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Abstract. The late gadolinium-enhanced (LGE) MRI technique is a well-
validated method for fibrosis detection in the myocardium. With this technique,
the altered wash-in and wash-out contrast agent kinetics in fibrotic and healthy
myocardium results in scar tissue being seen with high or enhanced signal rela-
tive to normal tissue which is ‘nulled’. Recently, great progress on LGE MRI
has resulted in improved visualization of fibrosis in the left atrium (LA). This
provides valuable information for treatment planning, image-based procedure
guidance and clinical management in patients with atrial fibrillation (AF). Nev-
ertheless, precise and objective atrial fibrosis segmentation (AFS) is required
for accurate assessment of AF patients using LGE MRI. This is a very challeng-
ing task, not only because of the limited quality and resolution of the LGE MRI
images acquired in AF but also due to the thinner wall and unpredictable mor-
phology of the LA. Accurate and reliable segmentation of the anatomical struc-
ture of the LA myocardium is a prerequisite for accurate AFS. Most current
studies rely on manual segmentation of the anatomical structures, which is very
labor-intensive and subject to inter- and intra-observer variability. The subse-
quent AFS is normally based on unsupervised learning methods, e.g., using
thresholding, histogram analysis, clustering and graph-cut based approaches,
which have variable accuracy. In this study, we present a fully-automated multi-
atlas propagation based whole heart segmentation method to derive the anatom-
ical structure of the LA myocardium and pulmonary veins. This is followed by
a supervised deep learning method for AFS. Twenty clinical LGE MRI scans
from longstanding persistent AF patients were entered into this study retrospec-
tively. We have demonstrated that our fully automatic method can achieve ac-
curate and reliable AFS compared to manual delineated ground truth.

1 Introduction

Atrial fibrillation (AF) is the most commonly observed cardiac arrhythmia that oc-
curs in up to 2% of the general population with increased prevalence in the aged pop-
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ulation [1]. AF can cause substantial morbidity and mortality; for example, it is asso-
ciated with a five-fold incidence of stroke, three-fold risk of congestive heart failure
and doubles the possibility of dementia that has a major worldwide public health im-
pact [2]. Currently, the pathophysiology of AF is not fully understood; however, pre-
vious studies on both animal and human experimental models have shown that multi-
ple disease pathways, e.g., structural, contractile, or electrical alterations, can promote
abnormal electrical impulse formation and propagation [3]. Fibrosis in the left atrium
(LA) is the hallmark of atrial structural remodeling, and is one of the major risk fac-
tors for AF progression [4, 5]. Moreover, studies have shown that ectopic beats from
the pulmonary veins (PVs) can frequently trigger the AF [6]. Based on these findings,
minimally invasive radio-frequency catheter ablation (CA) using the pulmonary vein
antrum isolation method has been developed as a front-line therapy for symptomatic
AF patients refractory to drug treatment [7], but suffers a >30% recurrence rate [8].

In order to understand AF and facilitate better management and prognosis, tech-
niques have been developed to evaluate the LA wall composition and assess the cir-
cumferential PVs scarring that results from CA. Currently, the electro-anatomical
mapping (EAM) system is used as a clinical reference standard technique for the as-
sessment of extent and distribution of native atrial fibrosis and post-ablation scar. This
is normally performed during an electrophysiological procedure and has the major
drawback of invasiveness and suboptimal accuracy, which has been reported as being
up to 10 mm in the localization of atrial fibrosis [9, 10]. Moreover, there are the po-
tentially hazardous effects of ionizing radiation for the patients using EAM.

In contrast, the late gadolinium-enhanced (LGE) MRI, which is noninvasive and
without ionizing radiation, allows the detection and quantification of native fibrosis
and post-ablation scars by highlighting the slow washout kinetics of the gadolinium in
these tissues [11-15]. Firstly, the extent and distribution of native fibrosis identified
in the pre-ablation baseline LGE MRI scan has emerged as the strongest independent
predictor of AF recurrence after the first ablation [13]. Secondly, LGE MRI can be
used as a powerful tool to detect ablation-induced fibrosis formed by radiofrequency
energy delivered in the atrial myocardium [11]. This has a potential role in recogniz-
ing ablation line gaps, which are the main reason of ablation failure [11, 16]. In addi-
tion, LGE MRI can be also useful to guide the ablation procedure [11, 17].

Despite the excellent results of using LGE MRI in the assessment of ventricular fi-
brosis and its promising potential in the detection of atrial scars, there are still chal-
lenges to be addressed when applying LGE MRI for AF patients in clinical practice:
(1) frequently the image quality of pre-ablation LGE MRI scans is poor due to residu-
al respiratory motion, heart rate variability, low signal-to-noise ratio (SNR), and
gadolinium wash-out during the long acquisition (current scanning time is around 6—
10 minutes per patient); (2) the resolution of LGE MRI images is limited compared to
the thinness (about 3 mm) of the LA wall; (3) the various morphologies of the LA
wall and PVs anatomy; and (4) confounded enhancement from surrounding heart
substructures, e.g., blood, aorta, spine, and esophagus. These can result in poor delin-
eation of the LA myocardium and cause a large number of false positives in the atrial
fibrosis delineation.



Essentially, there are two main steps required to analyze fibrotic tissues from LGE
MRI images: (1) segmentation of the anatomical structure of the LA and PVs and (2)
the atrial fibrosis segmentation (AFS).

For the segmentation of the anatomical structure of the LA and PVs, most previous
studies have relied on manual delineation [7, 13, 18, 19], which potentially suffers
from large inter- and intra-observer variability and is also very time-consuming.
Semi-automatic and automatic methods have been proposed to solve this task, e.g.,
using thresholding with region growing [20], statistical shape model [21] and atlas
propagation [22] based approaches. However, these methods required further opera-
tor’s manual intervention [20, 21] or used un-gated first-pass MR angiography
(MRA) data [22], which may cause difficulties in co-registration with the respiratory
and cardiac gated LGE MRI data.

For the AFS, to the best of our knowledge, most studies applied unsupervised
learning based methods, e.g., using histogram analysis [13], k-means clustering [18]
and graph-cut [21] based approaches. In addition, maximum intensity projection
(MIP) can provide intuitive visualization of the atrial fibrosis [11, 12, 20, 22]; howev-
er, this is only a visualization technique for hyper-enhancement regions, rather than a
segmentation method that can result in volumetric quantification [21]. Recently, a
grand challenge was carried out to benchmark different algorithms for solving AFS
[19] including 8 submissions for the competition. These benchmarked algorithms
were all unsupervised learning based methods [19]. The challenge included data ac-
quired from multiple institutions, and the LA endocardium and cavity for each scan
were provided to all the participants beforehand. Promising results were achieved for
the best performing algorithms. However, there were large variances in the perfor-
mances especially for the pre-ablation cases, which may be attributed to the fact that
the image quality was generally worse and the native fibrosis is more diffuse. There-
fore, the challenge of atrial fibrosis segmentation and assessment remains open.
Moreover, the inaccurate AFS could be one of the major reasons for poor reproduci-
bility of the correlation between atrial fibrosis identified by LGE MRI (enhanced
regions) and EAM (low voltage regions) [23], [24].

In this study, we present a fully automatic framework for an efficient and objective
atrial fibrosis assessment using: (1) a fully-automated multi-atlas based whole heart
segmentation (MA-WHS) method to solve the LA and PVs anatomy and (2) a fully
automatic supervised deep learning method for the AFS. Compared with the ground
truth formed by manual delineation, our fully automatic framework obtains promising
segmentation results, which are comparable to other state-of-the-art methods.

2 Method

2.1  Cardiac MRI Data Acquisition

Cardiac MRI acquisitions were performed on a Siemens Magnetom Avanto 1.5T
scanner. Transverse navigator-gated 3D LGE MRI [11, 13, 25] was performed using
an inversion prepared segmented gradient echo sequence (TE/TR 2.2ms/5.2ms) 15



minutes after gadolinium (Gd) administration when a transient steady-state of Gd
wash-in and wash-out of normal myocardium had been reached [26]. LGE MRI im-
ages were scanned with a field-of-view 380x380mm? and reconstructed to 60-68
slices at 0.75x0.75x2mm?,

In the LGE MRI images, healthy myocardium is ‘nulled’ and only fibrotic tissues
are seen with high signal; therefore, it is hard to extract the anatomical structure of the
LA and PVs directly from LGE MRI images. Instead of using un-gated MRA as pre-
vious studies described, in our study, a respiratory and cardiac gated 3D Roadmap
image, which is acquired using a balanced steady state free precession sequence
(TE/TR 1ms/2.3ms), has been scanned for each patient to derive the anatomical struc-
ture of the LA and PVs. Our roadmap data were acquired with a field-of-view
380x380mm? and reconstructed to 160 slices at 0.8x0.8x1.6mm?®,

Both 3D LGE MRI and Roadmap data were acquired during free-breathing using a
crossed-pairs navigator positioned over the dome of the right hemi-diaphragm with a
navigator acceptance window size of 5mm and continuously adaptive windowing
strategy based respiratory motion control [27].

2.2 Patients

Cardiac MRI was performed in longstanding persistent AF patients between 2011—
2013 in agreement with the local regional ethics committee. A Likert-type scale was
applied to score the image quality of each LGE MRI scan, e.g., 0 (non-diagnostic), 1
(poor), 2 (fair), 3 (good) and 4 (very good) depending on the level of SNR, appropri-
ate inversion time, and the existence of navigator beam and ghost artifacts.

Ten pre-ablation scans with image quality >2 have been retrospectively entered into
this study (~60% of all the scanned pre-ablation cases). To make a balanced dataset,
we randomly selected 10 post-ablation cases from all the 26 post-ablation scans with
image quality >2 (~92% of all the scanned post-ablation cases).

2.3 Anatomical Structure Delineation for the LA and PVs

In this study, we applied a MA-WHS method to segment the anatomical structure
of the LA and PVs [28]. This has been done on the Roadmap images and then mapped
to LGE MRI. Our segmentation consists of two major steps: (1) atlas propagation
based on image registration algorithms and (2) label fusion from multi-atlas propagat-
ed segmentation results as described in [28].

The whole heart atlases were constructed using 30 MRI Roadmap studies retrieved
from the Left Atrium Segmentation Grand Challenge organized by King’s College
London [29]. For each atlas dataset, we have manual labels of all the heart substruc-
tures including the right and left ventricles, the right and left atria, the aorta, the pul-
monary artery, the pulmonary veins and the appendages. MA-WHS executes the at-
las-to-target registration for each atlas dataset (A,, Ly|la = 1, ... N), where A, and L,
are the intensity image and the corresponding segmentation label image of the a-th
atlas (N = 30). Then a set of warped atlases can be derived {(4,,L,)|a =1, ... N}
for label fusion, which is achieved using local weighted and multi-scale based label



fusion (MSP-LF),

le{lpilial
where I, and [;, are the labels of the background and LA and PVs, respectively, and
the local weight w,(-) «< S(-) is determined by the local similarity S(-) between the
target image and the atlas. §(p, q) is the Kronecker delta function which returns 1
when p = q and returns 0 otherwise.
In MSP-LF, the local similarity of patches using a multi-scale strategy is computed
as follows,
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in which I® = I « Gaussian(0, o) is the target image from s scale-space that is
computed from the convolution of the target image with Gaussian kernel function
with scale s. Here, we computed the local similarity in multi-scale images using the
conditional probability of the images, that is
P(ix, jx)
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where i, = I)(x) and j, = A% (x) and the conditional image probability is obtained
from the joint and marginal image probability which can be calculated using the Par-
zen window estimation [30].

For each patient case, the Roadmap dataset was then registered to the LGE MRI da-
taset using the DICOM header data, and then refined by affine and nonrigid registra-
tion steps. The resulting transformation was applied to the MA-WHS derived cardiac
anatomy to segment the anatomical structure of the LA and PVs on the LGE MRI
dataset.

In this study, we validated the anatomical structure segmentation against estab-
lished ground truth from manual segmentations by experienced expert cardiologists
specialized in cardiac MRI. We evaluated the segmentation accuracy using Dice score
[31], Hausdorff distance (HD) [32] and Average Surface Distance (ASD) [31].

2.4 Training Datasets and Ground Truth Construction for AFS

The fixed-size window or regular pixel-grid is a traditional way to select patches
from larger images prior to feature extraction [33], and has been widely used in deep
convolutional neural networks based classification. In this study, we used a Simple
Linear Iterative Clustering (SLIC) [34] based method to partition pixels into meaning-
ful “atomic’ regions, i.e., super-pixels (SPs), based on certain similarity metrics (Fig.
1 (c)). In addition, SLIC based over-segmentation can be more consistent with the
object boundaries in the image and is able to avoid producing outputs with zigzag
boundaries that can be normally observed using relatively large sliding windows [33].

In order to create training datasets for our further supervised learning based AFS,
we asked experienced cardiologists specialized in cardiac MRI to perform manual
mouse clicks on the LGE MRI images to label the enhanced atrial fibrotic regions
(Fig. 1 (b)). These manual mouse clicks were done on the original LGE MRI images



without the SPs grid overlaid, as this would reduce the visibility of the enhancement
on LGE MRI images. The coordinates of the mouse clicks were used to select the
enhanced SPs. Only one mouse click is taken into account if multiple clicks dwell in
the same super-pixel.

As aforementioned, the anatomical structure of the LA and PVs was segmented us-
ing a MA-WHS method. Then a morphological dilation was applied (assuming the
LA wall thickness is 3mm) to extract the LA wall and PVs. The blood pool regions
were derived by another morphological erosion (5mm) from the endocardial LA
boundary and the pixel intensities throughout the image were normalized according to
the blood pool intensities [19]. We masked the selected enhanced SPs using the LA
wall and PVs segmentation. Only the SPs having a defined overlap (>20%) with the
LA wall and PVs segmentation were selected as enhancement (these enhanced SPs
were then labeled as 1). Other enhanced SPs were discarded as they were considered
to be enhancement from other confounded tissues. As seen in (Fig. 1 (e)), the other
SPs overlapped with the LA wall and PVs but not selected as enhancement were con-
sidered as unenhanced (these unenhanced SPs were then labeled as 0).

Once we extracted the enhanced SPs, they were combined to create a binary image,
i.e., 1 for enhanced SPs and 0 for unenhanced. The binary image was overlaid on the
original LGE MRI images and our cardiologists performed manual corrections to
create the final boundaries (ground truths) for the enhanced atrial fibrosis.
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Fig. 1. (a) Original LGE MRI image of a post-ablation example case; (b) Manual mouse clicks
performed by cardiologists to identify enhanced fibrotic tissues; (c) SLIC over-segmentation of
the original LGE MRI image (only a ROI of the LA region shown); (d) 3D rendering of the
MA-WHS results with 3D MIP based visualization of the enhanced fibrotic tissues; (e) Labeled
enhanced (yellow) and unenhanced (blue) SPs that will be used to train our classification mod-
el; (f) Zero-padded SP patches (yellow box: enhanced SPs and blue box: unenhanced SPs); (g)
SSAE based classification; (h) Visualization of the weights derived from the first auto-encoder.

2.5 Deep Learning via Stacked Sparse Auto-Encoders for AFS

After we obtained the over-segmented SPs, the Stacked Sparse Auto-Encoders
(SSAE) [35] were initially pre-trained in an unsupervised manner without using the
labels of the SPs. An auto-encoder neural network tries to learn an approximation to
the identity function to replicate its input at its output using a back-propagation algo-
rithm, that is X = hy p(X) = X, in which X = {x;, x;, ..., X, }, X € R™™ is a matrix



storing all the input training vectors x; € R™. Each input vector x; was formed by: (1)
zero-padding all the SPs into a 20 x 20 matrix, which is the smallest bounding box
for the largest super-pixel dimensions (Fig. 1 (f)), and (2) vectorizing the 20 x 20
matrix into a 400 x 1 vector. The cost function of this pre-training can be written as

m k
1 A
arg min Jo(W) == 3"lIz = /I3 + SIWUE + 6 ) KL(ollp)  (4)
wl 2m — 2 =
where m is the number of input training vectors, k is the number of hidden nodes, 4 is
the coefficient for the L, regularization term, 8 is the weight of sparsity penalty, KL is

the Kullback-Leibler divergence function KL(p||p;) = p logﬁ’% +(1-p)log 11__; P

] J
is sparsity parameter that specifies the desired level of sparsity, p; is probability of
firing activity that is p; = %Zﬁl h;(x;). The unsupervised pre-training is performed
one layer at a time by minimizing the error in reconstructing its input and learning an
encoder and a decoder, which yields an optimal set of weights W and biases b stored
in W, If the number of hidden nodes k is less than the number of visible input nodes
n, then the network is forced to learn a compressed and sparse representation of the
input [35] (Fig. 1 (g) and (h)).

Second, a Softmax layer was added as the activity classification model hq(x;) to
accomplish the SPs classification task [35]. In addition, it can be jointly trained with
the SSAE during fine-tuning of the parameters with labeled instances in a supervised
fashion. The weight matrix 6 is obtained by solving the convex optimization problem
as following.

m C
1
argmin J,(6) = == ) % 1 = c} log Py, = clx;: ) + 51015 (5
i=1c=1
where ¢ € {1,C = 2} is the class label, X = {(x1, V1), (X2, V), ewc» (X Yin), } TEPIE-
sents a set of labeled training instances, and the last term for the L, regularization.
Finally, fine-tuning was applied to boost the classification performance, and it
treats all layers of the SSAE and the Softmax layer as a single model and improves all
the weights of all layers in the network by using the backpropagation technique [35].
Hyper-parameters were not optimized explicitly but were determined via trial and
error. Here are the final defined hyper-parameters (values) used in this study: maxi-
mum epochs of the SSAE (200), maximum epochs of the Softmax and fine-tuning
(500), hidden layers size of the SSAE (100 and 50), sparsity parameter p (0.1), sparsi-
ty penalty g (5), L, regularization term A for the SSAE and the Softmax (0.0001).
For evaluation of the AFS, we used leave-one-patient-out cross-validation (LOO
CV) and reported the cross-validated accuracy, sensitivity, specificity, average area
under the receiver operating characteristic (ROC) curve (AUC), and the Dice score.

3 Results and Discussion

In this study, we proposed a fully automatic framework for the AFS, which is
based on the segmented anatomical structure of the LA and PVs using MA-WHS.



Fig. 1 (d) and (e) show the 3D MIP results overlaid on the segmented LA and PVs
and LA wall and PVs boundaries overlaid on a LGE MRI slice respectively. The
quantitative evaluations show that the MA-WHS based method achieved 0.90+0.12
Dice score, 9.53+6.01mm HD and 1.47+0.89mm ASD.

For the SSAE based SPs classification, we obtained LOO CV accuracy of 0.91,
sensitivity of 0.95, specificity of 0.75, AUC of 0.95, and the Dice score for the final
AFS was found to be 0.82+0.05.
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Fig. 2. (a) Boxplot for the comparison results of the Dice scores obtained by our fully automat-
ic framework and other four methods (Thr, SD4, KM and FCM+GC) with manual delineated
LA wall and PVs (+M); (b) Final AFS results (cyan regions) for an example pre-ablation (left)
and an example post-ablation (right) case compared to the ground truth (yellow regions).

In addition, for the AFS, we compared our fully automatic framework with existing
semi-automatic methods with manually delineated anatomical structure of the LA and
PVs. The four methods we compared in this study were described in the benchmark-
ing work [19], namely simple thresholding (Thr), conventional standard deviation (4
SDs were tested, i.e., SD4), k-means clustering (KM) and fuzzy c-means clustering
with graph-cuts (FCM+GC). Fig. 2 (a) shows that our fully automatic framework
obtained more accurate and more consistent results across 20 AF patient cases (Fig. 2
(a), red dots represent outliers), which can partly be attributed to the fact that our
method is based on supervised learning. Of note is that, while in the benchmarking
study these algorithms (i.e., Thr, SD4, KM and FCM+GC) were fine-tuned, in our
comparison study, we have only implemented standard versions without performing
further optimization. This is because details of the fine-tuning implemented for the
benchmarking study are not available and in any case, that fine-tuning was done for
datasets acquired in a different patient population to ours and may not be ideal. De-
spite this, similar performances were obtained between our implementation and those
reported in [12] especially for the pre-ablation cases. For the post-ablation cases, our
AFS results demonstrated similar results to the best-performing method reported in
[12] but with smaller variance; however, our method has the advantage of being fully
automatic. Of note is that multi-scanner and multi-institution datasets were used in the



benchmarking work and this may have resulted in a large variance in the images
which could affect the final AFS segmentation. One of our future studies will be ap-
plying our fully automatic framework on multi-scanners LGE datasets to validate its
robustness.

Fig. 2 (b) demonstrates that qualitatively our fully automatic AFS is in accordance
with the manual segmented atrial fibrosis. However, if there are enhancements from
the nearby mitral valve or blood pool regions, our method may mis-classify them as
enhanced atrial fibrosis that is the major contribution for the false positives.

Another possible limitation of our study is that the SSAE based classifier has many
hyper-parameters, which need to be carefully tuned, e.g., maximum epochs of the
SSAE, maximum epochs of the Softmax and fine-tuning, hidden layers size of the
SSAE, sparsity parameter p, sparsity penalty S, L, regularization term A for the SSAE
and the Softmax. Currently these hyper-parameters were tuned via trial and error,
which may limit the final classification accuracy.

4 Conclusion

In conclusion, we have developed and validated a fully automatic framework to
segment atrial fibrosis from LGE MRI images that is based on accurate anatomical
structure delineation via a MA-WHS algorithm. The evaluation has been done on 20
LGE MRI scans for longstanding persistent AF patients that contain both pre-ablation
and post-ablation cases. Based on the results, we can envisage a straightforward de-
ployment of our framework for clinical usage. As a future direction, we will develop a
more robust parameter tuning method for the applications on multi-scanners datasets.
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