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Abstract We introduce Erosion Band Signatures (EBS),
which are a codification of the spatial coherence of fea-
tures extracted from a region. This coherence is often lost
in traditional global and local feature extraction methods,
thereby diminishing a feature’s discriminative strength. The
erosion band signature is generated through iterative erosions
of the region of interest, forming what we call erosion bands.
Features are then extracted from each band and accumulated
in a specific order to form the EB signature, which preserves
spatial information of the features. To demonstrate the versa-
tility of EBS, we have implemented the method in two very
different applications: polyp detection and region-based head
tracking. In polyp detection, EBS provides an effective way
to characterize spatial differences between the perimeter and
core of a polyp candidate, and improves a state-of-the-art
computer-aided detection method with an improved 27.6 %
reduction of false positives. We also apply EBS analysis to
region-based tracking yielding a very clear improvement in
both robustness and accuracy.

Keywords CT colonography · CAD · False positive
reduction · Tagged stool · Tracking · Spatially-aware feature
extraction

1 Introduction

Feature extraction is a fundamental component of many com-
puter vision applications including object recognition, clas-
sification, retrieval and tracking [1]. Often, in both local and
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global feature extraction approaches, the spatial coherence
(i.e., the relative spatial position) of features is lost in the
feature extraction process. As a result, the discriminative
strength of the features may be diminished. For instance,
features describing the eyes of a face are expected to appear
near the center of the face. Consequently any object with eye-
like features on its perimeter has less likelihood to be a face.
The same lack of spatial coherence is present in computer-
aided detection (CAD) methods applied to CT Colonography
(CTC) images [2–4], as well as histogram [5] or spatiogram
[6]-based methods used in tracking.

In CTC, features based on intensity, gradient orientation,
shape index, and curvedness [7] are computed from a 3D
polyp candidate without reference to the spatial location wit-
hin the region the features are computed. Patients are given
oral contrast agents (tagging agents) that result in higher
intensities for liquid and solid remains in the colon, in order
to distinguish residual waste from tissue. The relative vari-
ations between the core and perimeter intensity values of a
polyp candidate provide a very useful characteristic for false
positive detection. Specifically, tagged stool [8] is one of the
main sources of false positives in computer-aided detection
systems [9], and is characterized by a higher intensities in its
core region compared to polyps. This has motivated recent
work on false positive detection and visualization through
translucency rendering [10,11]. This method finds differ-
ences in opacity between the perimeter and the core of a polyp
candidate using volume rendering [12]. The main shortcom-
ing of this technique is that a good rendering requires robust
computation of an axis perpendicular to the colon wall, which
is a challenging task given the varying morphology of pol-
yps and stool. The reduction of false positives resulting from
tagged stool and the shortcomings derived from translu-
cency rendering form the main motivations of the present
work.
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In this paper, we introduce Erosion Band Signatures (EBS)
for spatially aware feature extraction. EBS is applied to
reduce tagged stool false positives in CTC CAD. Further-
more, we also analyze its potential as a general method for
feature extraction. For a given region, we perform iterative
erosions from its border to its core, generating a series of
bands. For each band, we extract features to form a single
1D signature that implicitly codifies the spatial information.
This signature is used to differentiate false positives from
polyps. We point out that EBS is not limited to a 1D rep-
resentation and can be extended to form an n-dimensional
signature. This spatial codification is the main strength of
the method compared with purely global or local methods,
as results support.

Morphology is also used in other CTC CAD approaches.
Commonly, it is used for polyp candidate detection [2,13].
Once polyp candidates have been found, these approaches
perform a feature extraction process which does not include
morphology or spatial information as in EBS. In [14], the
authors use morphology as a feature for polyp detection.
Nevertheless, it is just focused on detecting elliptical shapes
which a polyp is expected to have in several cases. Spatial
information is not included in this approach.

This lack of spatial information is also present in his-
togram-based approaches. Spatiograms, introduced in [6],
propose adding some spatial information to the basic chro-
matic histogram, by adding the mean vector and the covari-
ance matrix of the image pixels. Another approach focused
on including spatial information to histograms consists on
partitioning the image or object using a specific pattern
and computing a histogram for each part [15]. Some other
approaches have been proposed to add spatial information
in object tracking, as template matching [16] consisting
on tracking an object by extracting an example image of
the object. The initial proposal did not consider that the
object changes during the sequence, what requires updat-
ing the template [17]. In [18], a probabilistic framework is
presented to track an object based on its appearance. Fea-
ture values and feature location are considered random vari-
ables.

In this paper, we analyze the effect of applying erosion
bands to histograms and spatiograms. In both cases clear
improvements are achieved in both accuracy and robustness.
These results point out that the treatment of spatial coherence
in spatiograms is purely local and the spatial coherence of
the whole region is not included.

The rest of the article is organized as follows. In Sect. 2,
we introduce erosion bands (EB). In Sect. 3, we apply EB
signature for false positive reduction in CTC images. After-
wards, in Sect. 4, we apply EB signatures to region-based
tracking. In Sect. 5, we show results obtained. Subsequently,
in Sects. 6 and 7, we present a discussion of EB signatures
and conclusions.

2 Erosion bands

For the explanation of EB we use polyp detection as example.
Indeed, it has been the main motivation of our work.

Tagging material can be present in the perimeter of both
polyp and stool (covering them) but stool commonly partially
absorbs the tagging material. Erosion bands reflect these dif-
ferences independently of the shape of the candidate.

Figure 1a shows an example of a 2D view of a 3D polyp
candidate and the original mask, the latter in yellow. The
mask is determined automatically by the CAD system. For
tagged data we apply a threshold of HU < −64 to include
polyps and tagging material, as suggested in [10] (Houns-
field units (HU ) are the intensity values of the CT image).
Figure 1b depicts in gray color the mask after the thresholding
and in white and red lines the discarded part (HU < −64)
of the original mask. Afterwards, we apply iterative 3D ero-
sions to generate a set of Erosion bands (Bl ), as depicted
in Fig. 1c, where each of the three erosion bands is showed
with a different color. Let M0 be the initial mask of a given
candidate and E a spherical structuring element. Firstly, we

Fig. 1 Erosion bands generation. a Polyp candidate and its associated
mask. b In grey Mask after thresholding at −64 HU. c We perform a set
of erosions to the mask obtained in b, from which we find three erosion
bands (Bl ) for l = {1, 2, 3} here labeled with three colors (blue, black,
orange) (color figure online)
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Erosion band signatures for spatial extraction of features 697

Fig. 2 EB-signature: a PDF computed from the intensity values of each band is calculated. Each PDF is placed one after the other thereby preserving
the order of the bands from which they have been computed. It forms a single signature as a representative of the candidate (the EB signature)

Fig. 3 An example of a a polyp, b tagged stool and c tagged polyp

compute the mask at the lth erosion step Ml as:

Ml = Ml−1 � E, (1)

where � stands for the morphological erosion operator. The
lth erosion Band Bl is then defined as the XOR operation
(denoted by ∨̇) between Ml and Ml−1:

Bl = Ml∨̇Ml−1, (2)

where l ranges from [1, . . . , L] and L is the maximum num-
ber of erosions until ∅ (L = 3 in Fig. 1). We refer to the size
of a candidate as its number of erosion bands. Each erosion
band provides a mask to extract features. This approach does
not require finding any particular plane or projection as the
translucency approaches [19] although differences between
the perimeter and the core of the candidate are represented.

2.1 EBS: single signature from Bl

The information given by each Bl has to be presented in
such a way that the spatial coherence is preserved. We are
also interested in having a single signature for a candidate
to facilitate the task of classification, as we will show in the
next section.

We place, preserving the order from perimeter towards
core, the information given by each Bl , one after the other,
thereby generating a single signature for a candidate. The
information extracted from each band can be intensity-based,
chromatic, shape-based (e.g. shape index [3], gradient or
histogram of gradients [20]), statistical (mean, maximum),
among others. Figure 2 depicts an example of our approach
for false positive reduction. In this case, we compute a PDF
from the intensity values of each Bl . Finally, from the three
PDFs we generate a single PDF which will be the EB signa-
ture of the polyp candidate shown in Fig. 1a.

False positive detection in CTC CAD is based on distance
metric learning and classification as described in Sect. 3.
As an alternative application of EBS, we also present an
approach based on the direct comparison of the EB signature,
i.e., without projecting them, in the framework of region-
based tracking. This second application is detailed in Sect. 4.

3 EBS for false positive reduction in CTC CAD

An example of a polyp and a false positive resulting from
tagged stool is shown in Fig. 3a, b. Whereas the difference
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Fig. 4 EBS captures the spatial distribution of features along the can-
didate. The first band (B1) in the polyp contains a fairly large amount
of bright tagging and might be classified as false negative. However,
the second band contains low presence of tagging in the core of the
candidate. The second band of tagged stool will contain values not cor-
responding to tissue

between polyp and tagged stool may be straightforward, there
is much more confusion when a polyp is covered by tagging
(Fig. 3c). For detecting tagged stool, we use the intensity
information of the polyp candidate as obtained from each
Bl . Although intensity is already used in computer-aided
detection systems, we argue that the introduction of spatial
information provided by the EB improves false positive
detection. Using EB, we have a signature for each polyp
candidate which codifies the spatial differences in the region
intensity from its perimeter towards its core. These dif-
ferences are useful to distinguish polyps from some other
sources of false positives as tagged stool. Figure 4 shows
an example. The first band (B1) of the polyp contains tag-
ging agent. Nonetheless, the second band contains a small
amount of tagging agent. In the case of tagged stool, the sec-
ond band also contains values not corresponding to tissue.
Furthermore, another advantage of having a single signature
is that it facilitates the classification task.

From each Bl we compute a PDF and build the candidate’s
signature as previously explained. We then project each EB
signature into a lower dimensional space where a polyp can-
didate is represented by a single point in the lower-dimen-
sional space. Then, we can run a classifier to detect false
positives, which have similar EB signatures. Similarity is
expressed in terms of proximity in the lower-dimensional
space.

3.1 PDF generation

A graphical example of the PDFs obtained is depicted in
Fig. 2. The three PDFs associated with these three Bl are
displayed at the right of the mask using corresponding col-
ors. The abscissa axis depicts the CT values of the candidate.
The ordinate axis displays the estimated density. The PDF
has been computed using the off-the-shelf non-parametric
kernel-smoothing density estimation method as described in
[21]. This method estimates a PDF of a set of independent
and uniformly distributed random variables (x1, x2, . . . , xn).
The density estimation is obtained by summing a set of ker-
nels distributed among these variables:

f̂h(x) = 1

nh

n∑

i=1

K
( x − xi

h

)
, (3)

where K is the kernel used and h is the bandwidth that con-
trols the smoothing. In our case the kernel used is a standard
normal distribution:

K (x) = 1√
2π

e− 1
2 x2

. (4)

Note that σ = 1, a common choice for the kernel [22].
The bandwidth has been selected using the method proposed
in [23], which is a completely data-driven method that yields
a good estimation even in multimodal densities.

These PDFs are therefore representative of the Bl from
the border of the candidate and towards its core. Candidates
in the same class (i.e., polyp or tagged stool) are expected to
have similar EB signatures.

3.2 EBS projection

Dimensionality reduction can be applied to the EB signa-
ture to simplify classification [24]. In general, if we have two
points xi and x j in a R

n space, we must find a proper distance
measure d(xi , x j ) to preserve the relationship between the
points. Formally:

d(xi , x j ) = (xi − x j )
t A(xi − x j )

=
(

A
1
2 xi − A

1
2 x j

)t (
A

1
2 xi − A

1
2 y j

)
, (5)

where the projective matrix A
1
2 is to be learned.

In the present work, we have tested different techniques
to find the best distance metric for the characteristics of
our EB signature, namely Principal Component Analysis
(PCA), ISOMAP [25] and Laplacian Eigenmaps (LE) [26].
A comprehensive survey of these techniques can be found in
[24,27].

To test these dimensionality reduction methods, we have
interpolated all EB signatures into the same number of bins
independently of the candidate’s size. Additionally, we have
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Erosion band signatures for spatial extraction of features 699

Fig. 5 Projections in 3D space of polyp candidates of the training datset using PCA, ISOMAP, and Laplacian Eigenmaps. These methods show a
good separability between false positives (black points) and polyps (white)

zero-padded signatures corresponding to candidates of dif-
ferent sizes. Figure 6 depicts an example. It shows a EB
signature of a candidate of size 4 and of a candidate of size 2.
These signatures ought to have the same number of bins to be
compared. Interpolated signature and zero-padded signature
are shown in Fig. 6, second row. In both cases the number of
bins of the signature is the same as that of the candidate of
size 4. Each approach follows a different idea. Interpolating
the signature represents a common way to deal with the dif-
ferent number of bins. Furthermore, we also used an adaptive
size of the kernel depending on the candidate’s size in order
to obtain signatures with the same number of bins. Results
obtained were similar to those obtained with interpolation.
It can be explained because the singularities in the level of
absorption of tagging agent for a big candidate are different
of those of a small candidate. A higher precision for each
band is able to explain these differences, whereas a big ker-
nel cannot do so. For this reason we have also included the
zero-padded signatures, which are able to preserve this infor-
mation, therefore, yielding a higher discriminative strength.
Results obtained are detailed in Sect. 5.

For the purpose of visualization, each EB signature is

projected into a 3D space using the projective matrix A
1
2

as learned by each technique. Figure 5 shows results for
the training dataset. As can be seen PCA, ISOMAP and
Laplacian eigenmaps yield a good separability between pol-
yps (white) and false positives (black), suggesting their use
in a classification approach, which will be described in
Sect. 5.

4 EBS in region-based tracking

To demonstrate the versatility of EBS, we evaluate the tech-
nique in a second application of region-based tracking. We
compare the performance of color histograms as proposed in
[5] and such of the color histograms extracted from each Bl

and forming the EB signature. The same is performed for the
spatiograms introduced in [6].

4.1 Region-based tracking with colour histograms

The first feature we compute for region-based tracking is the
histogram of the region as proposed in [5]. Then, histogram
intersection is computed between the histogram of a model
hI and a new frame hI ′ :

D(hI , hI ′) =
∑β

b=1 min(hI (b), hI ′(b))
∑β

b=1 hI ′(b)
, (6)

where hI (b), hI ′(b) are the number of pixels in the bth bin
and β the number of bins.

The color space proposed in [5] is B − G, G − R and
R + G + B with 8 bins for the first (chromatic) channels and
4 bins for the intensity channel R + G + B. In our experi-
ments we used the Opponent color space [28], which is nor-
malized and represents the data in a better way. The three
channels of the Opponent space are: (Red − Green) = (R −
G)/2, (Blue − Yellow) = (R + G − 2B)/4 and Intensity =
(R+G+B)/3. Furthermore, the number of bins used was 32
instead of 8. With these two modifications, the tracker yields
acceptable results that can be used as a baseline.

4.2 Region-based tracking with spatiograms

Spatiograms are an extension of histograms where local spa-
tial information is added. As in [6], we use the second-order
spatiograms for region-based tracking, defined as:

h2
I (b) = {nb, μb, �b}, (7)

where nb is the number of pixels in the bth bin, μb and
�b are the mean vector and the covariance matrix and b =
{1, . . . , β} being β the number of bins.

The distance measure proposed in [6] has some disadvan-
tages as detailed in [29]. Its main problem is that comparing
a spatiogram with itself does not give the closest distance.
We use the distance measure proposed in [29], based on the
Bhattacharyya distance between two spatiograms. First, the
second-order spatiogram is transformed into a histogram by
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adding an extra spatial dimension, forming the transformed
spatiogram n. Then, the distance measure proposed between
two spatiograms n and n′ is:

ρ(n, n′)

=
B∑

b=1

√
nbn′

b

[
8π |�b�

′
b|1/4 N (μb;μ′

b, 2(�b + �′
b))

]

(8)

with N (x;μ,�) being a normalized Gaussian evaluated at
point x .

5 Experimental results

In this section we show results obtained using EBS for false
positive reduction in CTC CAD as well as in region-based
tracking. EBS, when applied to CTC CAD, improves state-
of-the-art results. In a second experiment we show that EBS
can be applied to improve another computer vision applica-
tion as region-based tracking.

5.1 False positive reduction in CTC

In this section, we present results obtained in false positive
reduction in CTC CAD. Firstly, we describe the data used.
Although the EBS method was originally designed for reduc-
ing tagged stool false positives, EBS is also tested on regions
that are untagged.

5.1.1 CAD system

The starting point of our study is the output given by the
computer-aided detection system, detailed in [2]. The set of
features used in this system is derived from intensity, differ-
ential geometric features (shape index and curvedness [7]),
gradient concentration, texture, volume and other shape and
binary features. This system gives a performance of 90.1 %
sensitivity (percentage of polyps detected) with 4.02 false
positives per scan, the latter is the number that we seek to
reduce. The CAD system as well as our new approach for
false positive reduction is robust to different sources of data
and patient preparation. Tested data comes from eight differ-
ent institutions, with different imaging software (Siemens,
GE, Philips and Toshiba) and different scanning protocols.
The output of the system after being applied to these eight
datasets is formed by a total of 412 scans and 2,048 candi-
dates, from which 392 are polyps and 1,656 are false positive.
There is no further information about the specific cause of
the false positives.

A different dataset consisting in 1,368 candidates is used
for testing. In this dataset there are 168 polyps and 1,200
cases of false positives. Thus, in these experiments there is

a total of 3,416 polyp candidates, of which 60 % form the
training set and 40 % is used for independent testing.

5.1.2 Tagging and non-tagging data

The separation between the tagging data and the rest has been
done using a threshold of 250 HU. Thus, if a candidate has a
single voxel with a CT value ≥250, it is considered as tagging
data. In the training dataset of 2,048 candidates, there are 645
candidates (139 polyps and 506 false positives) that belong
to this group. Our aim is to distinguish between polyps and
false positives in the presence of tagging. A threshold in CT
image values of −64 is applied to this dataset for the classi-
fication as suggested in [10] to remove air from the region,
so what remains include soft tissue, tagging and bone.

As stated before, we also test EBS in non-tagging data.
The rest of the training data, i.e., 1,403 candidates (253 pol-
yps and 1,150 false positives) form the non-tagging data. For
these candidates, since we want to distinguish between cases
of polyps and false positives, which can result from a variety
of sources including fat tissue and untagged stool. We apply
a threshold of -439 HU [10] to just exclude the air.

Following the same procedure, the test dataset is divided
in 636 cases of tagging (42 polyps and 594 false positives)
and 732 cases of non-tagging data (126 polyps and 606 false
positives).

5.1.3 Results obtained

As depicted in Fig. 5, good separability is achieved with
PCA, ISOMAP and Laplacian Eigenmaps. In our experi-
ments we apply PCA for two main reasons. First, PCA is
faster than ISOMAP and Laplacian Eigenmaps. Second, the
generalization for new data with Laplacian Eigenmaps is not
as straightforward, whereas the generalization with PCA is
trivial to perform.

To generate the PDF we selected 1,064 bins which cover
the values from −64 HU to tagging agent values, which are
around 1,000 HU. The dimensionality and priors used for
projecting the data with the PCA have been found by a cross-
validation along the first 100 dimensions in the training data.
The number of dimensions for tagging and non-tagging data
is 12 and 15, respectively. Note that more dimensions are
required by non-tagging data. Afterwards, we classify the
projected data to identify polyps from false positives. In this
case we applied Naive Bayes classifier for tagging data and
QDA [30] for non-tagging data. Other classifiers have been
tested as linear discriminant analysis [31] or support vector
machines [32], with nearly identical results.

Finally, we point out that treating separately tagging and
non-tagging data yields a more reliable classification. Tag-
ging material causes undesired effects in CTC intensity val-

123



Erosion band signatures for spatial extraction of features 701

Table 1 Results obtained using EB signature for false positive reduc-
tion for the testing data after projection with PCA and classifying with
Naive Bayes classifier for tagging data and QDA for non-tagging data

No. of false Sensitivity (%)
positives (%)

Tagging-data (12D) 18.3 97.7

Non-tagging (15D) 9.3 98.81

Total (%) 27.6 96.4

Fig. 6 EB signatures for candidates of size 4 and 2 (top), 2 interpolated
(bottom left) and 2 zero-padded (bottom right)

ues. Therefore, mixing tagging with non-tagging material
may result in poorer discrimination by the classifier.

Table 1 shows results obtained. As we can see, EBS-
based classification using intensity values obtains 27.6 %
false positive reduction at 96.4 % of sensitivity of the original
CAD system. These results have been obtained by zero-pad-
ding the EBS corresponding to candidates of different sizes.
Results obtained by interpolation (see Fig. 6) are 8 % lower
in false positive reduction.

Finally, we point out that applying PCA directly to a PDF
obtained from the whole candidate, i.e., without performing
the iterative erosions, yields less than 12 % of FP reduction,
showing the improvement achieved by including EBS. Fur-
thermore, summarizing the information of each band with
statistical measures as standard deviation, maximum, mini-
mum, median or mean obtains meaningfully worse results.
All experiments performed in this direction, either by com-
bining these features in a single classifier or using a cascade of
classifiers, obtained less than 10 % of FP reduction. In addi-
tion, such approach implies the selection of multiple thresh-
olds, whereas EBS just requires a single linear classifier.

Clinically, this 27.6 % false positive reduction obtained
from a state-of-the-art CAD system implies one false positive
less per volume, which leads to a considerable improvement
to radiologists review of CAD findings.

5.2 Region-based tracking

The aim of this experiment is to show how EBS improves
a feature’s discriminative strength (as happened with inten-
sity in CTC images), rather than proposing a state-of-the-art
region-based tracking approach. To this aim, we used the
dataset presented in [5], which has been also used in [6]. The
dataset consists of 15 sequences. One of the sequences was
discarded since the face appearing initially was replaced by
other faces along the video until appearing again. In these
experiments we want to evaluate the accuracy and robust-
ness when tracking the same face/head. Among the rest of
the other 14 sequences, two of them have a ground-truth,
consisting in the coordinates of a manually selected cen-
ter of the head. These sequences contain 360◦ rotations of
the head (then the face disappearing) as well as changes in
scale.

For the EBS version of both histograms and spatiograms,
we placed the histograms/spatiograms corresponding to each
Bl one after the other to form the EB signature of the region.
The initial mask was manually placed. The search on a new
frame was done as in [5,6] with displacements in images
coordinates of ±6 and in scale of ±1. No gradient infor-
mation was included in order to demonstrate the potential
advantages of using EBS in a simple manner. Furthermore,
the addition of EBS yields a successful tracking in most of
the sequences without gradient information.

5.2.1 Comparison with histograms

Region-based tracking using histograms was applied to the
14 sequences as detailed in Sect. 4 and further detailed in [5].
The same procedure was applied with the incorporation of
EB signatures (EB histogram). For efficiency, the number of
bands for each region was fixed at L = 5. We manually ana-
lyzed results to detect two objective error measures: number
of times lost (head lost, mask somewhere else), and number
of frames lost (the amount of frames the head has been lost).
Table 2 summarizes results obtained. Histogram-based track-
ing loses the head a total of 22 times along the 14 sequences
summing up a total of 381 frames. EB Histogram approach
loses the head 6 times (54 % better) along 22 frames (94 %
improvement).

Table 2 Comparison between Histogram tracking and EB histogram
tracking

Histogram EB histogram

No. of frames lost 381 22

No. of times lost 13 6
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5.2.2 Comparison with histograms and spatiograms

In this experiment we used the ground truth facilitated with
two sequences called ‘sb’ and ‘mb’ of 500 frames each (which
represents the 52 % of the total frames in the dataset). For
each frame, an error is calculated with the Euclidean dis-
tance from the center of the mask (as found by each method)
and the ground truth. Methods compared in this experiment
were histograms [5], EB Histograms, spatiograms [6] and
EB Spatiograms. Results are graphically depicted in Fig. 7
and Table 3.

As explained in previous section, EB-histogram outper-
forms histograms. Quantitatively, histogram-based tracking
has an average error of 32.5 pixels in sb sequence against
23.84 pixels for EB-histogram and 35.83 pixels in mb
sequence against 12.12 pixels for EB-histogram.

Regarding spatiograms, unless that the curve depicted in
Fig. 7 draws a low error, spatiograms do actually not suc-
ceed in these two sequences. An example of the problem is
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Fig. 7 Error rates obtained for sequences ‘sb’ and ‘mb’ for all region-
based methods tested. Histogram clearly offers the worse performance.
EB versions of histograms and specially of spatiograms provide the best
performance

Table 3 Mean error along all sequence

Sequence sb Sequence mb

Hist. 32.57 35.83

EB hist. 23.84 12.12

Spatiog. 21.08a 21.57a

EB spat. 10.71 11.94

Error computed as the Euclidean distance between the benchmark and
the center of the mask as found by each method

Bold values indicate the lowest errors
a Until last correct frame

shown in Figs. 8 and 9 second row. The mask of the head
tends to grow until it covers almost the entire image, com-
mon error when no gradient information is used. EB-spa-
tiogram avoids this error, even without gradient informa-
tion. Since the head tends to be placed nearby the center
of the image, the error is apparently low. In order to give
the error for spatiograms shown in Table 3, we have subjec-
tively selected a frame from which we consider that tracking
is incorrect. The error is computed until those frames (see
Fig. 8). Actually, even when averaging the error along all
the frames for spatiogram, the error for EB-spatiogram is
lower (even the error for EB-histogram in sequence mb is
lower).

Finally, in Fig. 9, we show some frames of sequence mb.
In the first row, we show the frame 97, where both histogram
and spatiogram approaches lose the head. In the second row,
we show frame 400 where spatiogram, although having an
apparent low error, has actually lost the head.

These results point out that by adding erosion bands, the
performance of region-based tracking is improved in robust-
ness and accuracy.

6 Discussion

In this article we have presented EB signature for fea-
ture extraction. This method, originally developed for polyp
detection in CTC images, codifies the spatial coherence
(relations) of the features extracted in a single signature.
Its advantages are clear when compared to global mea-
sures such as histograms. The importance of erosion bands
is graphically depicted in Fig. 10. First row shows the
frame 120 from sequence mb and, in this order, presents
the histogram for the blue-yellow channel, histogram from
intensity channel and EB-Histograms for blue-yellow and
intensity as well. The second row in Fig. 10 shows the same
but for a different mask. It is clear that the portion of the
image contained in the first mask is different than the infor-
mation contained in the second mask. This difference is
not captured in the histograms, which are visually identi-
cal. However, these differences are well represented by EB
signatures.
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Fig. 8 Mask computed using spatiograms tends to grow until the tracking fails, as the tracker starts to focus more on the background. Adding EB
to spatiograms significantly improves the result

Fig. 9 First row Frame 97 (when histogram approach loses the head). Second row Frame 400. Apparently all methods provide a similar error rate
for this frame. Nonetheless, spatiogram tracking covers almost the whole image (head lost). EB spatiogram avoids this problem

Fig. 10 Including spatial coherence: visually clear differences in the portion of images contained by these two masks (depicted in red) are not
reflected in the blue-yellow and intensity histograms. EB signatures differ as the masks (and therefore the portion of image inside the mask) also
differ (color figure online)
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Interesting results are achieved when comparing to spa-
tiograms which, contrary to histograms, do include spatial
information. By adding EB analysis to spatiograms, track-
ing does not lose the head, whereas spatiograms fails.
The main advantage is that the spatial codification of the EB
signature is neither pure global nor strictly local, but some-
how in between. Hence, EB can be a method to add spatial
codification of the features, as in the case of polyp detection
or tracking with histograms, or complement other methods
as spatiograms.

Another point to consider is that the shape of the bands
can be adapted for a given application. For instance, in head
tracking, extracting a band for the hair, another for the chin
and neck and two for the face might help to further improve
the performance.

Finally, note that the size of the band in each application is
different. For the case of CTC images, the size of the structure
element (SE) should be as small as possible, since the objects
to detect are indeed small. In tracking, we found small dif-
ferences using a smaller SE. In this case is enough to include
enough bands as to distinguish between face, hair, and sur-
rounding, arguably the important transitions when looking
for a head. Smaller SEs would capture the same transitions,
but not a bigger one, which, in the limit, would result in the
global histogram. Summarizing, the size of the SE have to be
chosen in such a way that relevant parts of the object to be
detected are not included in the same band, as far as possible.

7 Conclusions

We have shown how EBS improves the discriminative stren-
gth of features used for object classification. It has been tested
in two different frameworks, namely, false positive reduction
in CTC CAD, as well as region-based tracking. The implicit
spatial codification of the EB signature better describes an
object (polyp, stool and fat tissue or a head in the second
experiment) than global or local computation of features. The
false positive reduction from a state-of-the-art system which
already used intensity is 27.6 % with a minimal loss in sensi-
tivity. This false positive reduction implies one false positive
less per volume, which leads to a considerable improvement
to radiologists review of CAD findings. We point out that the
data used in CTC CAD come from a state-of-the-art CAD
system. Consequently, our input is formed by a very chal-
lenging data.

Clear increasing in robustness and accuracy of region-
based tracking are also clearly better when adding EB analy-
sis of the region. Showing again how EBS can be successfully
used to include spatial information, improving detection per-
formance. It occurs also with spatiograms, proposed as a way
to include spatial information to histograms.

For both frameworks (CTC and tracking) more features
could be tested, as shape index in CTC or gradient informa-

tion for tracking. Nonetheless, results clearly demonstrate
the improvement achieved by EBS-based analysis.
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