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ABSTRACT

This paper presents a novel method to approximate shift-
variant Gaussian filtering of an image using a set of shift-
invariant Gaussian filters. This approximation affords filter-
ing of the image using fast convolution techniques that rely
on the FFT, while achieving a result that closely matches
the shift-variant result. We demonstrate the method in
a CT colonography application that reduces the pseudo-
enhancement effect, which is a local brightening artifact in
CT imaging that can result from the use of oral contrast
agents. Experimental results demonstrate the effectiveness of
the method and emphasize its computational efficiency.

Index Terms— CT colonography, pseudo-enhancement
artifact, shift-variant filtering, shift-invariant filtering

1. INTRODUCTION

1.1. Pseudo Enhancement Effect in CT Colonography

The pseudo enhancement (PEH) effect is a common artifact
in computed tomography (CT), manifested as an increased
local brightening of darker voxels (corresponding to lower
attenuation materials) near brighter voxels (corresponding to
higher attenuation materials). This artifact poses problems
in CT colonography (CTC), where faecal and fluid residue is
typically tagged using an oral contrast agent that has a high
attenuation. The contrast agent voxels produce the PEH ef-
fect that can alter the true voxel intensities of the structures
of interest, namely, colonic polyps. Colonic polyp sizes are
important in diagnosis, as those less than a certain size (typ-
ically < 10mm) are believed to not be a clinical risk and are
thus not surgically removed. Because of the PEH effect, any
polyps submerged in the high attenuation tagging fluid may
appear to have a decreased size. Furthermore, intensities of
polyps or haustral folds may not match that of tissue, leading
to problems with electronic removal of the tagging agent. Fi-
nally, computer aided detection (CAD) often relies on specific
shape and intensity patterns to automatically identify polyps
in the scan. If polyps are submerged by tagging agent, these
patterns may be altered, leading to reduced detection perfor-
mance.

Pseudo enhancement primarily results from two factors;
beam hardening and x-ray scattering [1]. Beam hardening

Fig. 1. A CT image with a submerged polyp. Original image
(bottom left) and PEH corrected image (bottom right). Note
the subtle change in intensity of polyp.

results from the increased attenuation of low energy X-rays
compared to high energy X-rays, while scattering, which be-
comes more dominant as the physical density of the target
material increases [2], results from physical interactions of
X-rays with the target volume. Typical approaches to correct
the pseudo-enhancement effect approximate the PEH as an in-
plane (two-dimensional) spatially-variant kernel blurring over
high attenuation (intensity) regions [3]. This blurring is then
subtracted from the original image, producing a corrected im-
age. In CTC, scans are usually more than 400 512x512 im-
ages, and using a shift-variant filter can be prohibitive with re-
gards to computation time. We thus wish to approximate the
shift-variant kernel by a sum of shift-invariant filters, each of
which can be calculated using fast convolution methods, de-
creasing computation time.

2. LSI APPROXIMATIONS TO SHIFT-VARIANT
GAUSSIANS

2.1. Approach

In practice, the PEH is limited to the plane of acquisition (i.e.,
the image slice), primarily due to the spiral CT image acquisi-
tion. This simplification means we only need to correct each



image slice in the CT scan. The PEH effect can be modeled
using two dimensional shift-variant Gaussian filtering. In par-
ticular, each tagged pixel contributes a small amount of its in-
tensity to its neighbors. The shift-variance is present since the
variance of the Gaussian is linearly proportional to the image
intensity, as depicted in Figure 2. This system can be modeled
as a linear shift-variant filter [4] using the equation
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where t[nq, no) is the tagging image and hy, g, [n1 — k1, na —
ko] is a shift-variant isotropic Gaussian filter,
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centered at the point [m1, ms] and having a spatially-varying

standard deviation o [m1, ms] linearly proportional to ¢[m1 , ms].

The tagging image ¢[n1, n2] is obtained as
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where x[ny, no) is the original CT image and T is a thresh-
old, typically 100 Hounsfield Units (HU), which represents
a cutoff for tagged pixels. We can then subtract Equation 1
from the original image to obtain a PEH corrected image. As-
suming the image is of size N x N, and the filter is size M x
M, implementing this equation directly requires O(N2M?)
operations.
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Fig. 2. Estimated standard deviation for a band for a simpli-
fied case of L = 3 bands.

The shift-variance of this Gaussian filter renders it unsuit-
able for fast convolution methods that use the FFT. We would
like to approximate this linear shift-variant filter with using a
set of fast linear shift-invariant (LSI) filters. To achieve this,
we divide the image into L bands based on image intensity,
ie.,

) _ t[nhng], Bz < t[nl,ng} <= Bi+1
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where B; =t + i(tmax — tyjp)/L are intensity thresh-
olds that define the band for ¢ € [0...L]. For each band,

we determine a corresponding o; based on the mean inten-
sity in the band, as depicted in Figure 2. Therefore, each
band has an approximating shift-invariant filter h;[ny,ns] =
i e~ ((m=m1)*+(n2-m2)*)/(207)  We can then approxi-
mate Equation 1 with a superposition of shift-invariant filter-
ings of the banded images. Thatis, y[ni,no] = Y, t;[n1, nal*
hi[n1, na], where t; represents the thresholded image for band
1, formulated using Equation 4.

In summary, we have approximated the shift-invariant
Gaussian filtering of Equation 1 with a superposition of
L shift-invariant Gaussian filters. Each 2D shift invariant
filter can be computed with computational complexity of
O(LM?N log, N). However, a further optimization can
be realized by implementing the shift invariant Gaussian
separably, which reduces the computational complexity to
O(LMN log, N). In a practical context, this results in a sig-
nificant reduction in computation time. The algorithm for the
shift-invariant PEH correction is:

Initialize pseudo enhancement image P = 0
L = Number of bands
Compute bands B; = t iy + i(tmax — tmin)/L
fori =0to L —1do
lower = bands(7)
upper = bands(z + 1)
o; = o((lower + upper)/2)
Compute linear kernel h; given o;
Compute banded image b;
Compute thresholded banded image ¢; from b;
Convolve t; and h; and add to P
end for
Correct original image by subtracting P
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2.2. Analysis

The previous section described our method to approximate
the shift-variant filter with a faster shift-invariant filter. One
issue not addressed is the impact of the approximation on the
accuracy of the results. Approximation of the true Gaussian
filter h[k1, ko] with the banded filter with standard deviation
he,[k1, ko] is bounded by
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As a check, the error goes to zero in the limit as o; ap-

proaches o, as expected.
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From Figure 2 it is clear that |o; — o < &2, where
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o=——71 =7 (6)
is the width of a band. Therefore, we can express the bounded
error as a function of L as
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An example plot showing the error bound as a function of L is
shown in Figure 3. Note that as L increases, the error bound
decreases.
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Fig. 3. Plot of error bound as a function of L, for ¢ = 1,
OR = 0.9.

3. EXPERIMENTAL RESULTS

We performed both the shift-variant and shift-invariant ap-
proximation filters on a 512x512 CT slice, shown in Figure 1,
with a significant amount of tagging. In the shift-invariant
version of the filter, we varied the number of bands from
10 to 300 between intensities of 100 HU to the image max-
imum (usually 1000 HU). We then compared the CPU clock
time taken for the shift invariant filters to the shift-variant fil-
ter, and also calculated the relative intensity error between
them over intensities greater than 100 HU i.e., where the fil-
ter was applied. Results, shown in Figures 4 and 5, demon-
strate that the error, as well as the acceleration are inversely
proportional to the number of bands. As an example, with
50 bands, the error is less than 1 percent of the original im-
age intensity but is nearly an order of magnitude faster. In all
filters computed, o was the linear function suggested in [3]:
o = —0.0004z 4 0.59, where z is the image intensity. In all
situations a kernel with a half-width of two was used.

In a second experiment, we computed the PEH correction
using both the shift-variant and shift-invariant filters for both
prone and supine thoracic CT volumes of five different sub-
jects from three separate hospitals, each with residual tagging

agent. In all cases the slice dimensions were 512x512. We
computed the PEH using the shift-variant filter and invariant
filter with 20 bands, and compared the time taken for the two
methods for each volume, as well as the error. The results
are summarized in Table 1. We typically observed an order
of magnitude increase in acceleration using the shift invari-
ant with negligible difference in results. Results can be visu-
ally inspected in Figure 6. Note the improved intensities of
anatomic structures like polyps and haustral folds.
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Fig. 4. Experimental result of the the shift-invariant relative
error compared to the shift-variant filter for a given number of
bands. Compare this experimental error with the theoretical
error of Figure 3.
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Fig. 5. Experimental result of the acceleration, i.e., the
speedup of the shift-invariant filter compared to the shift-
variant filter with a given number of bands.

4. CONCLUSION

This paper presented a novel method to approximate a shift-
variant Gaussian filter with shift-invariant Gaussian filtering.
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Fig. 6. More results of PEH correction. Improved intensities for a 6mm polyp (a) and haustral folds (b, ¢). Original images are
shown, along with a zoom-in of the original image (lower left) and zoom-in of the corrected image (lower right).

Volume Correction Results
ID | Orient- | #Slices | Relative| shift- shift-
ation error variant invariant
time(s) time(s)
1 Supine | 441 0.0104 | 4000.7 426.0
1 Prone | 460 0.0113 | 4120.6 452.2
2 Supine | 444 0.0124 | 4082.1 428.2
2 Prone | 445 0.0096 | 4028.1 429.8
3 Supine | 414 0.0107 | 3745.8 397.1
3 Prone 423 0.0110 | 3908.6 406.2
4 Supine | 433 0.0093 | 3980.7 418.1
4 Prone | 477 0.0097 | 4316.8 450.2
5 Supine | 443 0.0112 | 4008.1 422.6
5 Prone | 473 0.0108 | 4296.2 448.7

Table 1. Error and time taken of PEH calculation using both
the shift-variant and shift-invariant filters. Note that the time
taken includes the disk I/O for each input slice. Acceleration
is approximately an order of magnitude.

The approximated algorithm has lower computational com-
plexity, which results in a significant reduction in processing
time. We derived an upper bound on the error, which is in-
versely proportional to the number of bands selected. We
demonstrated the method’s effectiveness in quickly filtering
images for pseudo-enhancement correction, including real CT
volumes with residual tagging. In the future, we plan to fur-
ther study the linear function o as a function of image in-
tensity. We also plan to extend the method to the case of
anisotropic Gaussian filtering, and consider other applications

like computing implicit functions as a superposition of radial
basis functions [5].
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