHo maps
and applied the combination of the Principal Component Analysis (PCA) and
Fisher Discriminative Analysis (FDA) for ADHD classification on a data set

containing only 20 subjects. Some other studies [16] [I7, [I8] have also applied
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the ReHo feature on the ADHD-200 data set for classification. While ReHo can
measure the local spatial homogeneity of the voxel, it ignores the comparison
of the activities of the spatially disconnected regions, a characteristic that may
provide the global insight of the functional activity.

Correlation is a popular method to calculate function connectivity and different
correlation methods have been employed to compute the functional connectivity
of the brain. Dai et al. [I9] segmented the brain into 351 ROIs using template
provided by Craddock et al. [20] and calculated functional connectivity by
Pearson’s correlation. Bohland et al. [21I] applied the Automated Anatomical
Labeling (AAL) atlas [22] to segment the brain into 116 ROIs and computed
functional connectivity using three correlation variants: Pearson’s correlation,
sparse regularized inverse covariance and Patel’s Kappa. Eloyan et al. [23]
extracted five ROIs belonging to the motor network with 264 voxels as nodes
and computed functional connectivity through Pearson’s correlation coefficient
which was used for classification. Similarly Cheng et al. [16] employed Pearson’s
correlation and partial correlation to calculate functional connectivity on 90
brain regions extracted from the AAL template [22]. Multiple measures including
ReHo, functional connectivity and Fractional Amplitude of Low-frequency Fluctuation
(fALFF) were employed for classification.

The studies show encouraging results, and demonstrate that machine learning
techniques hold promise for the analysis of neuroimaging data. Most of the
studies rely on correlation based approaches for calculation of functional connectivity.
However, correlation based approach does not characterize the network structure
of brain regions, i.e., whether two brain regions belong to the same functional
cluster or not [24], also network obtained by correlation is quite dense which
may degrade the performance of classifier [24] [4].

Clustering is another popular approach for evaluation of functional connectivity.
Studies have shown that a clustering based approach is more sophisticated as
compared to correlation based approaches as the network obtained by clustering
is sparse [5} [2]. To the best of our knowledge, clustering has not been previously

applied on the ADHD-200 dataset for functional connectivity analysis. Different
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clustering approaches can be applied to determine functional connectivity. Zhang
et al. [24] applied k-means clustering to calculate functional connectivity. However,
in k-means, random initialization of clusters and a priori information of the
number of clusters may emerge as a major drawback, as in the case of fMRI the
number of clusters is not known. Hierarchical clustering can also be applied for
functional connectivity calculation [25] but selection of thresholding or number
of clusters may emerge as a drawback of these methods. In this paper we propose
a hybrid clustering approach that determines the number of clusters from the
data itself.

In this paper, our motivation is to study functional connectivity alterations
induced by ADHD. However, unlike previous work that relies on the imaging
data alone, in this paper we bring together two types of features, namely
non-imaging and imaging features to form a single feature vector used for
classification of individuals as ADHD or control (non-ADHD). Our framework
is comprised of multiple stages. In the first stage, the functional connectivity
between brain regions is determined using the Affinity Propagation (AP) clustering
algorithm [26]. Instead of requiring a number of clusters in advance, AP takes
a measure of similarity between data points and the initial preference for each
point for being cluster centroid. We propose a novel method to find these cluster
centroids through a matrix derived from the Density Peaks (DP) algorithm
by Rodriguez and Laio [27]. Next, we select discriminant features through
Elastic Net (EN), which combines variable shrinkage with grouped selection of
variables. Finally, we employ a Support Vector Machine (SVM) classifier to
classify between control and ADHD. We demonstrate that the integration of
non-imaging data in our framework improves the performance.

This work makes several contributions. First, we propose a novel method to
initialize the AP clustering algorithm by employing the Density Peaks approach.
Second, we demonstrate the importance of non-imaging data for classification of
control vs. ADHD based on the functional connectivity between brain regions.
We perform anatomical analysis of our results, and observe that the Frontal and

Parietal (pre motor) lobes have the largest number of functional connectivity
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alterations for all the tested datasets. In addition, our experimental results
outperform the previous state-of-the-art for three test datasets of the publicly
available ADHD 200 data.

It should be noted that the preliminary version of this work was published in
[28]. Compared to the earlier version of this manuscript, we have extended our
work by: 1) performing additional experimental results, 2) exploring the impact
of different non-imaging measures towards classification in terms of ROC curves
and 3) performing anatomical analysis of our results. In this paper, we have
applied our framework on ADHD data only, however, the proposed method can
also be applied to other neurological disorders like schizophrenia and epilepsy.

The rest of the paper is structured as follows. We present an overview of the
fMRI data used in this work and preprocessing steps in Section 2. Our proposed
method, including functional connectivity calculation, dataset balancing, feature
selection, fusion of non-imaging data and classification, is detailed in Section 3.
Section 4 presents the experimental validation and results. Anatomical analysis

is discussed in Section 4. Section 5 concludes the paper.

2. Data

The resting state fMRI data used in this study is from the NeuroBureau
ADHD-200 competition [29]. The data consists of resting state functional
MRI data as well as different phenotypic information (non-imaging data) for
each subject. There was a global competition held for classification of ADHD
subjects, and the consortium has provided training and an independent test
dataset for each imaging site. Eight different imaging sites contributed to
compile the dataset, for this study we used datasets from four sites: Kennedy
Krieger Institute (KKI), Neurolmage (NI), New York University Medical Center
(NYU) and Peking University (Peking). All sites have a different number of
subjects. Also, the imaging sites have different scan parameters and equipment,
which makes the dataset complex as well as diverse. For all of our experiments,

we used the preprocessed data released for the competition. The preprocessing
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is performed using AFNI [30] and FSL [3] tools on Athena computer clusters
at the Virginia Tech advance research computing center. The preprocessing
steps include: removing of first four time points, slice time correction, motion
correction (first image taken as the reference), registration on 4 x 4 x 4 voxel
resolution using the Montreal Neurological Institute (MNI) space, filtration
(band pass filter 0.009Hz < f < 0.08Hz) and smoothing using 6mm FWHM
Gaussian filter. Interested readers may refer to the competition website for
further details of data and preprocessing [32].

After preprocessing all images, the brain is segmented into 90 regions using
the Automated Anatomical Labeling [22] atlas. We have integrated non-imaging
data (age, gender, verbal 1Q, performance 1Q and Full4 1Q) for all sites except

from Neurolmage, for which the data was missing.

3. Methods

Our framework consists of the following modules: functional connectivity
calculation, feature selection, fusion of non-imaging data and classification. A
block diagram of the methodological framework is presented in Figure [1| and

described below.

3.1. Dataset balancing

Dataset imbalance is a critical problem in the majority of biomedical imaging
applications including neuroimaging. The imbalanced datasets may degrade
the performance of a classifier by introducing imbalanced learning, which may
impact over focus on the majority class. One approach to counter this problem
might be to perform random oversampling of the minority class subjects or
randomly under sampling the majority class to create balanced training datasets,
but these strategies may yield suboptimal performance [33]. Instead of these
strategies, we apply Synthetic Minority Over-sampling Technique (SMOTE)
[34] to produce synthetic minority samples. Consider €I, where [ is the set of

individual subjects and I4 represents the minority subjects. For each individual
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Figure 1: Flowchart of methodology. In the first step, functional connectivity is calculated for
both training and testing datasets. For imbalanced datasets, SMOTE is applied on training
datasets only. The next step is feature selection where discriminant features from training
dataset are calculated which are used for classification. Following this, the selected features are
fused with non-imaging data. Finally, the fused feature set is presented to SVM for classifier

training and testing.

subject x;el 4, K-nearest neighbors of x; are calculated. A random subject @;
is chosen from these neighbors and an additional minority subject is synthesized
as

g = x; + (:fz - iEz) X T (1)
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x5 is a synthetic subject and 7 is random number such that re[0,1]. In our
work, we applied SMOTE on training data as shown in Figure SMOTE is

not required for the testing dataset.

8.2. Functional Connectivity

Functional connectivity can be defined as the temporal correlation between
spatially apart brain regions and can be estimated by correlation of temporal
signals [3 8], as well as clustering [4]. We propose a hybrid framework which
employs Affinity Propagation (AP) clustering [26] and the Density Peaks (DP)
algorithm [27] for functional connectivity estimation. Specifically, we employ the
AP clustering for grouping of brain regions in to clusters. The AP clustering
takes real valued similarities between brain regions as input, where the similarity
s(%, j) indicates how well the region j is suited for the centroid for the region i.
Typically, negative Euclidean distance is employed as similarity measure [26].
One of the most appealing properties of AP clustering is that it does not require
a number of clusters in advance. Rather it takes a real valued number s(i,7)
as input for each region ¢ so that the regions with larger values of s(i,i) are
more likely to be selected as centroids. These values are referred as preferences
[26]. AP clustering is a message passing algorithm where each data point is
simultaneously considered as potential centroid as well as being part of any
cluster. Messages are passed between all data points until robust clusters and
their centroids emerge. There are two kinds of messages passed between data
points, namely responsibility and availability messages where each message is
associated with a different kind of competition. The responsibility message
(4, ) is sent from the region i to a potential centroid candidate j, reflecting the
accumulated strength for how well suited region j is to serve as cluster centroid
for region i, taking into consideration all other potential centroids for region
i. The availability message a(, j) is sent from a candidate centroid j to region
i, and reflects the accumulated strength for how well suited it would be for
region 7 to select region j as its centroid, considering the support from all other

regions that region j should be a centroid. Availability messages for all regions
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are initialized as

a(i,j) =0, (2)
and responsibility can be calculated as
r(i, j) = S, 4) *rj_r}giﬁ{a(i,j') + 8,5} ®3)

where S in Equation [3] is the similarity measure between brain regions as
discussed above. For any two regions ¢ and j with temporal dimensions k =

{1,2,...t}, the similarity measure S is initialized as

where oy, is the standard deviation. A higher similarity value between regions i
and j reveals the fact that region j is more suitable as centroid for i.

For the initial iteration, with availabilities being zero, responsibility 7 (4, j)
is set to the input similarity S(i, j) between region i and region j as its centroid
minus the largest of the similarities between region ¢ and other candidate centroids.
In later iterations, when some regions are associated with other centroids, their
availabilities will drop to negative values using the equation below. These
negative availabilities will effectively remove the corresponding candidate centroids
from the competition. With the responsibility updates, candidate centroid
compete for ownership of a region, the availability update below combines
evidence from data whether each candidate centroid would effectively emerge a

good centroid

a(i,j) = min{0,7(j, )+ Y max{0,r(i',j)}}, (5)

i, #{i,g}

The “self-availability” a(j, 7) is updated differently as

a(j,j) = Y max{0,r(i,j)}, (6)
i #{j}

10
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Figure 2: Illustration of the AP clustering for two-dimensional data points, where negative
Euclidean distance was used to measure similarity. The color of each point represents the
current evidence that it is a cluster center (centroid). The darkness of the arrow from point
i to point j represents the strength of the message that point ¢ belongs to centroid point j.
Initially, the strength of messages is weak and there are no clusters. After some iterations,

the strength of the messages increases and finally, robust clusters emerge.

The working of AP clustering for two-dimensional points is illustrated in
Figure [2| where it is shown that after some iterations, the strength of the
messages increases for certain points and their corresponding clusters and their
centroids emerge.

Instead of requiring an initial guess for a number of clusters, the AP clustering
algorithm requires a preference value p assigned to each region as the initial
probability of being a cluster centroid. The number of identified clusters is
influenced by the preference value, but also emerges from the message passing
procedure [26],[4]. As a common practice, all data points are considered equally
suitable as centroids, thus the preference value is set to a common value. The
number of clusters produced is affected by this value. The shared value could
be the median of the similarities (moderate number of clusters produced) or

their minimum (small number of clusters produced) [26]. However, instead of

11
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initializing with a common value, we propose a novel data driven method to
initialize the preference value. We propose to estimate this initial strength for
each region as being cluster centroid by taking support from the Density Peaks
(DP) algorithm [27]. The DP algorithm proposes that the cluster center can be
identified as the points that have higher local density within its neighbor points
and are at larger distance from other higher density points. The density p; of a

region i is defined as [27]

N
Pi = Z f(di,j - dC)v (7)

where d. is a cut off distance, d; ; = —S(4,7) and f is

if x <0,
fay={ b e ®)

0, otherwise,

d; is defined as the minimum distance between the region ¢ and any other
region with higher density which is calculated as
d; = min d, ;. 9)
Jipi>pi
The measure pd approximates strength of a region being as a centroid [27].
We use the measure pé for each region to scale for N regions and use as
preference for each respective region. Consider v = pd, we initialize preference

value as

~vi —min{vy1, ..Yn }
max{vyi...ynv} — min{y;...yn}

where N is the number of brain regions (N = 90), ¢ is empirically chosen so

p(i) = X (N —=1)+c¢, (10)

that when ~; was minimal, the preference value for the region as N/6, which
is a small non-zero number that gives enough local support for initialization of
the AP clustering algorithm.

After initializing p, the availability and responsibility messages are updated
iteratively. When updating these messages in each iteration, a damping update

is applied to each message to avoid possible numerical oscillations. For a

12
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particular iteration m, the damping update is applied as

m(ivj) = (1 - )‘)am(iﬂj) + ()‘)amfl(i7j>7 (11)

(i) = (L= A)rm (i, §) + (N)rm-1(i, J), (12)
where we initialize A = 0.5 as suggested by [26]. The message passing iterations
were terminated based upon either i) the maximum number of iterations (I)
reached or ii) the centroids remained unchanged for consecutive C' iterations.
In this work, we use I = 1500 and C' = 100. We can combine the availability
and responsibility messages during iterations to determine the centroids and
their points. For any region 4, we find region j that maximize a(i,j) + (i, )

and identify the association of region ¢ as

S centroid , ifi =5,
Association(i) = (13)
i is a member of centroid j, otherwise.

From the AP clustering algorithm results, we construct a matrix M as

o 1, if 7 and j are in the same cluster,
M(i,j) = (14)
0, otherwise.

The cutoff distance d. in Equation [7] impacts clustering by varying the
preference value computed in Equation yielding different clustering results.
Reference [27] proposed this cutoff distance to be around 2%. The optimal
number of clusters is data dependent, and critically, not known in advance.
Rather than fixing a set number of clusters (as in popular clustering algorithms
like k-means), we instead select the number in a data-driven fashion by adjusting
this cutoff distance. For a given cutoff distance, the clustering algorithm will
produce a clustering of the data. We apply the clustering algorithm multiple
times to produce a total of K matrices (each matrix denoted as M), one for each
clustering. To achieve this, the cutoff distance is varied sequentially, between
2% and 8% inclusive, of the neighbours to produce the multiple clusterings.
After these multiple runs of clustering, we calculate a functional connectivity

(FC) matrix as

13
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1 K
FC(i,j) = 2z > Mi(i. ). (15)
=1

where K = 7. The FC and M matrices are visualized in Figure 3| The F'C
matrix represents the functional connectivity of a subject, such that each entry
in FC(i,4) may be considered as an estimate of probability that the i*" and j**
regions belong to the same functional connectivity. The functional connectivity

matrix is employed in feature selection as described in next section.

3.8. Discriminant feature selection

The constructed functional connectivity matrix from Equation [L5| has a high
dimensionality of 4005 (90 x 89/2) unique features. The high dimension of
the matrix may degrade the performance of a classifier (the well known “curse
of dimensionality” problem). Also, a small number of functional connectivity
features might be altered by ADHD as compared to all functional connectivity
features. We are interested to identify only those altered features, therefore,
there is a need to select the discriminant features.

The FC matrix constructed in the earlier step represents the functional
connectivity of the whole brain regions and may contain highly correlated features
as they may belong to the brain networks. We investigate Elastic Net (EN)
based feature selection [I3] for extracting discriminant features. The most
appealing property of EN is that it encourages grouped selection of features
which makes it well suitable in this domain. EN is an embedded based feature
selection algorithm that takes advantages of both the lasso and ridge regressions
by combining their penalties in one single solution. Similar to the lasso regression,
the Ly penalty is employed to enable variable selection and continuous shrinkage,
and similar to the ridge regression, the Ly penalty is employed to encourage
grouped selection of features. If y is the label vector for subjects, y;e{l1, (2, ...l },
lke{1,2} for k = {1,2,..n} and X = {FC4, FCy,...FC,}, the cost function to
be minimized by the Elastic Net is

L1, 22, 8) = (ly = X B + M (1811 + A2[BI1%, (16)

14



FC Matrix

0 20 30 40 S50 60 70 80 90

(b) M1 (C) M2 (d) M3

M 4, average number of neighbors around 5 % M 5, average number of neighbors around 6 % average number of neighbors around 7 ¥

(e) Ma (f) Ms (8) Ms

M 7, average number of neighbors around 8 %
O g -

Figure 3: Visualization of F'C' and M matrices. M7 to M7 are calculated from Equation
and F'C is calculated from Equation@ FC matrix represents the functional connectivity of a
subject where values closer to 1 represents high functional connectivity between corresponding

regions and values closer to 0 represents no or very low functional connectivity.

15



315

320

325

330

where

(18IN1 = Zw, (17)

and

(18I)* =>_ ()%, (18)

j=1
where A1 and Ao are weights of the terms forming the penalty function, and

B coefficients are calculated through model fitting. If we denote « as

A1
— - 1
TN (19)
than equation [I6] can be written as
L(ev, ) = (|ly = XBI)* + a([1BI])1 + (1 — ) 1BI, (20)

where ael0, 1] and the function a(||8]])1 + (1 — «)||B||? is called the elastic net
penalty which is a combination of the ridge and lasso regression. The parameter
« controls the combination of both where oo = 1 represents lasso regression and
« close to 0 approaches the ridge regression. Typically, multiple iterations of
EN are run in a cross validation setup and mean-squared error is recorded for
each iteration. At the end of EN, the fixed number of features or the features
related to minimum error are returned. In this work, we use a = 0.1 as we
are interested in selecting grouped features from sparse F'C' matrix. Multiple
iterations of EN are run until i) max iterations (iter = 100) is reached or ii)
all 3 coeflicients are converged to zero. By minimizing the cost function L in
Equation we extract the features with non zero 8 coefficients relating to
minimum cross validation error employing the training set. We did not selected
fix number of features from EN as i) in the case of fMRI, the optimum number
of features is not known and ii) as our method was applied on different data
sets, it was not possible to fix the number of selected features.

Next, we concatenated the EN selected features with non-imaging features to
construct a combined feature set for training the classifier. It should be noted

that the EN feature selection was applied on the imaging features only and
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was not applied on the non-imaging data. The description of the non-imaging
features will appear in next section. The combined feature set is employed for

classification, as described in the next subsection.

8.4. Classification

The final step in our study is the classification where we employ a Support
Vector Machine (SVM) [35] classifier to evaluate the discriminative ability of the
selected features from the previous steps. SVM is a popular machine learning
classification algorithm and has achieved good performance in a number of
neuroimaging studies (e.g., [4]). During the training phase of the classifier, it
is presented with labeled training data (for healthy control and ADHD subjects).
During this phase, SVM seeks an optimum boundary with a maximum separating
margin between the two classes (healthy control and ADHD). The boundary is
defined by a linear combination of the predictor variables. The learned SVM
model is then employed in the testing phase by presenting unseen testing data
(without labels of subjects). The SVM classifier predicts the label (control
or ADHD) for each test subject. Consider y is the label vector for subjects,
yie(ly, lay . dp), lke{1,2} for i@ = {1,2,..n} and X = {x1,29,..xy} is our

combined feature vector. The decision function of SVM is given by [306]

J(@) = sign (Z@m«c, z))) + b*) 7 (21)

i=1
where b*eR, ® is a kernel function, and A} is constrained as: 0 < A¥ < C; for
yi =1 and 0 < A7 < (s for y; = 2 where C; and Cy are penalties for class 1
and 2 respectively. We use C; = 1 and C3 = 1 here. For all our results, we used

Matlab (R2016a) implementation of SVM with linear kernel.

4. Experimentation and results

The proposed framework was evaluated on the dataset provided by the
ADHD-200 consortium [29], and contains four categories of subjects: Controls,

ADHD-Combined, ADHD-Hyperactive/Impulsive, and ADHD-inattentive. Here

17
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we propose a binary classification problem: Controls vs. ADHD, by combining
all ADHD subtypes in one category, since we want to investigate alterations
and classification between the Control and the ADHD subjects. The number of
subjects in the training dataset of each imaging site is presented in Table[l] We
conducted experiments on the i) training dataset alone and the ii) training and
test datasets. For evaluation of the ADHD-200 consortium dataset, we selected
the features using Elastic Net from the training data for each individual site and
the selected features were integrated with the non-imaging data for training the
SVM classifier. The non-imaging features explored in our work are comprised of
age, gender, verbal 1Q, performance IQ and full4 IQ. Datasets from two imaging
sites (Peking and KKI) were highly imbalanced with the majority of class being
the control subjects. To avoid imbalance learning in our model, we applied
SMOTE on the Peking and KKI datasets as described earlier. It should be
noted that the data generated by SMOTE was employed only for training the
classifier and not for classifier testing in our framework. Also the parameters of
our framework are held constant for all the imaging sites datasets which includes
parameters for SMOTE and SVM, however, our framework is trained separately

on individual experiment.

Table 1: Number of the Control and the ADHD subjects for four imaging sites in the training

dataset.

Imaging site  Total subjects Control subjects ADHD subjects

NI 48 23 25

KKI 83 61 22

Peking 85 61 24
NYU 226 98 118

4.1. Results on the Training Dataset

For evaluation of the training dataset we employed leave-one-out (LOO)

cross validation on the individual imaging site and results are presented in Figure

18
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Figure 4: Results on training dataset. Classification Accuracy, Sensitivity and Specificity
attained for four imaging sites namely Kennedy Krieger Institute (KKI), Neurolmage (NI),
New York University Medical Center (NYU) and Peking University (Peking). Highest
classification is achieved on KKI dataset, which is 86.75%.

In order to compare with the state-of-the-art, we compared these results
with a recently published study on the same dataset. The study [8] also applied
LOO validation on the training dataset. The comparison is presented in Table
The table shows that our methodology has improved results as compared
to Dey et al. [§] in three imaging sites. We also computed our results without
non-imaging data and results are compared in Table 3] The table show that
except KKI, our method shows good performance as compared to the published

study.

4.1.1. Results on the Test Dataset
In this experiment, our framework was trained on the training dataset provided
for each imaging site. The trained SVM classifier was tested with the independent

test data provided for each individual site. In order to compare with the

19



Table 2: Comparison of leave-one-out (LOO) results on training dataset. Our proposed
methods was able to achieve higher classification accuracy in three datasets as compared to

Dey et al.[§].

Dey et al.[§] Results Our methodology
Specificity ~ Sensitivity = Accuracy | Specificity Sensitivity =~ Accuracy
KKI 100% 9.5% 75.6% 90.1% 77.2% 86.7%
NI 68.1% 58.8% 64.1% 73.9% 72.0% 72.9%
NYU - - - 39.8% 63.5% 52.7%
Peking 96.6% 21.1% 61.2% 88.5% 79.1% 85.8%

state-of-the-art, results attained by our framework were compared with the
competition team results (reported from NITRC) and the highest accuracy
achieved by teams for individual imaging sites (data from [12]). The results
are presented in Table [d] Low accuracy for the NI dataset might be due to the
fewer number of available subjects in this dataset.

In order to explore the impact of the non-imaging data towards classification
results in our framework, we computed and compared the results with the fusing
non-imaging data with imaging data and without integrating the non-imaging
data. The results are presented in Table It can be seen from the results
that integration of the non-imaging data provides better classification results for
Peking and NYU as compared to results without the non-imaging data. In order
to evaluate generalization capability of our method we computed the cross-site
validation accuracy results. We trained our model on the combined training data
set of three imaging sites (KKI, PI and NYU). We did not evaluate NI for this
experiment because non-imaging data was not available. The trained framework
was evaluated on each individual imaging site and results are presented in
Table [0l This is a challenging experiment as the ADHD-200 data set is very
heterogeneous. However, the results show that our method was able to attain
a comparable accuracy to that attained by training on individual imaging site.

Next, we calculated ROC curves for: i) imaging data only and ii) fusing
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Table 3: Comparison of leave-one-out (LOO) results of Dey et al.[§] with our methodology. We
calculated our results with i) fusing imaging + non-imaging data and ii) without non-imaging

data. (Non-imaging data for NI was not available).

Accuracy of fused
Accuracy of Dey et Accuracy without
Name imaging +
al.[8] non-imaging data
non-imaging data

KKI 75.6% 86.7% 67.4%
NI 64.1% - 72.9%
NYU - 52.7% 25.4%
Peking  61.2% 85.8% 85.3%

Table 4: Comparison of our results with average results of competition teams and highest
accuracy achieved for individual site. The highest accuracy for NI was not reported by [12].
Our proposed method was able to achieve higher accuracy than average accuracy of the

competition results for three imaging sites.

Average Highest Our Number of imaging
Name
accuracy accuracy accuracy features
Peking 51.0% 58% 64.7% 733
KKI 43.1% 81% 81.8% 820
NYU 32.3% 56% 60.9% 230
NI 56.9% - 44.0% 346

imaging and non-imaging data for Peking and NYU datasets and results are
presented in Figure |5 It is clear from the Area Under the Curve (AUC) values
that fusion of non-imaging measures yields better results (for Peking, AUC for
imaging data only=0.61 and AUC for imaging + non-imaging data=0.69, and
for NYU, AUC for imaging data only=0.60 and for imaging + non-imaging
data=0.74). In order to study the impact of different non-imaging measures

towards classification, we calculated ROC curves for Peking and NYU datasets
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Table 5: Comparison of the accuracy results with fusing imaging + non-imaging data and
without non-imaging data. The results show that fusing non-imaging data with imaging data

provides better accuracy for two imaging sites (Peking and NYU).

Accuracy with fused imaging +  Accuracy without

Name
non-imaging data non-imaging data
Peking  64.7% 58.8%
KKI 81.8% 81.8%
NYU 60.9% 24.3%

Table 6: Comparison of accuracies of i) trained and tested on each individual imaging site ii)

trained once on combined training data set and tested individually for three imaging sites.

Accuracy when Accuracy when
Test data

trained on each trained on a combined
set

individual imaging site training data set
Peking 64.7% 60.7%
KKI 81.8% 81.8%
NYU 60.9% 56.1%
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Figure 5: ROC curves for Peking and NYU for: i) fusing non-imaging and Imaging and ii)
Imaging only. For Peking AUC with imaging data is 0.61 and with non-imaging + imaging
it is 0.69, and for NYU, AUC is increased from 0.60 to 0.74 with fusion of non-imaging data

which shows that fusion of non-imaging data yields better performance.

by categorizing the non-imaging data in the two groups: i) IQ levels and ii) age
and gender. The results are presented in Figure[f] The ROC curves in the figure
compares the results of combining these non-imaging measures with imaging
data. The ROC curves for non-imaging + imaging for both imaging sites show
better performance as compared to other curves for both imaging sites which
shows that fusion of all the non-imaging measures yield better performance.
Finally, in order to evaluate our proposed novel methodology to initialize
the AP clustering algorithm as discussed in the previous section, we computed
and compared our results with standard AP clustering results. The comparison
is presented in the Table[7]l It should be noted that in this comparison all other
parameters are held same for calculation of both results. The accuracy achieved
by our proposed methodology is higher as compared to accuracy achieved by

AP clustering for all four imaging sites.
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Figure 6: ROC curves for different non-imaging measures for Peking and NYU. For both
datasets, the ROC curves for: i) IQ + Imaging ii) (Age+ Gender) + Imaging iii) All
Non-imaging measures + Imaging and iv) Imaging only, are shown. For both imaging sites,
ROC curves for non-imaging + imaging (shown by red color) show better performance as
compared to all other three curves, which shows that fusion of all non-imaging measures

yields better performance for both datasets.

5. Anatomical analysis

Finally, we performed anatomical analysis of selected features of our framework

for all four imaging sites. Selected features for each individual imaging site in
our framework represent the altered functional connectivity between Control
and ADHD subjects. We discuss our findings in terms of: i) hemispheric analysis

and ii) Lobe analysis, which are explained below.

5.1. Hemispheric analysis

The human brain is segmented in two hemispheres: the left hemisphere
and the right hemisphere. We analysed our selected features with respect to
both hemispheres and results are presented in Figure[7} For the analysis, each
region was mapped to a particular hemisphere. The figure suggests that for
all four imaging sites, the inter hemispheric functional connectivity is altered
the most as compared to individual hemispheres. For Peking and KKI, the
inter hemispheric alterations constitute 49.7% and 49.3% respectively. While

24

1



Table 7: Comparison of our proposed methodology with the AP clustering method for four
imaging sites. The accuracy achieved by our proposed methodology is higher as compared to

accuracy achieved by AP clustering for all four imaging sites.

Name AP clustering Proposed methodology
Specificity ~ Sensitivity =~ Accuracy Specificity —Sensitivity —Accuracy

Peking 81.4% 33.3% 58.8% 92.6% 33.3% 64.7%
KKI 87.5% 33.3% 72.7% 75.0% 100.0% 81.8%
NYU 41.6% 62.0% 56.1% 41.6% 68.9% 60.9%

NI 7.1% 63.6% 32.0% 42.8% 45.4 44.0%

the number of alterations belonging to left and right hemispheres are quite close
w0 to each other. The results suggest that the functional connectivity between the

two hemispheres might be impaired by ADHD.

NI NYU

Peking KKI
M Left hemisphere M Right hemisphere M Inter hemispheric

60%

40%

o
S
=

N
5]
Ed

0%

Figure 7: Functional connectivity alterations with respect to brain hemispheres. The results
show that for all four imaging sites, majority of functional connectivity alterations belong to

inter hemispheric brain connections.
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Figure 8: Functional connectivity alterations in terms of intra lobe alterations. Brain lobe
groups are segmented by Salvador et al. [25] which are: (Lobe 1) Medial temporal lobe, (Lobe
2) Subcortical lobe, (Lobe 3) Occipital lobe, ( Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe,
and (Lobe 6) Parietal (pre) motor lobe. For all four imaging sites, the Frontal lobe is affected

the most as compared to other lobes.

5.2. Lobe analysis

Next, we discuss our findings in terms of groups of brain lobes suggested by
Salvador et al. [25]. The study identified six brain lobes namely: (i) Medial
temporal lobe, (ii) Subcortical lobe, and the four standard neocortical lobes
which are (iii) Occipital lobe, (iv) Frontal lobe, (v) Temporal lobe, and (vi)
Parietal (pre) motor lobe. We studied intra lobe alterations for each imaging site
by mapping the brain regions to a particular lobe and the results are presented
in Figure [§] The results in Figure [§] suggest that in all four imaging sites, the
Frontal lobe is affected the most as compared to all other lobes, followed by the
Parietal (pre) motor lobe.

Similarly, we studied functional connectivity alterations in terms of inter lobe
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alterations for all lobes in individual imaging sites and results are presented in
Figure [0] The results suggest that the functional connectivity of the Frontal
lobe and the Parietal (pre) motor lobe is affected the most. Results of the inter
and intra lobe alterations from the Figures [§] and [J] suggest that in ADHD,
Frontal and Parietal (pre) motor lobes are affected the most, in terms of inter
and intra lobe functional connectivity alterations. The Frontal lobe is associated
with a number of critical brain functions such as attention, executive functions
(involved with purposeful, goal-directed behavior), memory, affect and mood
[37]. With the alterations in the Frontal lobe, these associated brain functions

might be impaired in ADHD subjects. Parietal (pre) motor is known to be

associated with movement intention and motor awareness [38]. With the alterations

in Parietal (pre) motor, abnormal body activities might be observed.

Finally, we visualize the functional connectivity anomalies in terms of these
six brain lobes for two imaging sites i.e. NI and NYU. The results are presented
in Figure[10|and Figure 11| respectively. It is clear from the figures that Parietal
(pre) motor and Frontal lobes are affected the most as they contain more altered

functional connections as compared to other lobes in both imaging sites.

6. Conclusions

In this paper we have addressed the problem of identification of discriminant
features between Control and ADHD subjects for classification based upon fMRI
data. Classification of neuroimaging data is considered a difficult task due to
the high dimensionality of data. We have proposed a machine learning based
framework for this problem and evaluated our method on four training and
test datasets provided by NITRC. Our framework introduces a novel method
for estimation of functional connectivity between brain regions. The brain
is a complex network where a number of brain regions might show coherent
activity. Therefore, discriminant features might be highly correlated with each
other. Here, we employed Elastic Net for feature selection that encourages

grouped feature selection. In this work, we have evaluated the importance of
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Figure 9: Functional connectivity alterations in terms of inter lobe alterations. Brain lobe
groups are segmented by [25] which are: (Lobe 1) Medial temporal lobe, (Lobe 2) Subcortical
lobe, (Lobe 3) Occipital lobe, (Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe, and (Lobe 6)
Parietal (pre) motor lobe. For all imaging sites, the Frontal and Parietal (pre) motor lobes

are affected the most.

non-imaging data by fusing it with the selected features. Our results show
that Elastic Net based feature selection integrated with non-imaging data may
provide an important feature selection strategy. Our selected features and SVM
classifier were able to outperform the state-of-the-art in classification accuracy
on data from three institutions. Our results also suggest that in ADHD, inter
hemispheric functional connectivity is altered the most as compared to alterations
belonging to the individual hemispheres which suggest that in ADHD coordination
between the lobes is affected. Our results suggest that the Frontal and Parietal
(pre) motor lobes are impaired the most by ADHD. In our future work we
will explore the detailed clinical interpretation of the functional connectivity

alterations produced in our framework, particularly in light of the non-imaging
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Figure 10: Visualization of functional connectivity alterations in NI dataset.
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