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Abstract. This paper describes the automatic segmentation of overlap-
ping cells through different algorithms. As the first step, the algorithm
detects junctions between the boundaries of overlapping objects based
on the angles between points of the overlapping boundary. For this pur-
pose, a novel 2D matrix with multiscale angle variation is introduced, i.e
anglegram. The anglegram is used to find junctions of overlapping cells.
The algorithm to retrieve junctions from the boundary was tested and
validated with synthetic data and fluorescently labelled macrophages ob-
served on embryos of Drosophila melanogaster. Then, four different seg-
mentation techniques were evaluated: (i) a Voronoi partition based on
the nuclei positions, (ii) a slicing method, which joined the clumps to-
gether (junction slicing), (iii) a partition based on the following of the
edges from the junctions (edge following), and (iv) a custom self-organis-
ing map to fit to the area of overlap between the cells. Only (ii)-(iv) were
based on the junctions. The segmentation results were compared based
on precision, recall and Jaccard similarity. The algorithm that reported
the best segmentation was the junction slicing.
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1 INTRODUCTION

The migration of cells is of great importance in many biological processes, one
of them is within the immune system. Macrophages are one of the cells of the
immune system that settle in lymphoid tissues and the liver, which serve as fil-
ters for trapping microbes and foreign particles [1]. Cell migration is an essential
biological process that ensures homeostasis in adults, where an unbalanced mi-
gratory response results in human disease [2]. The model organism Drosophila
melanogaster can offer complementary insights into how macrophages integrate
cues to migration [3]. It has been shown that interactions amongst the cells’
structures appear to anticipate the direction of migration [4], thus, accurate cell
segmentation could provide information for specific cells for biological studies.



Segmentation of cells in fluorescence microscopy is a widely studied area
[5], with many approaches ranging from thresholding techniques [6], to active
surfaces [7]. In recent years, techniques like adaptive active physical models [8]
and multilevel sets [9] have been used to address the problem of cells that overlap
in cervical cancer images. Other techniques like self-organising maps (SOM) have
also been used for biomedical image segmentation [10].

Junctions are commonly acquired by looking for extrema in the curvature
of the image gradient [11,12]. In this work, a novel approach to find junctions
is proposed for boundaries of overlapping objects, whose intersections would
correspond to the junctions acquired. The junctions detected would later be
used as the basis for completing a segmentation of the overlapping cells. Four
methods are presented, of which three use the information from the junctions
detected.

2 MATERIALS

2.1 Macrophages embryos

Fluorescently labelled macrophages were observed in embryos of the model or-
ganism Drosophila melanogaster. The nuclei were labelled with GFP-Moesin,
which appeared red, whilst the microtubules were labelled with a green micro-
tubule probe (Clip-GFP) [4]. RGB images of dimensions pnh, nw, ndq “ p512, 672, 3q
and t “ 541 time frames were acquired. The images have two layers of fluores-
cence. Figure 1 shows one representative time frame. The green channel illus-
trates overlap that makes an accurate segmentation of the cells complicated.

(a) Full frame. (b) CLUMP 2.

Fig. 1: Example of cell overlapping in a single frame. (a) Presents the full frame with
(red) squares highlighting all regions where instances of overlapping cells (clumps) are
shown and labelled for easy reference. (b) Detail of CLUMP 2, present in (a).



2.2 Synthetic data

In order to assess the limitations of the junction detection methodology, images
of pairs of synthetic overlapping ellipses with varying angles and separation
distances were generated (n “ 142). Let E pφ,x0q “ txφ,x0ptq : t P r0, 2πsu , be
the ellipse defined by the equation xφ,x0

ptq “ Rpφqpa cosptq, b sinptqqT`x0, which
is rotated with respect to the x-axis by φ degrees and whose centre is located
on position x0. The pairs of ellipses constructed in this work differ both in angle
and position with three conventions taken into consideration: (i) presetting the
values of the axes pa, bq; (ii) defining a central ellipse E0 “ Ep0,x0q, common to
all pairs; and (iii) the difference in position would only be made by moving the
ellipses in the x-axis. Thus, the pairs of ellipses can be defined in terms of the
differences to E0, namely the angle and distance from the centre pφ,∆q. A set
of pairs of ellipses was generated in Matlab® to test the method at different
values of pφ,∆q ranging φ from 0 to 90 degrees and ∆ from 0 to 160 pixels
with increments of 10. Images of size pnh, nwq “ p256, 512q were generated with
x0 “ p128, 128qT and axes pa, bq “ p120, 53q that contained an overlapping of
E0 and Eφ,∆. Disregarding the images where there was no overlap present in the
generated ellipses, a total of 142 images was generated. Fig. 2 contains a subset
of the ellipses tested. Cases where there was no overlap were ignored from the
analysis.

Fig. 2: Overview of the range of pairs of ellipses investigated. The pairs presented on
this image represent a sample of the ellipses that were tested by the method presented.
The boundary of the central ellipse E0 is highlighted in blue while the second ellipse’s
boundary is presented in red.



3 METHODS

In this work, a clump will be understood as a cluster of two or more overlapped
objects. A clump was detected when two or more nuclei on the red channel
were detected within a single region on the green channel. Segmentation of the
green channel was performed by low-pass filtering with a 5 ˆ 5 Gaussian filter,
following with a hysteresis thresholding technique [6]. A morphological opening
with a disk structural element (r=3) was performed to smooth the edges and
remove noise. Segmentation of the red channel followed the same methodology.
Then, the number of nuclei per region was counted to determine the presence of
clumps.

3.1 Junction detection

Let B define the boundary of a clump, then for each of the ordered points
pi “ xi P B, the inner angle of the point is defined as follows,

Definition 1 (Inner angle of a point) The inner angle of a point pi P B in
the boundary is the angle θi,j adjacent to the point, and measured from the jth
previous point pi´j to the following jth position pi`j.

Fig. 3 shows examples of the calculation of an inner angle for a given point in
the boundary. By visual inspection, it can be noticed that the inner angle of a
junction would be greater than 180 degrees for a number of separations j. This
number of separations will be referred to as the depth of the junction. Thus, the
method consists of computing the inner angle θi,j at every point pi P B, and on
every separation j. The anglegram matrix Θ “ ppθi,jqq is defined as the values
of the inner angles of each point i and per separation j, Fig. 3 (c).
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Fig. 3: Representation of inner point angle calculation and generation of anglegram
matrix. (a) Represents a synthetic clump with its boundary outlined (blue, dotted),
where a point (magenta ˛) in the boundary will have various inner point angles per
separation j. All the inner point angles for the highlighted point are displayed in (b).
(c) Shows the anglegram matrix, where each row represents the graph displayed in (b)
for each boundary point.

The local maxima on a projection over the horizontal dimension of the an-
glegram is related to the position of the junctions of the boundary and the



depth of the junction. Each row, Θpi, :q, corresponds to the inner angles of point
pi, therefore taking a summary of the rows would yield a measurement of the
general inner angles of each point. For this work, the maximum intensity pro-
jection θ̂max, Fig. 4(b), was compared with mean, median and area under the
curve, but maximum provided the best results (data not shown due to space lim-
itations). To account for quantisation errors in the boundaries extracted from
the clumps, an averaging filter of size 5 ˆ 5 was applied to the anglegram ma-
trix, Θ, before the calculation of θ̂max. The local maxima of the 1D projection
were found by using the function findpeaks from Matlab®, which identifies
local maxima of the input vector by choosing points of which its two neigh-
bours have a lower value. Due to quantisation noise in θ̂max, the parameters
MinPeakDistance and MinPeakHeight were set to empirically consistent values.
First, MinPeakDistance, which restricts the function to find local maxima with a
minimum separation, was set to 25. Furthermore, the parameter MinPeakHeight
was set to meanpθ̂maxq ` 0.75ˆ stdpθ̂maxq.

(a) Junctions detected.
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(b) Anglegram matrix and maximum intensity projection.

Fig. 4: Junction detection on overlapping objects through the maximum intensity pro-
jection of the anglegram matrix. The junctions detected on a synthetic pair or ellipses
is shown in (a), where the boundary of the clump is represented as a dotted line (blue)
as well as the junctions (magenta ˛). The definition of θ̂max is represented in (b),
where the anglegram matrix Θ is displayed in a plane and θ̂max is represented along
the boundary points. Detection of junctions are shown with ˛ markers (magenta).

3.2 Segmentation of overlapping regions

This section describes the comparison of methodologies to segment clumps into
overlapping cells. Initially, as a benchmark, a simple partition of the clump based
on Voronoi partitioning [13] was developed. Then, the three methods, which in-
corporate the information from the junctions into a segmentation output were



used. The methods differed in the way the junctions’ information was incorpo-
rated into a complete segmentation. Junction Slicing (JS) and Edge Following
(EF) involved the explicit use of the junctions’ position, while the proposed self-
organising map (SOM) fitting involved the information of junctions into creating
a custom SOM that adapts to the overlapping section of the data. In this work,
only the cases where two junctions were found were examined in detail. A di-
agram showing all methods presented and the data flow is presented in Fig.
5.

Voronoi partition This method was included as a lower-bound benchmark
for comparisons against with the proposed methods. The results should be the
worst as no information from the green channel is used. The image area was
partitioned, using Voronoi tesselations [13]. The partition of the space was based
on the centroids of the detected nuclei from the image’s red channel. The clumps
detected on the green channel were divided based on the Voronoi partition.

Junction Slicing (JS) This method partitioned the clump with the line that
joined two junctions. For each junction detected, each of the two adjacent seg-
ments of the boundary of the clump would correspond to one of the different
objects within the clump. Since the points in the boundary are ordered, starting
at one point p1 and moving alongside B in a clockwise manner, then the segment
that appeared before a detected junction would correspond to one cell, whereas
the segment that appeared after the junction would correspond to the other
cell. For cases where only two junctions were found, the problem of selecting
which pair of junctions will be joined becomes trivial. However, considering a
case like the one presented on Figure 4(a), where four junctions would appear,
different combinations of the boundary segments could yield different candidates
of segments.

Edge Following (EF) In order to obtain the edge information, the Canny
algorithm [14] was used on the green channel of the image. The algorithm consists
of finding the local maxima of the image gradient. In this work, the parameter
of the standard deviation was set to σ “ 1. The trend of the two adjacent
segments leading to the junction was defined by approximating the tangent line
of the boundary at the junction point. The definition of the tangent line was
taking an average slope of the secant lines leading up to the detected junction.
The tangent line was extended, and a region of interest (ROI) was defined by
a triangle where the approximated tangent line goes along the vertex and the
adjacent angle corresponds to 20 degrees to each side of the tangent line (Figure
5). The ROI defined for each of the adjacent line segments was then intersected
with the edge information of the image, resulting in a set of binary line segments,
which were labelled. Labelling of the binary line segments allowed for individual
analysis of each line. Each line detected was analysed in terms of its orientation
and size, preserving the one that has the most similar orientation to the extended



line segment. Binary line segments with a change in direction were split by
removing the strongest corners, detected through the corner detection algorithm
by Harris [11]. The lines found by both ROIs on each junction were then used
as new coordinates to add to the boundary of the corresponding cell.

Self-organising Maps (SOM) Fitting This work proposes an alternative im-
plementation of the self-organising maps [15] that adapts itself to the overlapped
area. For this SOM, a custom network was defined, as well as the input data and
additional rules to the definition of the step-size parameter, α. Let a Network
N “ pV,Lq, where V “

 

mi “ pxi, yiq P R2 : i “ 1, ¨ ¨ ¨ , nv
(

are nodes assigned
to positions in the plane and L are some edges linking the some of the nodes in
V. Each node mi P V has an identifier, position, and a speed parameter, related
to the movement of each node. The input data was determined by the positions
and normalised intensity values of the image, i.e. pxt, Ipxtqq. Values in Ipxtq that
were selected by an Otsu’s threshold [16] and were located within a bounding
box that contains the junctions. Given an input, the algorithm proposed by Ko-
honen [15] follows two basic steps: identifying the closest node in the network to
the input, shown in Equation (1), and update the positions of the nodes inside
a neighbourhood, determined by a distance ne to the winner node mc, (2),

mcptq “ arg min
cPt1,¨¨¨ ,nvuS

}xt ´miptq}
2
2 (1)

mipt` 1q “

"

miptq ` αt pxt ´mcptqq , pi, cq P L and distpmi,mcq ď ne
miptq , otherwise

, (2)

where distpmi,mjq refers to the distance from node i to node j in the shortest
path determined by the edges L. In this work, the parameter αt was determined
the intensity level of the image, I, and the speed parameter of the node. The
proposed formula for the parameter αt is shown in equation (3),

αt,i “ α0 ˆ p0.2` Ipxtqq
4
ˆ speedpmiq, (3)

where speedpmiq is 0.1, or 1, depending on where the node resides in the topol-
ogy. The network was defined by taking a subset of the boundary points in B in
a ring topology, and then adding two networks in a grid topology to each side
of the line joining two junctions. The three networks are independent from each
other. Thus, speedpmiq “ 0.1, if mi was located in the boundary of the clump,
and speedpmiq “ 1, if it was one of the grid networks. The assumption is that the
network taken from B would be closer to the actual cell, and therefore it should
not move abruptly, whereas the networks inside the clump will adjust and adapt
to the shape of the overlapping area between the cells. In order to finalise the
network final state into a segmentation, the external network was taken as a
new clump and it was partitioned by the same line used in the junction slicing
(JS) method. Finally, the area formed by the inner network that adapted to
the overlapping section of the cell was dilated with a 5 ˆ 5 square element and
then attached to both partitions of the new clump. The right column of Figure
5 displays the main steps of the SOM fitting method described.



Original image Clump and
junction detection

SOM fitting
SOM adapting

Extraction of overlap
Voronoi partition Junction Slicing Edge Following

FINAL OUTPUTS

Fig. 5: Illustration of all the methods developed and the workflow to obtain results. Top
left shows the detail of CLUMP 2 in the original frame. Clumps are detected and the
boundary was extracted. With the boundary information, the anglegram was calculated
and the junctions were detected (top, middle). On the second row, a diagram to the
methods were presented. From left to right, the Voronoi partition, Junction Slicing
(JS), Edge Following (EF) and SOM fitting. Bottom row shows the outputs from each
method for both cells within the detected clump.



4 RESULTS

The junctions that were correctly detected on the synthetic data had a range of
angles (based on the corresponding value in vector θ̂max) [188.64 - 328.4] degrees;
whilst the missed junctions had a range of [162 - 191.96] degrees. This indicates
that very wide angles, close to a straight line are easy to miss. The overlap region
of [188 - 192] deserves a further investigation outside the scope of this paper.
For overlapping clumps, junctions detected by the anglegram algorithm were
compared qualitatively against the Harris corner detector [11], Fig. 6.

The results obtained for one frame of overlapping cells examined in detail
are shown in Fig. 7, which are clumps that look similar throughout the images.
Finally, a comparison with manually segmented ground truth was performed. In
order to have the best results shown for each of the methods, the input clumps
used were taken from the ground truth images. The Jaccard Similarity Index
[17], recall and precision [18] statistics were computed for both clumps on all
the frames and all the methods described, box plots of the results are shown in
Fig. 8 and summarised in Table 1. Qualitative comparisons are also provided for
some examples of the ten images and some of the clumps not analysed in detail,
as well as for the SOM outputs segmenting the overlapped area in the clumps.

Fig. 6: Qualitative comparison of junction detection via anglegram (magenta ˛) versus
the Harris corner detector (green ˆ). The strongest 10 corners from the Harris detector
per clump are displayed. Only CLUMP 1 has a missing junction (cyan ˝), it should be
noticed how difficult detection of the junction would be.

Table 1: Comparison of mean values of Precision, Recall and Jaccard Index for clumps
2 and 3 over 10 frames. This table summarises the results in Fig. 7. Highest results are
highlighted.

CLUMP 2 CLUMP 3
Precision Recall Jaccard Index Precision Recall Jaccard Index

Voronoi 0.906 0.925 0.843 0.872 0.868 0.771
JS 0.970 0.953 0.926 0.974 0.948 0.925
EF 0.964 0.983 0.948 0.938 0.950 0.896

SOM 0.965 0.951 0.919 0.973 0.948 0.923
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Fig. 7: Qualitative comparison of different segmentation methods in one of the frames.
From left to right, the segmentation results for the Voronoi method, Junction Slic-
ing (JS), Edge Following (EF) and SOM fitting are presented. Top and Bottom rows
represent the results for CLUMP 2 and CLUMP 3 respectively.

5 DISCUSSION

Preliminary work using thresholding techniques [6], active contours [19] or mul-
tilevel set methods [9] did not provide satisfactory segmentation of the overlap-
ping cells, as these techniques could only detect clusters of overlapping objects
without distinction between each of the individual objects (data not shown). In
this paper, a method to segment overlapping cells through the analysis of the
boundary of the clump was proposed. Its main advantage is to present a way to
find relevant junctions from a boundary. Fig. 6 shows the junctions detected by
the anglegram would not require further processing to select the useful corners,
unlike the Harris algorithm outputs. Consistent with synthetic tests, limitations
were observed in CLUMP 1, where a junction was missed by both methods. This
limitation depends on cell positions and is transferred to the underlying segmen-
tation methods. Table 1 shows a better performance from all three junction-
based methods compared to the Voronoi partition. Furthermore, the percentile
box sizes in Fig. 8 show that the EF method (yellow) is less consistent than the
SOM method (white).

Current experimental results demonstrate the promise of this method to pro-
duce correct segmentations of overlapping cells, Fig. 7. Further experimentation
is ongoing applying these techniques to cases where there are more than two
main junctions detected, such as the one presented in Fig. 4(a) and cases where
more than two cells are present in the clump. Future work will consider the ex-
tension of the anglegram matrix as a prior to a probabilistic modelling of the
position of the junctions.
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Fig. 8: Comparison of Precision, Recall and Jaccard Index for all methods of segmen-
tation of overlapping in clumps 2 and 3. Horizontal axis correspond to the box plots
from the different methods and their summarised performance in the metrics computed.
Three groups corresponding to Precision, Recall and Jaccard Index contain four box
plots; which, from left to right, correspond to Voronoi, JS, EF and SOM methods.
Table 1 summarises the information on this image.
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