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Abstract. This paper presents an automated detection method for identifying colonic
polyps and reducing false positives (FPs) in CT images. It formulates the problem of
polyp detection as a probability calculation through a unified Bayesian statistical model.
The polyp likelihood is modeled with a combination of shape and intensity features. A
second principal curvature PDE provides a shape model; and the partial volume effect is
considered in modeling of the polyp intensity distribution. The performance of the
method was evaluated on a large multi-center dataset of colonic CT scans. Both
qualitative and quantitative experimental results demonstrate the potential of the
proposed method.
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1 Introduction

Typical approaches to computed tomography (CT) colonography (CTC) CAD can be
classified as shape-based. Shape-based methods typically rely on various shape features
derived from either first-order differential geometric quantities [1] or from second-order
quantities computed by use of Hessian matrices [2-4]. The shape features take advantage of
the fact that polyps tend to have rounded shapes or at least contain local spherical elements,
whereas colonic folds have elongated shapes. However, in practice, polyps are often
abnormal growths that exhibit varying morphology, and shape-based methods may fail to
detect polyps with sufficient reliability. Therefore, in addition to shape-based features, other
features such as those based on appearance can also be used to improve detection
performance. Appearance-based features include image intensity either directly or indirectly
through intensity related features, which take advantage of the fact that polyps typically
exhibit a slightly elevated intensity and inhomogeneous texture relative to the surrounding
mucosal tissue.

Our goal in this paper is to incorporate shape features with appearance features in a unified
Bayesian framework to reduce false positives (FPs) in colon CAD. For each voxel within the
candidate region, our method estimates the probability that the voxel is contained within a
polyp. The advantages of a Bayesian technique are as follows. First, statistical techniques are
ideally suited to modeling the large uncertainty inherent in detection problems in medical
imaging. Second, there often is useful medical knowledge (such as lesion density, size, shape,
etc.) that can be utilized to constrain the solution of detection problems. This prior medical
knowledge can be easily encoded into a Bayesian model. Finally, a Bayesian technique
provides a unified framework for incorporating various features F into one statistical model.

Mendonca et al. [5] formed a probability distribution function for each voxel in the image
based on simplified geometric models (ellipsoidal polyps, spherical colon wall, etc.), which
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preclude a specific training step. However, these parametric models have limited capability to
model the complexity of actual polyps in the human anatomy. Our approach uses a more
expressive shape model that has been shown to model the variation in polyp shapes. Also, the
proposed framework includes prior medical knowledge through explicit learning based on
labeled examples. To our knowledge, this is the first time such a learning-based Bayesian
approach for modeling the likelihood of polyp voxels has been proposed in a CTC CAD
system.

The proposed method has been applied to the candidate regions found by our previous
CAD algorithm [6]. Quantitative evaluation on a large multi-center clinical dataset of colonic
CT scans shows the excellent performance of the method, which reduces the FPs by an
average 16%, while keeping the same sensitivity.

2 Method

We are given a set of voxels Xz{xi,izl,...,N} in a 3D image, a set of features
F:{Fj, jzl,...,M} associated with each voxel x;, and a set of labels Az{lo...ZKfl}.

Here, we use K=2, where, /,is a non-polyp label, whereas [, is a polyp label. This paper

focuses on assigning one of the labels to individual image voxels within a candidate region
based on a probability calculation through a unified Bayesian framework. Two features are

considered: the intensity / and shape S; namely, F; =1 ,F, =S . Whereas we focus on these

two features, the framework is extensible to other features as well.
Assuming that each feature /', is conditionally independent, the probability of a polyp

label at each pixel can be calculated based on Bayes’ law:
() PV PN _ ) ) L)
P(F) P(F,)-P(F,)

(1)

The posterior, likelihood, and prior terms are P(X |F), P(F |X ) and P(X ) In this
paper, a uniform prior is used.

The goal is to use Eq. 1 to model the probability of a polyp label existing at each voxel
within each candidate region. A block diagram of the proposed method is illustrated in Fig. 1.
Below each stage is described in detail.
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Fig. 1. Block diagram of the proposed Bayesian method for FP reduction
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2.1 Modeling the likelihood term

In the Bayesian framework, the likelihood term indicates the joint density distribution of all
features for class /. It is noted that, to calculate each feature accurately, during the pre-
processing step, a Gaussian filter is applied to remove noise.

2.1.1 Intensity model

It is well known that CT images exhibit a
partial volume effect (PVE) due to the
limitations in scanning resolution. For tissues
like polyps near air, the boundary of the polyp
may appear darker than that of its central
region as a result of the PVE. Assume that a
polyp has a hemispherical shape and contains

two parts: a core part (r, ) with mean
intensity ¢, and a PVE part (A») with the
mean intensity x, . Fig. 2 is a schematic

diagram of the polyp.

For the purpose of false-positive reduction,
the candidate region’s size can be incorporated
into the intensity model to address the PVE.
For each candidate region, a sub-image is extracted. The polyp intensity model varies for
each polyp region and can be given by a Gaussian function:

P(F|x)= exp(— R =3 1)2j = exp(— s _;2[1)2} @)
1 7

Fig. 2. A schematic diagram of colonic polyp

where £, can be defined as a function of potential polyp size (e.g., radius r), namely,
H, = f(r). Given the whole polyp radius asr =7, + Ar, the mean intensity of a polyp is
adaptively determined as:

/’llz.f./’l]c_‘_(l_.f)'/’l]p (3)
where f is the fraction of the core part’s volume compared to the whole polyp’s volume,
namely, f=7*/r*=(—Ar)/r.

When a polyp is very small, there might be no core part, namely ». =0 and /=0, so the
mean intensity £, depends on the mean intensity of PVE g, . In contrast, when a polyp is

very large, e.g., »r —o, we have f =1, and the mean intensity £, depends on the mean
intensity of the core part.

2.1.2 Shape model

The second principal curvature (K2) partial differential equation (PDE, or flow) for polyp
detection was recently introduced by van Wijk et al. [4]. Our aim in this section is to model
the K2 flow feature’s distribution and combine it into the joint statistical likelihood term of
the Bayesian framework.
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The vast majority of polyps are raised objects protruding on the colon surface, which
means that their first and second principal curvatures have positive values. In contrast,
colonic folds are elongated structures, bent only in one direction, and correspondingly exhibit
a positive first principal curvature and a close-to-zero second principal curvature. Therefore,
for detection of polyps, a flow based on the second principal curvature can be designed that
affects only points with a positive second principal curvature in such a way that the second
principal curvature decreases. Repeated application of the PDE on an image will gradually
deform the image, reducing and then removing surface protrusions.

A PDE flow to remove protruding objects can be defined as

or _ [~ky(x,)- V1| (ky(x,) > 0) ()
o |0 (ky(x,)< 0)

where kz(xl.) is the second principal curvature at image voxel x;, and \V[ \ is the gradient

magnitude of the input image.

Based on Eq. 4, the image intensities exhibit a small (if any) change for folds, and a large
change for protruding objects (such as polyps). During each iteration, only at locations of
protruding objects is the image intensity reduced by an amount proportional to the local

second derivative k, . After the PDE reaches a steady state, the difference image D between
the input and the deformed images indicates the amount of protrusion. By design, it
discriminates between polyps and folds and is robust to different polyp morphologies and
sizes. A truncated Gaussian function is used to model the polyp likelihood as a function of

the intensity difference F,> = D. The truncated Gaussian function allows a larger range of
voxels with high K2 flow have high probability of being polyp labels.

R\
P(F2k2|X):exp[_25—2M]’ when F2 > o, PUR X)) =1 (5)
k2

where 4, and J,, are the mean and standard deviation (std), respectively, determined

through a training dataset.

We compared this K2 flow to other second-order shape features such as the shape index
[2]. Fig.3 shows a comparison applied to two polyps (a) (with one polyp attached to the
colonic wall, whereas the other polyp is attached to the colonic fold). It can be seen that both
the intensity likelthood map (b) and the shape likelithood map (c and e) are highlighting the
polyps. However, compared to the shape likelihood map calculated based on the shape index
(c), the proposed K2 difference map (e) shows a superior performance with very few false
regions in the entire sub-image. Fig. 3(f) is the final polyp probability map from the intensity
and K2 flow likelihoods (Eq.1). It is noted that, by use of the proposed Bayesian method with
the K2 flow shape model, both polyps can be detected and properly segmented from the
surrounding tissues.
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Fig. 3. Results of the Bayesian method comparing two different shape features on two polyps (a) CT
sub-image; (b) intensity probability; (c) shape index probability; (d) joint (Bayesian) probability based
on intensity and shape index probability; (¢) K2 flow difference image; (f) joint (Bayesian)
probability based on intensity and K2 probability.

3 Experimental Results and Discussion

The proposed Bayesian method has been trained and evaluated on CT colon images. The
entire dataset is divided into a training set and an independent testing set. There are 68 scans
containing 70 polyps in the training set. The training set is used to optimize model
parameters. In this paper, each feature likelihood term in Eq. 1 is associated with one rule for
polyp detection. The parameters for each model that provide good cut-off in a ROC curve are
chosen.

In our previous work, we have developed an entire automatic CT colonic polyp detection
algorithm [6]. The aim of this experiment is to use the proposed Bayesian method for further
removal of false regions. For each candidate region, a polyp probability map based on a
Bayesian framework (Eq.1) is calculated, where, the intensity model is based on Eq.2 and the
K2 feature is used for the shape model. Hysteresis thresholding and 3D labeling are then
applied on each probability map. If a candidate region contains a set of 3D connected voxels
with high probabilities of “polypness”, the region is kept as a potential polyp region.
Otherwise, the region is considered to be a non-polyp region and is removed from the polyp
candidates.

For a quantitative evaluation of the performance, the method has been tested on our latest
independent dataset of 59 patients (118 CT volumes) of prone and supine volumes collected
from 4 institutions, with a total of 75 polyps. Fig. 4 shows FROC curves based on our
previous CAD algorithm only and the further FP reduction based on the proposed Bayesian
method. It can be seen that, with the same sensitivity, the Bayesian method reduces the FPs
by an average of 16%. For example, with a sensitivity of 93.3%, the FP rate can be decreased
from 6.2 per volume to 5.2 per volume after applying the Bayesian method. As we keep the
same sensitivity for the proposed method, the improved curve looks a shift compared to the
previous curve. This demonstrates the effectiveness of the proposed algorithm in the false-
positive reduction. (It is noted that, in this experiment, the sensitivity is measured per polyp,
that is, if a polyp is detected on either or both volumes, it is considered a true positive, and
false positives are measured per volume, as is the convention in CTC).
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Fig. 4. FROC curves demonstrating the improvement of the Bayesian approach compared to our
previous CAD algorithm.

4 Conclusion

We have presented a Bayesian approach to the reduction of false positives in CTC CAD. For
each candidate region, the polyp likelihood is modeled by use of a combination of shape and
intensity features. The second principal curvature flow is used as a shape model, while PVE
is considered into modeling of the polyp intensity distribution. The proposed method has
been applied on the candidate regions obtained from our previous CAD algorithm [6] on a
multi-center dataset of colonic CT, and it shows an average 16% reduction of FPs while
keeping the same sensitivity. The method provides a robust and consistent performance.

The Bayesian framework is general and can be flexibly extended to incorporate other
features, Indeed, one could imagine incorporating other image features (location, texture) as
well as patient informatics (age, family history of colorectal disease) for robust detection. The
algorithm can also be easily adapted to candidate generation step of CAD system.
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