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ABSTRACT

This paper presents a novel method to approximate shift-

variant Gaussian filtering of an image using a set of shift-

invariant Gaussian filters. This approximation affords filter-

ing of the image using fast convolution techniques that rely

on the FFT, while achieving a result that closely matches

the shift-variant result. We demonstrate the method in

a CT colonography application that reduces the pseudo-

enhancement effect, which is a local brightening artifact in

CT imaging that can result from the use of oral contrast

agents. Experimental results demonstrate the effectiveness of

the method and emphasize its computational efficiency.

Index Terms— CT colonography, pseudo-enhancement

artifact, shift-variant filtering, shift-invariant filtering

1. INTRODUCTION

1.1. Pseudo Enhancement Effect in CT Colonography

The pseudo enhancement (PEH) effect is a common artifact

in computed tomography (CT), manifested as an increased

local brightening of darker voxels (corresponding to lower

attenuation materials) near brighter voxels (corresponding to

higher attenuation materials). This artifact poses problems

in CT colonography (CTC), where faecal and fluid residue is

typically tagged using an oral contrast agent that has a high

attenuation. The contrast agent voxels produce the PEH ef-

fect that can alter the true voxel intensities of the structures

of interest, namely, colonic polyps. Colonic polyp sizes are

important in diagnosis, as those less than a certain size (typ-

ically < 10mm) are believed to not be a clinical risk and are

thus not surgically removed. Because of the PEH effect, any

polyps submerged in the high attenuation tagging fluid may

appear to have a decreased size. Furthermore, intensities of

polyps or haustral folds may not match that of tissue, leading

to problems with electronic removal of the tagging agent. Fi-

nally, computer aided detection (CAD) often relies on specific

shape and intensity patterns to automatically identify polyps

in the scan. If polyps are submerged by tagging agent, these

patterns may be altered, leading to reduced detection perfor-

mance.

Pseudo enhancement primarily results from two factors;

beam hardening and x-ray scattering [1]. Beam hardening

Fig. 1. A CT image with a submerged polyp. Original image

(bottom left) and PEH corrected image (bottom right). Note

the subtle change in intensity of polyp.

results from the increased attenuation of low energy X-rays

compared to high energy X-rays, while scattering, which be-

comes more dominant as the physical density of the target

material increases [2], results from physical interactions of

X-rays with the target volume. Typical approaches to correct

the pseudo-enhancement effect approximate the PEH as an in-

plane (two-dimensional) spatially-variant kernel blurring over

high attenuation (intensity) regions [3]. This blurring is then

subtracted from the original image, producing a corrected im-

age. In CTC, scans are usually more than 400 512x512 im-

ages, and using a shift-variant filter can be prohibitive with re-

gards to computation time. We thus wish to approximate the

shift-variant kernel by a sum of shift-invariant filters, each of

which can be calculated using fast convolution methods, de-

creasing computation time.

2. LSI APPROXIMATIONS TO SHIFT-VARIANT

GAUSSIANS

2.1. Approach

In practice, the PEH is limited to the plane of acquisition (i.e.,

the image slice), primarily due to the spiral CT image acquisi-

tion. This simplification means we only need to correct each



image slice in the CT scan. The PEH effect can be modeled

using two dimensional shift-variant Gaussian filtering. In par-

ticular, each tagged pixel contributes a small amount of its in-

tensity to its neighbors. The shift-variance is present since the

variance of the Gaussian is linearly proportional to the image

intensity, as depicted in Figure 2. This system can be modeled

as a linear shift-variant filter [4] using the equation

y[n1, n2] =
∑

k1

∑

k2

t[k1, k2]hk1,k2
[n1 − k1, n2 − k2], (1)

where t[n1, n2] is the tagging image and hk1,k2
[n1−k1, n2−

k2] is a shift-variant isotropic Gaussian filter,

hk1,k2
[k1, k2] =

1

2πσ2
e−((k1−m1)

2+(k2−m2)
2)/(2σ2) (2)

centered at the point [m1, m2] and having a spatially-varying

standard deviation σ[m1, m2] linearly proportional to t[m1, m2].
The tagging image t[n1, n2] is obtained as

t[n1, n2] =

{

x[n1, n2]− T, x[n1, n2] > T
0, otherwise

(3)

where x[n1, n2] is the original CT image and T is a thresh-

old, typically 100 Hounsfield Units (HU), which represents

a cutoff for tagged pixels. We can then subtract Equation 1

from the original image to obtain a PEH corrected image. As-

suming the image is of size N x N , and the filter is size M x

M , implementing this equation directly requires O(N2M2)
operations.

Fig. 2. Estimated standard deviation for a band for a simpli-

fied case of L = 3 bands.

The shift-variance of this Gaussian filter renders it unsuit-

able for fast convolution methods that use the FFT. We would

like to approximate this linear shift-variant filter with using a

set of fast linear shift-invariant (LSI) filters. To achieve this,

we divide the image into L bands based on image intensity,

i.e.,

ti[n1, n2] =

{

t[n1, n2], Bi < t[n1, n2] <= Bi+1

0, otherwise
(4)

where Bi = tmin + i(tmax − tmin)/L are intensity thresh-

olds that define the band for i ∈ [0 . . . L]. For each band,

we determine a corresponding σi based on the mean inten-

sity in the band, as depicted in Figure 2. Therefore, each

band has an approximating shift-invariant filter hi[n1, n2] =
1

2πσ2

i

e−((n1−m1)
2+(n2−m2)

2)/(2σ2

i
). We can then approxi-

mate Equation 1 with a superposition of shift-invariant filter-

ings of the banded images. That is, y[n1, n2] ≈
∑

i ti[n1, n2]∗
hi[n1, n2], where ti represents the thresholded image for band

i, formulated using Equation 4.

In summary, we have approximated the shift-invariant

Gaussian filtering of Equation 1 with a superposition of

L shift-invariant Gaussian filters. Each 2D shift invariant

filter can be computed with computational complexity of

O(LM2N log2 N). However, a further optimization can

be realized by implementing the shift invariant Gaussian

separably, which reduces the computational complexity to

O(LMN log2 N). In a practical context, this results in a sig-

nificant reduction in computation time. The algorithm for the

shift-invariant PEH correction is:

1: Initialize pseudo enhancement image P = 0
2: L = Number of bands

3: Compute bands Bi = tmin + i(tmax − tmin)/L
4: for i = 0 to L− 1 do

5: lower = bands(i)
6: upper = bands(i + 1)

7: σi = σ((lower + upper)/2)
8: Compute linear kernel hi given σi

9: Compute banded image bi

10: Compute thresholded banded image ti from bi

11: Convolve ti and hi and add to P
12: end for

13: Correct original image by subtracting P

2.2. Analysis

The previous section described our method to approximate

the shift-variant filter with a faster shift-invariant filter. One

issue not addressed is the impact of the approximation on the

accuracy of the results. Approximation of the true Gaussian

filter hσ[k1, k2] with the banded filter with standard deviation

hσi
[k1, k2] is bounded by

E ≤

[

∫∫
(

1

2πσ2
e−

1

2
(x2+y2)/σ2

−
1

2πσ2
i

e−
1

2
(x2+y2)/σ2

i

)2

dxdy

]
1

2

≤

[
∫∫

(

1

4π2σ4
e−(x2+y2)/σ2

+
1

4π2σ4
i

e−(x2+y2)/σ2

i

−
2

4π2σ2σ2
i

e−
1

2
(x2+y2)/σ2

e−
1

2
(x2+y2)/σ2

i

)2

dxdy

]
1

2

≤

√

σ4 + σ4
i − 2σ2σ2

i

2πσ2σ2
i (σ2 + σ2

i )
(5)

As a check, the error goes to zero in the limit as σi ap-

proaches σ, as expected.



From Figure 2 it is clear that |σi − σ| ≤ ∆σ
2 , where

∆σ =
σmax − σmin

L
=

σR

L
(6)

is the width of a band. Therefore, we can express the bounded

error as a function of L as

E ≤

√

σ4 + (σ − σR

2L )4 − 2σ2(σ − σR

2L )2

2πσ2(σ − σR

2L )2(σ2 + (σ − σR

2L )2)
(7)

An example plot showing the error bound as a function of L is

shown in Figure 3. Note that as L increases, the error bound

decreases.

Fig. 3. Plot of error bound as a function of L, for σ = 1,

σR = 0.9.

3. EXPERIMENTAL RESULTS

We performed both the shift-variant and shift-invariant ap-

proximation filters on a 512x512 CT slice, shown in Figure 1,

with a significant amount of tagging. In the shift-invariant

version of the filter, we varied the number of bands from

10 to 300 between intensities of 100 HU to the image max-

imum (usually 1000 HU). We then compared the CPU clock

time taken for the shift invariant filters to the shift-variant fil-

ter, and also calculated the relative intensity error between

them over intensities greater than 100 HU i.e., where the fil-

ter was applied. Results, shown in Figures 4 and 5, demon-

strate that the error, as well as the acceleration are inversely

proportional to the number of bands. As an example, with

50 bands, the error is less than 1 percent of the original im-

age intensity but is nearly an order of magnitude faster. In all

filters computed, σ was the linear function suggested in [3]:

σ = −0.0004x + 0.59, where x is the image intensity. In all

situations a kernel with a half-width of two was used.

In a second experiment, we computed the PEH correction

using both the shift-variant and shift-invariant filters for both

prone and supine thoracic CT volumes of five different sub-

jects from three separate hospitals, each with residual tagging

agent. In all cases the slice dimensions were 512x512. We

computed the PEH using the shift-variant filter and invariant

filter with 20 bands, and compared the time taken for the two

methods for each volume, as well as the error. The results

are summarized in Table 1. We typically observed an order

of magnitude increase in acceleration using the shift invari-

ant with negligible difference in results. Results can be visu-

ally inspected in Figure 6. Note the improved intensities of

anatomic structures like polyps and haustral folds.

Fig. 4. Experimental result of the the shift-invariant relative

error compared to the shift-variant filter for a given number of

bands. Compare this experimental error with the theoretical

error of Figure 3.

Fig. 5. Experimental result of the acceleration, i.e., the

speedup of the shift-invariant filter compared to the shift-

variant filter with a given number of bands.

4. CONCLUSION

This paper presented a novel method to approximate a shift-

variant Gaussian filter with shift-invariant Gaussian filtering.



(a) (b) (c)

Fig. 6. More results of PEH correction. Improved intensities for a 6mm polyp (a) and haustral folds (b, c). Original images are

shown, along with a zoom-in of the original image (lower left) and zoom-in of the corrected image (lower right).

Volume Correction Results

ID Orient-

ation

#Slices Relative

error

shift-

variant

time(s)

shift-

invariant

time(s)

1 Supine 441 0.0104 4000.7 426.0
1 Prone 460 0.0113 4120.6 452.2
2 Supine 444 0.0124 4082.1 428.2
2 Prone 445 0.0096 4028.1 429.8
3 Supine 414 0.0107 3745.8 397.1
3 Prone 423 0.0110 3908.6 406.2
4 Supine 433 0.0093 3980.7 418.1
4 Prone 477 0.0097 4316.8 450.2
5 Supine 443 0.0112 4008.1 422.6
5 Prone 473 0.0108 4296.2 448.7

Table 1. Error and time taken of PEH calculation using both

the shift-variant and shift-invariant filters. Note that the time

taken includes the disk I/O for each input slice. Acceleration

is approximately an order of magnitude.

The approximated algorithm has lower computational com-

plexity, which results in a significant reduction in processing

time. We derived an upper bound on the error, which is in-

versely proportional to the number of bands selected. We

demonstrated the method’s effectiveness in quickly filtering

images for pseudo-enhancement correction, including real CT

volumes with residual tagging. In the future, we plan to fur-

ther study the linear function σ as a function of image in-

tensity. We also plan to extend the method to the case of

anisotropic Gaussian filtering, and consider other applications

like computing implicit functions as a superposition of radial

basis functions [5].
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