
Sparse Parallel Electronic Bowel Cleansing in CT Colonography

Richard Boyes, Xujiong Ye, Gareth Beddoe and Greg Slabaugh
Medicsight PLC

Kensington Centre, 66 Hammersmith Road, London W14 8UD
{richard.boyes,xujiong.ye,gareth.beddoe,greg.slabaugh}@medicsight.com

Abstract

We present a technique for storing the sparse data that
often occurs when processing three dimensional medical
images. The technique uses raster scan order to store the
one dimensional volume indexes of each pixel location, and
stores an inverted copy of these indexes for fast lookup. The
inverted index is stored as a Judy array which is shown to be
highly efficient in lookup times while using very little mem-
ory compared to hash tables. We demonstrate the efficiency
of the data structure by performing partial volume segmen-
tation and digital removal of oral contrast agent within CT
Colonography (CTC). The method is demonstrated to be ef-
ficient in terms of speed and memory usage, and can paral-
lelise efficiently.

1. Introduction
Modern medical imaging has dramatically increased the

volume of data acquired in recent years. In the United
States, there were about three million computed tomogra-
phy (CT) scans performed in 1980, compared to an esti-
mated 62 million in 2006 [3]. As requirements for more
detailed imaging increase due to the superior diagnoses pos-
sible [6], the volume of data will increase exponentially,
dramatically increasing the amount of storage and memory
needed to process these scans.

Medical image processing is also becoming more com-
plex: new, more sophisticated segmentation, registration
and filtering techniques can require large amounts of mem-
ory and processing time. Many of these algorithms can take
many minutes to execute which can be frustrating for the
algorithm developer, end user and ultimately the patient.
Medical image processing can also be constrained in other
ways: for the radiologist to be able to review the scan in-
teractively, the entire volume is loaded into memory, while
copies may be needed for volume rendering or other pro-
cessing.

CT colonography (CTC) is a promising screening tech-
nique for the detection of colonic polyps that can be a pre-

Figure 1. Axial view of a supine CT colonography scan. On the
left is the scan with radio opaque tagging of leftover fluid in the
colon, and on the right it has been digitally removed.

cursor to bowel cancer. CTC is an alternative to the cur-
rent gold standard of optical colonoscopy, and is regarded
as having higher patient acceptance [7]. The procedure in-
volves the patient ingesting laxatives and contrast agent,
which clear the bowel of any faecal matter and identify any
residual material, respectively. The large intestine is then
inflated using a CO2 insufflator, and the subject scanned in
both the prone and supine position to obtain three dimen-
sional images. The colonic surface can be reconstructed to
obtain a virtual flythrough of the colon by the reviewing ra-
diologist, so colonic polyps which protrude from the colon
wall can be identified. While the laxative procedure should
clear the bowel of faecal material, usually some fluid re-
mains, identifiable by the contrast agent. Digital removal of
this contrast agent (commonly known as electronic bowel
cleansing (EBC), an example is shown in Figure 1) is a
useful technique for the radiologist as the fluid can occlude
polyps (commonly this is why both a prone and supine scan
is taken).

Further, computer aided detection (CAD) procedures are
gaining traction in CTC in order to assist the radiologist
and improve the accuracy of diagnosis. EBC can help in
increasing the sensitivity of CAD algorithms as the algo-
rithm would no longer need to account for different cases
of air/fluid/tissue delineated boundaries.

Currently CTC examinations have large data require-

ments. An examination requires a prone and supine scan of
the patient, with each scan typically requiring 450 512×512
image slices, a resolution of (0.7 × 0.7 × 1.0) mm, and
two bytes per pixel. These examinations are also increas-
ing in size (due to the desire to make voxel sizes more
isotropic). EBC can be implemented using simple thresh-
olding techniques but these perform poorly due to partial
volume effects at each voxel. Current state of the art tech-
niques [11] [12] [4] usually approximate this partial vo-
luming in some manner, which results in a smooth, nat-
ural boundary that looks ’correct’ to the reviewer. How-
ever these techniques are computationally intensive. The
method presented in [11] used partial volume segmentation
to model the fluid that needed to be digitally subtracted from
the scan, requiring buffer storage for different CT voxel
classes of air, contrast enhanced fluid and tissue and its con-
stitutive proportions. This approach can require storage of
multiples of the original CT volume, which in a clinical
environment may strain computational resources and neg-
atively impact on workflow. However, in CTC (and hence
EBC) only the large intestine needs to be examined and pro-
cessed. Although CTC examinations can generate approxi-
mately 100 million data points for each scan, we have found
that the colon and its contents only constitute approximately
5-10% of the volume of the scan.

In this paper, we introduce a sparse indexing method that
allows us to store only those voxels relevant to the CTC
examination, reducing the memory and computational re-
quirements to process the scan. We demonstrate its efficacy
by applying it to the problem of electronic bowel cleans-
ing of the colon, using it with a similar partial volume seg-
mentation technique [8] to obtain accurate estimates of the
volume of tagged fluid at each voxel, and we then replace
these partial volumes with an approximation to the intensity
of air. The appearance of the electronically cleansed scan is
shown to be visually accurate, while the method shows a
high degree of performance, flexibility, scalability and low
memory usage.

2. Methods

2.1. Sparse Volume Indexing

Sparse data processing is a common method used in ma-
trix processing, whereby the matrix is populated primarily
with zeros which are ignored. Large sparse matrices are
found in science when solving partial differential equations,
as the solution to unknown variables is usually dependent
on a small number of neighbouring items. Similarly in med-
ical image computing, regions outside of the structure of in-
terest can be ignored. In CTC, this would be the distended
colon and surrounding tissue. We wished to develop a data
structure and method that can index a sparse three dimen-
sional volume. A huge array of techniques exist for the

spatial indexing of images [10]. We wished to use a data
structure concordant with the following guidelines:

• Random access of any voxel, including neighbours, in
constant, i.e., O(1) time.

• Extraction of the live voxels in any row or slice con-
tiguously, i.e., given a slice number we can efficiently
compute the memory offsets of the relevant voxels in
constant time, with no lookup misses. This allows data
to be processed in a slice by slice fashion, and is con-
sistent with how medical images are stored on disk.

• Suitability for multi-threading.

• Low memory usage.

In order to store the sparse indexes, we require a map-
ping from the three dimensional spatial indexes to a one di-
mensional index, which can be done by using a space filling
curve (see [10]).

We chose to implement the algorithm using raster scan
order, based on its simplicity and ability to process voxels
in a slice oriented fashion. Each spatial (in our case, slice,
row and column) component can be indexed by a single 4
byte integer. As the image dimensions in the through plane
are powers of two (as they are for most medical images),
the raster scan order was created using bit contentation. Al-
though this limits the technique to images that are powers of
2, we can use simple multiplication and modulus arithmetic
(which are less efficient) to perform the same operations,
or simply pad the images to the nearest power of 2, which
needn’t increase storage as only the offsets change.

Given the slice (z), row (y) and column (x) indexes,
the volume index (vidx) is calculated by:

vidx = (z << zshift) | (y << yshift) | x;

Where zshift and yshift represent the powers of
two that offset the coordinates by the image dimensions,
e.g., for a set of 512 × 512 images, the zshift would
be 18 (218 = 512 × 512) and yshift would be 9 (29 =
512). The z, y, and x indexes of each voxel can be obtained
by applying appropriate bitmasks and shifting the resultant
bits, i.e.,

z = (vidx & zmask) >> zshift;
y = (vidx & ymask) >> yshift;
x = (vidx & xmask);

Masks and bit shifts can be computed when the scan is
loaded thus:

zshift = 0;
yshift = xmask = 1;
while((1 << yshift) < imagewidth)
{

2

xmask = xmask | (xmask << 1);
yshift++;

}
zshift = yshift + 1;
ymask = (1 << yshift);
while((1 << zshift) < (imagewidth*imageheight)
{

ymask = ymask | (ymask << 1);
zshift++;

}
zmask = (0xffffffff << zshift);

We can store all the vidx components within the struc-
ture of interest in an array; any voxel properties (such as
scan intensity) located at the same index can be stored in an
array of the same dimension. Given this VolumeIdx array
we also need to have an inverted copy, that is, given any one
dimensional volume index (or voxel coordinate), a method
of looking up the properties of that voxel is required.

This InvertedVolumeIdx can used for random ac-
cess, looking up voxel neighbours, and efficient computa-
tion of the memory offsets of a given slice. Effectively
the InvertedVolumeIdx represents an int-intmap-
ping using an associative array, which can be implemented
using a wide variety of techniques such as a hash table
or binary tree. Figure 2 demonstrates the usage of the
InvertedVolumeIdx and VolumeIdx indexes to ob-
tain the neighbouring intensities of a voxel.

Figure 2. Flow diagram for a sparse array of voxel intensites,
and how the the two sparse indexing data structures were used to
lookup neighbouring intensities, in this case the x + 1 neighbour
of the index (x, y, z) = (2, 3, 4).

Initially we used a hash table to implement the
InvertedVolumeIdx, due to its O(1) performance in
lookup and insertion. However the memory footprint was
excessive due to the need for the table to store both the
key and value pairs, and also for the size of the table to
be greater than the number of the stored entries.

We thus investigated a data structure called a Judy ar-
ray [2]. Judy arrays are complex associative array data
structures that use many optimisations to improve memory
performance, particularly with regard to cache.

Judy arrays are implemented as a 256-ary trie (for re-
trieval), or one byte per level, allowing the expanse of 232

(4 byte integers) to have only 4 levels. The choice of 256-
ary by the designers of the Judy array was done to minimise
cache-line fills (fetching of data from memory to cache),
which penalise performance. It is claimed that in the worst
case scenario there would only be four cache line fills, equal
to the number of levels in the tree. Storing a 256-ary trie
with four levels naively would use an excessive amount of
space. Judy uses complex internal data structures to com-
press and manage redundant data in the tree.

Judy arrays are not particularly well covered within the
scientific literature, excepting [5], which compared their
implementation within an in memory database to other
comparable data structures. A comparison of Judy arrays
and hash tables is available at [1], which found Judy ar-
rays had slightly superior performance for larger volumes
(> 1 × 106) of sequential data (which applies here due to
the raster scan order) for both hit (item is in table) and miss
(item is not in table) lookups, and used far less memory.
We were less concerned with insertion and deletion times;
once the sparse index is built we would predominantly be
doing table lookups. The Judy array can also traverse its
data contiguously in order (i.e., no lookup misses); this is
very useful when accessing ranges of the data, such as pro-
cessing the data in a slice or row oriented fashion where
the volume index is strictly increasing, which is the case
when using raster scan order. Other useful features include
the ability to directly lookup the nth index efficiently, and
count the number of items within a given range of keys. We
performed some simple experiments using our own data to
verify the Judy array’s speed and low memory attributes.

Thus, given an image and mask identifying the voxels
in the structure of interest, we construct the VolumeIdx
and InvertedVolumeIdx by looping through the im-
age, and any live voxels in the mask have their one dimen-
sional volume index pushed onto the VolumeIdx. An
array of voxel intensities (and any other properties) is up-
dated in the same way. Once this process is complete,
the InvertedVolumeIdx is computed by looping over
the VolumeIdx and putting the associated entries into the
Judy array. Any associated voxel properties can be stored
in an array of the same size and layout as the VolumeIdx,
while looking up voxel properties given a three dimensional
index can be done by converting the three dimensional in-
dexes to the one dimensional volume index, and then look-
ing up the entry using the InvertedVolumeIdx. Neigh-
bours of a voxel can be looked up in a similar manner,
by decomposing any one dimensional volume index into

3

its constitutive three dimensional indexes and increment-
ing them in each respective direction, and then recompos-
ing them into a one dimensional volume index, which we
can use to lookup neighbouring voxel properties using the
InvertedVolumeIdx. In this way looking up neigh-
bours is an O(1) process. This process is demonstrated in
Figure 2.

2.2. Partial Volume Segmentation in CT Colonog-
raphy

We wished to apply the sparse indexing given above in
a practical context where large amounts of storage are re-
quired for auxiliary variables. Performing a partial volume
segmentation of the three materials that make up the con-
tents of the insufflated colon (namely air, contrast agent and
the colonic tissue) provides such a task, as floating point
storage for up to three different materials at each voxel
is required. We wished to perform a partial volume seg-
mentation and subsequent reconstruction, replacing contrast
agent with air, to electronically clean the large bowel in CT
colonography, which will aid in the peformance of examin-
ers and computer aided detection methods.

The partial volume segmentation technique used has
been described previously [8]. We use an iterative expec-
tation maximisation approach to the maximum a posteri-
ori (MAP) solution of segmenting material mixtures. Sup-
posing each voxel Ii could contain three types of material
(human tissue, air and radio opaque tagging). Let mate-
rial k contribute xik to the observation at voxel Ii, i.e.,
Ii =

∑
k xik, and let ρik denote the fraction of material

k within voxel i, with
∑
k ρik = 1 and 0 ≤ ρik ≤ 1. The

distribution of each material can be described by its mean
and variance µk and σ2

k, while the probability of sampling
xik given these parameters can be given by:

Pr
(
X | ρ, µ, σ2

)
=
∏
i,k

1√
2πρikσ2

k

×

exp

(
− (xik − ρikµk)2

2ρikσ2
k

)
1
Z
exp

(
−1

2
βU (ρik)

)
(1)

where Z is a normalisation constant and U is an a priori
penalty used as a spatial constraint within the Markov ran-
dom field (MRF) framework to ensure like materials are
contiguous, and β is a parameter controlling the degree of
the spatial penalty on the material mixtures. U (ρik) is de-
fined as

U (ρik) =
∑

j∈nbor(i)

wij (ρik − ρjk)2 (2)

where wij represents the weights between each pair of
neighbours i, j. A weighting function for a group of neigh-
bours is needed as the voxels are non-isotropic, and we re-
quire neighbouring voxels to have different contributions

proportional to the inverted distance between neighbours.
We calculate wij to be

wij =
min (d (i, n)) , n ∈ nbor (i)

d (i, j)
(3)

where d (i, n) represents distance between two pairs of vox-
els i, n. In our implementation, we take into account a six
neighbour stencil.

Using a Gaussian distribution for xi and Ii the condi-
tional expectation or E step of the log a posteriori distribu-
tion in the EM algorithm given the observed data Ii and an
estimate of ρik, µk, σ2

k is:

E
(
ln
(
Pr
(
X | ρ, µ, σ2

)
| Y, ρ, µ, σ2

))
=

−1
2

∑
i,k

ln (2π) + ln (ρikσ2
k) +

1
ρikσ2

k

(
x2
ik − 2ρikµkxik + ρ2

ikµ
2
k

)
+ βU (ρik) (4)

The conditional means for xik and x2
ik at each iteration are

given by

xik = E
(
xik | Ii, ρ, µ, σ2

)
= E (xik) +

Cov (xik, Ii) Cov (Ii)
−1 (Ii − E (Ii))

= ρikµk +
ρikσ

2
k∑

l ρilσ
2
l

(
Ii −

∑
l

ρilµl

)
(5)

and

x2
ik = E

(
x2
ik | Ii, ρ, µ, σ2

)
= E2

(
xik | Ii, ρ, µ, σ2

)
+

Var
(
xik | Ii, ρ, µ, σ2

)
= (xik)2 + ρikσ

2
k

∑
l 6=k ρilσ

2
l∑

l ρilσ
2
l

(6)

The maximization or M step is then used to calculate up-
dated values of µ and σ2 for each material class. Differenti-
ating Eqn(4) with respect to µk and setting it to zero results
in:

µk =
∑N
i=1 xik∑N
i=1 ρik

(7)

Likewise for σ2
k:

σ2
k =

1
N

N∑
i=1

x2
ik − 2ρikµkxik + ρ2

ikµ
2
k

ρik
(8)

Differentiating Eqn(4) with respect to each ρik results in a
linear set of equations which needs to be solved for each
voxel. We can also use the fact that

∑
k ρik = 1 which

reduces the number of equations by one. In the case of two
material mixtures, we can update the partial volumes as:

ρi1 =
xi1σ

2
i2µ1 + µ2

2σ
2
i1 − xi2σ2

i1µ2 + 2βσ2
i1σ

2
i2

∑
j wijρi1

σ2
i2µ

2
1 + σ2

i1µ
2
2 + 2βσ2

i1σ
2
i2

∑
j wij

(9)

4

and ρi2 = 1− ρi1, while for three materials,

ρi1

µ2
1

σ2
1

+ 2β
∑
j

wij +
µ2

3

σ2
3

+ ρi2

β∑
j

wij +
µ2

3

σ2
3

 =

xi1µ1

σ2
1

+ 2β
∑
j

wijρj1 −
xi3µ3

σ2
3

+
µ2

3

σ2
3

+ β
∑
j

wijρj2

ρi1

β∑
j

wij +
µ2

3

σ2
3

+ ρi2

µ2
2

σ2
2

+ 2β
∑
j

wij +
µ2

3

σ2
3

 =

xi2µ2

σ2
2

+ 2β
∑
j

wijρj2 −
xi3µ3

σ2
3

+
µ2

3

σ2
3

+ β
∑
j

wijρj1 (10)

After solving for ρi1 and ρi2, ρi3 = 1 − ρi1 − ρi2. Note
that σ2

ik ≈ ρikσ
2
k, where ρik was stored from the previous

iteration.
Given the description of the equations above, it is clear

that the amount of storage data required for an entire partial
volume description of the CT scan would be excessive. We
used the sparse volume structure outlined in Section 2.1 to
reduce the volume used by only considering voxels within
the vicinity of the colon, as indicated in Figure 3. We fur-
ther reduced the amount of data used by considering that
most voxels will contain only one material type. We stored
an index of the number of voxel classes at each voxel i as an
array zi and then stored an offset array as oik =

∑
zi + k

which was used to index floating point arrays of the frac-
tional voxel properties ρik and xik.

Figure 3. An example of a CT colonography scan and the
initial labelling used before executing the partial volume seg-
mentation and subsequent cleansing. The VolumeIdx and
InvertedVolumeIdx data structures were populated using the
labelled image on a slice by slice basis.

Given an initial colon segmentation of the original scan,
which we obtained using simple thresholding and morpho-
logical operations, we identify the air and tagging labels us-
ing the K-means clustering algorithm. The segmentation is
then dilated several times to give a region of tissue with a
different label. This dilated, labelled mask (see Figure 3)
is then used to initialise the sparse data structure and the
partial volume arrays, assuming that any mixture of vox-
els within a 26-nbor kernel will imply that the central voxel

will be made up of fractional parts of the labels within that
neighbourhood. The fractional parts ρik were initialised as
1/K for each class where K is the number of different la-
bels within the neighbourhood. The global mean µk and
variance σ2

k of each class were initialised using the mean
and variance of voxels within each respective class label.

Given this initialisation, the algorithm for the partial vol-
ume segmentation is:

1: for n = 0 to MaxIterations do
2: Estimate class intensities at each voxel xik (n)

(Equation 5)
3: Update class means µk (n+ 1) (Equation 7)
4: Update class variances σ2

k (n+ 1) (Equation 8)
5: Update class volumes ρik (n+ 1) (Equation 9 and

10)
6: Check for convergence by calculating∑

k

∣∣∣µk(n+1)
µk(n)

∣∣∣ ≤ 1 + ε

7: end for

2.3. Digital Removal of Contrast Agent

Given the partial volume segmentation of each material
class, we can replace the contrast agent with an estimate of
air:

Inewi = Ii + (µair − µtag) ρitag − ρitagεi (11)

Where εi represents the error in the estimation Ii, approxi-
mately Ii −

∑
k ρikµk. We then apply a geometry preserv-

ing filter [9] to the cleansed voxels to smooth any remaining
noise. This non-linear filter is calculated as an iterative dif-
fusion equation,

It+1 = It + ∆t
(
∇ ·
(
∇I
‖ ∇I ‖

)
‖ ∇I ‖

)
(12)

which we apply for 5 iterations and a step size of ∆t = 0.1.

2.4. Parallelism

Each of the steps in the segmentation and the smoothing
process is highly parallelisable, as it involves a simple loop
over all of the voxels, and in the case of the updates to µk
and σ2

k a reduction variable can be used. We parallelise
each step in the partial volume segmentation and geometric
diffusion using the OpenMP compiler directives.

2.5. Experiments

We computed the partial volume segmentation for 11 CT
Colonography scans from four different hospitals, each with
their own patient preparation and scanning workflow. Each
scan had a significant amount of residual contrast agent. We
removed the contrast agent from each scan and assessed the

5

outcome using visual inspection, and computed the time
taken to perform the entire cleansing operation (including
image I/O and the initial indexing of the scan), the memory
used by the sparse volume index (including the Judy array),
and noted the number of live voxels. For the partial volume
segmentation, we choose the maximal number of iterations
to be 12, β to be 5 (which we found empirically), and the
convergence tolerance ε to be 0.0001.

We also calculated the time taken to apply the geo-
metric diffusion filter for different numbers of threads to
demonstrate that the sparse indexing method can parallelise
well when working on trivial parallel problems. Using the
OpenMP framework, we apply 1−4 threads on a quad-core
computer and computed the time taken to perform the geo-
metric diffusion of Eqn(12) for each scan and plotted the re-
sults. We chose to highlight the parallel performance of the
geometric diffusion process as although it is trivially paral-
lelisable, it requires extensive lookup of neighbour voxels
to calculate first and second-order derivative terms, which
required a considerable amount of work to be done by the
Judy array.

3. Results and Discussion
Assessing the results visually, we found a smooth, nat-

ural appearance where the tagged material had been re-
moved, apparent in Figures 1 and 4. The results presented
in Table 1 demonstrate the effectiveness of the sparse vol-
ume index in reducing the memory used and the processing
time. We estimate that to perform the experiments above
using the whole scan in memory would have required over
1GB of memory and taken several minutes to execute. Al-
though difficult to compare directly due to the more mod-
ern hardware used here, it took a similar method proposed
in [11] approximately 20 minutes to complete, more than an
order of magnitude slower.

Figure 4. Pre and post images of a cleansed scan, with the associ-
ated partial tagging volume, reformatted in sagittal orientation.

It is evident that the sparse index uses approximately 10
bytes per voxel of memory from Table 1, which could be
used as a rough rule of thumb for the memory requirements
of the index. Noting that this is made up of the integer
volume indexes (which constitute four bytes per voxel) and

Electronic Bowel Cleansing Results
Scan
id

#Scan
voxels
’000s

#Colon
voxels
’000s

Sparse
Index
size
(MB)

Total
memory
(MB)

Run
time(s)

1 110886 10992 100 296 72
2 120586 8208 77 222 77
3 117703 6157 58 169 57
4 113508 8914 82 245 70
5 122946 8045 75 218 65
6 113246 7501 71 205 63
7 103547 5380 52 148 49
8 111149 2529 25 65 40
9 103285 4795 46 130 46
10 125043 5142 50 140 53
11 113508 4040 39 108 44

Table 1. Memory and time taken for bowel cleansing. Note the
approximate 10 bytes/voxel storage requirements for the sparse
volume index. The run time includes the disk I/O for loading the
image and calculating the sparse index, and the output of the cor-
rected voxels to a copy of the original scan.

the inverted volume index, it implies that the Judy array re-
quired only six bytes per voxel storage, a significant saving
when compared to other storage mechanisms (e.g., an open
addressed hash table would require 8 bytes per voxel plus
additional storage to ensure the load factor was reasonably
small, say 1

0.7 ≈ 1.43 times the actual entries - chained hash
tables scale better with higher load factors but need extra
storage for the linked list implementation at each bucket).
Figure 5 clearly demonstrates the parallel scalability of the
sparse index when applied to the simple diffusion process.

Figure 5. Parallel acceleration for each scan, demonstrating linear
speedup per thread and across a range of voxel numbers, indicating
a high level of scalability for the sparse indexing system. Similar
scalability was observed for the parallel parts of the EBC pipeline.

6

4. Conclusions
We have presented a method for sparse volume indexing

of a three dimensional medical image that compactly stores
voxel properties and demonstrated its usefulness by imple-
menting a state of the art electronic bowel cleansing tech-
nique and applying it to tagged images in CT colonography.
The method is scalable and parallelises well, indicating it
can be applied to a wide range of medical image process-
ing tasks where the data processed is significantly less than
the size of the scan. In future work, we hope to be able to
implement the partial volume segmentation using a smaller
representation of the colon as we only need to remove the
tagged material, allowing us to discard a significant number
of the air voxels from processing. We also wish to imple-
ment the algorithm to take into account a higher number
of material classes, as separate ’pools’ of tagging can have
different intensity properties, due to the tagging agent not
being diluted or dispersed uniformly. This would require a
higher number of material classes but the maximum number
of material mixtures still remaining as three.

The sparse representation presented in this paper is sim-
ple, efficient and flexible, and suitable for a wide range of
medical imaging problems with large data requirements.

References
[1] S. Barrett. http://www.nothings.org/computer/

judy. 3
[2] D. Baskins and A. Silverstein. http://judy.

sourceforge.net. 3
[3] D. J. Brenner and E. J. Hall. Computed tomography - an in-

creasing source of radiation exposure. New England Journal
of Medicine, 357(22):2277–2284, 2007. 1

[4] W. Cai, M. Zalis, and H. Yoshida. Mosaic decomposi-
tion method for detection and removal of inhomogeneously
tagged regions in electronic cleansing for ct colonography.
In Proceedings of SPIE, volume 6915, February 2008. 2

[5] S. L. Fritchie. A study of erlang ets table implementations
and performance. In Proceedings of ACM SIGPLAN Work-
shop on Erlang, pages 43–55, August 2003. 3

[6] S. Y. Jeong, M. J. Chung, C. S., S. Y. M, and L. K. S. 1024
matrix image reconstruction: Usefulness in high resolution
chest ct. J Korean Radiol Soc, 55(6):565–569, 2006. 1

[7] C. D. Johnson and A. H. Dachman. Ct colonography: The
next colon screening examination? Radiology, 216:311–319,
2000. 1

[8] Z. Liang and S. Wang. An em approach to map solution
of segmenting tissue mixtures: A numerical analysis. IEEE
Transactions on Medical Imaging, 28(2):297–310, 2009. 2,
4

[9] S. Manay and A. Yezzi. Anti-geometric diffusion for adap-
tive thresholding and fast segmentation. IEEE Transactions
on Image Processing, 12(11):1310–1324, 2003. 5

[10] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Elsevier, 2006. 2

[11] Z. Wang, Z. Liang, X. li, L. Li, B. Li, D. Eremina, and H. Lu.
An improved electronic colon cleansing method for detec-
tion of colonic polyps by virtual colonoscopy. IEEE Trans-
actions on Biomedical Engineering, 53(8):1635–1647, 2006.
2, 6

[12] M. E. Zalis, J. Perumpillichira, and P. F. Hahn. Digital sub-
traction bowel cleansing for ct colonography using morpho-
logical and linear filtration methods. IEEE Transactions on
Medical Imaging, 23(11):1335–1343, 2004. 2

7

http://www.nothings.org/computer/judy
http://www.nothings.org/computer/judy
http://judy.sourceforge.net
http://judy.sourceforge.net

