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Abstract

This paper presents a novel 3D deformable surface that
we call an active polyhedron. Rooted in surface evolution
theory, an active polyhedron is a polyhedral surface whose
vertices deform to minimize a regional and/or boundary-
based energy functional. Unlike continuous active surface
models, the vertex motion of an active polyhedron is com-
puted by integrating speed terms over polygonal faces of
the surface. The resulting ordinary differential equations
(ODEs) provide improved robustness to noise and allow for
larger time steps compared to continuous active surfaces
implemented with level set methods. We describe an elec-
trostatic regularization technique that achieves global reg-
ularization while better preserving sharper local features.
Experimental results demonstrate the effectiveness of an ac-
tive polyhedron in solving segmentation problems as well as
surface reconstruction from unorganized points.

1 Introduction

Active surfaces, the 3D version of 2D active contours,
are an essential component of many computer vision and
image processing techniques. After a surface is initialized
in 3D space, it is subjected to various forces to evolve (or
deform) it to solve a variety of problems, such as segmen-
tation, shape modeling, multi-view 3D reconstruction, and
more.

1.1 Related work

In general, two representations of an active surface are
commonly used: explicit and implicit. Explicit representa-
tions [4, 6, 10, 11, 14] have been used in numerous medical
imaging problems, including the segmentation of anatom-
ical structures from 3D ultrasound, which is our primary
application. An important explicit representation is a mesh
composed of triangles in 3D space, precisely the surface
representation we employ in this paper.

While it is possible to model topological changes us-
ing an explicit surface representation, an advantage of the
second major category of segmentation approaches, those
based on implicit representations [1, 3, 9, 15], is that they
can automatically change topology when necessary. In par-
ticular, the method presented in [1] uses statistical modeling
of data inside and outside a contour to achieve ultrasound
segmentation; however the amount of noise in the examples
we segment is typically much larger.

Several other techniques for ultrasound segmentation
that do not use deformable models also exist. For example,
Boukerroui et al. [2] present a multi-resolution framework
with estimation of local textural and acoustic features of the
ultrasound data to increase robustness against speckle noise.

1.2 Our contribution

Although the function that controls the speed of each ver-
tex in either the explicit or implicit schemes may depend on
a local, regional, or global statistic or descriptor, the mo-
tion of each vertex is not coupled to its neighbor vertices
or adjacent faces. In this paper, we present a polyhedral
surface that we call an active polyhedron, which integrates
these forces once more over the polyhedral faces, effec-
tively providing a lowpass filtering effect on the data mea-
surements. Consequently, the active polyhedron approach
differs significantly from previous 3D active surfaces and
offers increased robustness to noise, including speckle noise
that is observed in ultrasound data. This type of noise is
spatially correlated and contaminates pointwise image mea-
surements. As a result, an active polyhedron is much less
prone to segmentation errors resulting from local variations
in the speed function, and in such cases, will be more ef-
fective at aligning its faces with the target structure. Com-
pared with previous methods, our active polyhedron model
prefers well-separated vertices since the information is be-
ing accumulated over adjacent faces of a vertex to deter-
mine its motion. This idea builds upon Unal et al.’s active
polygon framework [12, 13], which accumulates 2D image
information over adjacent edges of a 2D polygon’s vertex.



In addition to contributing this active polyhedron model, we
present the general theory describing its evolution by deriv-
ing the vertex motion using surface evolution theory. We
also formulate the extension of 2D electrostatic regulariza-
tion into 3D, which requires special attention to achieve the
desired regularization.

The rest of this paper is organized as follows. In Sec-
tion 2, we derive the vertex motion of an active polyhedron
and discuss our 3D electrostatic regularizer. Next, in Sec-
tion 3 we describe implementation details. Then, in Sec-
tion 4 we present some experimental results that demon-
strate the usefulness of the proposed method in solving seg-
mentation problems as well as reconstruction from unorga-
nized points.

2 Active Polyhedron

In this section we derive, for the first time, the equation
of motion for an active polyhedron by minimizing an energy
functional using gradient descent. This derivation is based
on that of the 2D active polygon [13], however, is quite dif-
ferent due to the 3D surface we use and its parametrization.

We begin with a surface S : R? — R3 around a re-
gion R C R3, as well as a function f : R® — R, and use
the divergence theorem to express the energy of the surface
computed over R as a surface integral over OR,

E(S):///Rf(x,y,z)dxddeZ//SZBR<F,N>dS,
(1)

where N denotes the outward unit normal to S, and F
is chosen so that V - F = f, dS is the differential area
on the surface, the surface is parameterized by S(u,v) =
(z(u,v),y(u,v), z(u,v)), and {-) is the inner product oper-
ator.

Next, we take the derivative of FE(S) with respect to a
variable p whose variation affects the geometry of the sur-
face, but is independent of the parametrization variables
(u,v). This derivative can be shown [16] to have the form

B, - | /S £(S,, N)dS. @)

Equation 2 applies both to a continuous active surface as
well as a surface discretely sampled using a polygonal
mesh.

Let us now add the constraint that S be a mesh of [V
triangles. S;, the ith triangle of S, can be parameterized as

Si(u, U) = Vi; + uei; + vea;, (3)
where points vi;, Vo, and vs; are triangle vertices, triangle

edge vectors e1; = Vo;— V14, €; = V3;— vy, andu € [0, 1]
and v € [0,1 — u] are the parametrization variables over

(b)

Figure 1. The vertices and edges used in the
parametrization of a triangle are shown in (a).
Any point on the triangle can be expressed as
x; = (vi; + ueq; + veg;). In (b), vi’s neighbor
triangles D, are shown.

which the integrals in the equations below will be evaluated.
A depiction appears in Figure 1(a).

With this parametrization, we can express Equation 2 as
a sum of piecewise continuous integrals over the triangle
faces,

N
EP(S) = Z//S f(V11+Ue1Z+U82L)<SILp,NZ>dSZ (4)
i=1 i

Next, we define S;,, for vertex vy as

(1—u—v)e7 SiEDk(S)
0, otherwise

Sip(’LL,'U,Vk) - {

where Dy, is the set of M surface triangles that neighbor
vertex vy, as depicted in Figure 1(b), and e denotes one of
the standard basis vectors for R?, (i.e., [1,0,0]7, [0, 1, 0],
or [0,0,1]T). We evaluate Equation 4 with p equal to one
of coordinates of vy, yielding

Ep(S) = f(Si(u,v))((1 —u—v)e,N;)dS;
= (e,N;) (1—u—0)f(S;(u,v))dsS;.
Si,EZDk //SL

If we introduce a time variable ¢ and evolve coordinates
(24, i, 2;) in the gradient directions given above, we obtain
the following gradient flow for the vertex vy,

% B s%:ak //s,,,(l_“‘“)f (Si(u,v))dS;N(6)
= A(vy)

Equation 6 is an ordinary differential equation that describes
the vertex motion of the active polyhedron. This equa-
tion can be computed using M K? operations, where K is
the number of samples (in one dimension) on a triangle at



which the integration occurs. Note that Equation 6 is sig-
nificantly different than previous models as the function f
is integrated over triangular faces rather than applied point-
wise. As we shall see, this integration of f provides added
robustness to noise. Also note that the image-based data
term f in Equation 6 is completely general, allowing one to
design different flows for solving various problems.

2.1 Electrostatic Regularization

The flow of an active polyhedron may, under the sole
influence of a data term, become irregular when a vertex
becomes infinitesimally close to a non-neighbor face of the
polyhedron. To address this issue, we incorporate a natural
regularization term introduced in [13] that is based on elec-
trostatic principles. However, the 3D version of this regu-
larization requires special attention so that it achieves the
desired effect.

The electrostatic regularization technique models a uni-
form charge density \ along each surface triangle. This
charge density induces a global electric field G € R?
that applies a repulsive force at each vertex. To compute
the electric field at a general point p € R3, we must
consider the differential electric field dG(p) exerted by a
charged particle at location x; on triangle S;. As given by
Coulomb’s law [7], the electric force is inversely propor-
tional to the square of the Euclidean distance ||p — x;||?
between the charged particles, and directed along the vector

(P—xi)/[lp—xll-

Z// To=x @

where x; = (vy; +uey; +vesy;) isapointon S;, and n = 3.

While using n = 3 in Equation 7 will impart a repul-
sive force to a surface vertex, it fails to become singular
as the vertex approaches the surface. This can be easily
demonstrated if one considers a vertex p = [0,0, 2]7 di-
rectly above a disk of uniform charge and radius r as de-
picted in Figure 2. In this case, basic electromagnetics tells
us the electric field is

z
G =2tA (1l — —— | 2, 8
and thus
lin% G(p) = 2w )\z. )

Instead, we would prefer an electric field that goes
to infinity in the limit as the vertex moves towards the
charged surface in order to prevent the surface from self-
intersecting. To accomplish this, we set n = 4 in Equa-
tion 7. It is simple to verify that using n = 4 satisfies this
requirement.

*--p N>

=

Figure 2. Electric field of a disk of charge.

There are several ways to make use of the electrostatic
force to displace vertex vj to regularize the surface. Per-
haps the most thorough method would be to integrate the
field G at each point p € Dy, weighted by (1 — u — v) so
that points closer to vj, contribute more to the regulariza-
tion, i.e.,

d
%: Z // (1—u—v)G(x;)dS;, (10)

Jj= IS €Dy,

where each G(x;) is computed over the L triangles Cj, =
S \ Dy (to avoid unwanted infinities). However, for
each vertex, such an approach requires solving sums of
quadruple integrals, which has computational complexity of
LM K* operations.

To reduce the computational load, we instead choose to
compute the vertex displacement as

> M

i=1,8,€C}, Hp—

vk

a Bl =

dSz, (1)

which, for each vertex, has computational complexity of
LK? operations. We have found that in practice this simpli-
fied approach offers sufficient regularization and is reason-
ably fast. This electric force is designed to be insignificant
when vy, is not very close to the surface triangles in Cy, but
becomes influential, even dominant, when the vertex gets
very close to triangles in Cy.

Note that this regularization approach differs signifi-
cantly from standard methods such as Laplacian smoothing,
which tend to shrink the surface and often produces overly
smooth rounding at points of high curvature.

3 Implementation
3.1 Flow

We combine Equations 6 and 11 to yield the vertex flow

vk

prai aA(vy)

+ (1 = )B(vi), 12)



where « is a constant that weights the data term relative to
the regularization term. In practice, we have found a value
of a = 0.95 to offer good performance. With this heavier
weight on the data term, the regularization only contributes
significantly to the flow when degeneracy occurs, allowing
for the data term to govern the evolution during most of
the evolution. Since updating a single vertex requires (L +
M)K? = NK? operations, the computational complexity
of our model is N2 K? operations for each time step.

3.2 Mesh Operations

While the surface is deforming, it is necessary to perform
some mesh operations to ensure that the mesh has a proper
vertex distribution. Towards this goal we implement some
standard mesh operations:

1. Edge split. This operation splits any edge whose
length goes above a maximum length. A new vertex
is placed at the center of the edge, and each triangle
that included the edge is split into two, as shown in
Figure 3.

2. Edge collapse. This operation collapses any edge
whose length goes below a minimum length. The two
vertices that comprise the edge are merged to one ver-
tex, as shown in Figure 3.

3. Face split. During evolution, the magnitude of the im-
age force applied to each face is computed. If face
splitting is enabled, the triangle with the largest mag-
nitude force is split into three triangles by placing a
new vertex at the triangle center, as shown in Figure 3.
The intuition here is that the edges with higher image
speeds are close to image structures that may require
finer details. Face splitting is enabled periodically dur-
ing the surface flow.

These operations allow the surface to grow and to shrink;
however, topological changes are not currently supported in
our implementation. For many applications this is an advan-
tage rather than a disadvantage. Techniques such as [5] re-
quire special algorithms to keep the topology of the level-set
surface simple because it is very easy for implicit surfaces to
break or leak to surrounding unrelated regions while prop-
agating. This is not a problem for our model. On the other
hand, topology adaptivity can be added to an active polyhe-
dron as has been done in other mesh-based approaches such
as [8, 11].

3.3 Speed term

3.3.1 Region-based functional for segmentation

As mentioned previously, the image-based speed term f de-
scribed in Equation 6 has a general form that can be cus-
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Figure 3. Mesh operations. The topmost
mesh is refined using the edge split opera-
tor (lower left), edge collapse operator (lower
center) and face split operator (lower right).

tomized for specific tasks. For image segmentation, we em-
ploy the piecewise constant region-based energy functional
that uses mean statistics [3],

f(x) = =(I(x) —m)* + (I(x) —my,)?,  (13)

where [ is the 3D image, x is a point on the surface, m; and
m, are the mean values of [ inside and outside the poly-
hedron, respectively. This speed function is well suited to
the segmentation of noisy images, as it does not rely on the
image gradients. The voxels inside and outside the surface
are found via scanline rasterization of the polyhedron.

3.3.2 Boundary-based functional for reconstruction
from unorganized points

For reconstructing surfaces from unorganized points, we
follow the example of [15] who implement a gradient flow
on a distance volume to find the minimal distance surface.
That is,

f(x) = —~VD(x) - N(x), (14)

where D is a distance volume formed by placing the un-
organized points into a volumetric grid and computing the
unsigned distance at each voxel to the closest unorganized
point, and N is the surface normal.

4 Experimental Results

We now present experimental results showing an active
polyhedron’s ability to segment 3D image data and to re-
construct surfaces from unorganized points.

4.1 Validation

First, we validate the active polyhedron using ground
truth data. For comparison, we also produce results using
continuous active surfaces implemented with level set meth-
ods.



Our first example consists of a 1283 volume of synthetic
ultrasound data. The data suffers poor contrast and corrup-
tion by speckle noise, a common form of ultrasound noise
resulting from coherent backscattering of echo signals. In-
side the volume is a darker cylindrical structure of radius
10 units and height 64 units that simulates a blood vessel.
We segment this data by placing a cube inside and at one
end of the vessel, and evolve the active polyhedron using
the speed term of Equation 13 and the electrostatic regu-
larizer. Figure 5 shows the evolving active polyhedron for
t = 0,10,20,30, and 35 iterations, upon which the sur-
face converged. On the right of Figure 5 we show the seg-
mentation result achieved with the same data term and a
curvature-based regularizer using a continuous active sur-
face implemented with level set methods. Notice that result
obtained with the active polyhedron is much smoother due
to the integration of the data term along each triangle face,
compared to the pointwise motion of the continuous active
surface, which suffers multiple topology changes and leak-
ing due to the speckle. Although it is possible to increase
the regularization of the continuous active surface, doing so
results in unsatisfactory results as the data term becomes
ineffective in being attracted to target image features. The
active polyhedron model produces better segmentation re-
sults, as is visually apparent in 2D slices of the volume,
shown in Figure 4. Furthermore, in Table 1 we compute
the surface area and volume of the segmentation results and
compare them to the ground truth. The erratic shape of the
continuous active surface results in over twice the actual
surface area, while the active polyhedron more faithfully
represents the shape.

In Figure 6 we reconstruct sphere from point cloud data.
We generated a “clean” set of 625 points by sampling the
equation of radius = 15 sphere to produce the point cloud
on the top left of the figure, and in the bottom left of the fig-
ure we perturbed each point by adding zero-mean Gaussian
distributed noise in the range [—10, 10] to each coordinate
of each vertex and adding 5% outliers uniformly distributed
in the volume to produce a “noisy” point cloud. We embed-
ded the point cloud in a 64 grid and formed an unsigned
distance volume. The middle figures show the result of re-
constructing a surface from the unorganized points using a
level set implementation and Equation 14 with a curvature-
based regularizer, while the right figures show the result of
using the active polyhedron, Equation 14, and the electro-
static regularizer. As expected, the reconstruction of the
clean data results in a polyhedral representation of a sphere.
The reconstruction of the noisy data shows the susceptibil-
ity of the continuous active surface to local noise variations.
However, the active polyhedron produces a smoother, more
spherical surface due to its integration of the speed terms on
the polygonal faces.
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Figure 4. 2D slices showing the segmenta-
tion results of Figure 5. In (a) and (b) we
show slices 50 and 90 used with the polyhe-
dral model. In (c) and (d) we show the same
slices from the segmentation result using a
continuous active surface implemented with
level set methods.

4.2 Applications

The active polyhedron excels at representing polyhedral
shapes, but since triangle meshes are such a powerful shape
representation, the method also is useful for representing
more organic shapes, such as those found in medical imag-
ing. The improved robustness to noise helps prevent erro-
neous segmentations.

In Figures 7 and 8 we demonstrate a segmentation of
a darker structure in breast ultrasound data. Such struc-
tures are often candidates for tumor analysis in computer
aided diagnosis applications. In (a) and (b) of each figure,
we show the segmentation using a continuous active sur-
face implemented with level set methods. As with the syn-
thetic example in the previous subsection, the continuous
surface breaks apart and takes on an irregular shape due to
the speckle noise; so much so in Figure 8 that the result is
nearly unusable. In (c) and (d) of each figure we show the
result using the active polyhedron. As expected, the active
polyhedron produces a much less ragged result due to its in-
creased robustness. We have observed similar results with
other noisy ultrasound images.

We used an active polyhedron to segment an atrial cham-
ber from a 2563 volume of cardiac ultrasound data. The re-
sults are shown in (a) and (b) of Figure 9. In (a), we show
the 3D polyhedral surface overlaid with a slice through the
volume, and in (b), we show the corresponding 2D slice.
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Figure 5. 3D segmentation using an active polyhedron. Left to right: 0, 10, 20, 30, and 35 iterations
(using a time step of 1.0). For comparison, on the far right is the segmentation result using a
continuous active surface implemented with level set methods (using a time step of 0.125 to satisfy
CFL conditions).

Approach Volume (units®) | Surface Area (units?)
Ground Truth 20106 4649
Continuous (Level sets) 21096 11510
Discrete (Active polyhedron) 19230 4867

Table 1. Volume and surface area, ground truth and estimated, for the ultrasound example of Figure 5.

Figure 6. Reconstructing a polyhedral sphere from clean (a) and noisy (b) point cloud data. Left to
right: Point cloud data, continuous reconstruction using level sets using a time step of 0.125, discrete
reconstruction using the active polyhedron using a time step of 1.0.

As another example, we used an active polyhedron to seg-
ment the trachea from a 256 x 256 x 319 volume of lung CT
data. The results are shown in (c) and (d) of Figure 9. In
(c), we show the 3D polyhedral surface overlaid with a slice
through the volume, and in (d), we show the corresponding
2D slice.

We reconstruct a surface of part of the human ear canal
from point cloud data obtained by laser scanning a mold
formed in a person’s ear. The point cloud data was placed
into a 128 volume and the active polyhedron was used re-
construct the surface at different resolutions, as shown in
Figure 10. We run a similar experiment for reconstructing
the Stanford bunny in Figure 11, that later of which shows

an example with more interesting geometry. As the resolu-
tion of the surface increases, more details emerge. As one
further increases the resolution of the active polyhedron,
finer surface details are modeled. However, for regularity
and robustness to noise, the active polyhedron prefers well-
separated vertices.

5 Conclusion

In this paper we presented a novel deformable surface, an
active polyhedron, for 3D medical image segmentation, and
additionally show its use in reconstructing surfaces from un-
organized points. Starting with the general theory of surface



(b)

(©

Figure 7. Using an active polyhedron to segment breast ultrasound data. We show a 3D segmentation
using a continuous surface implemented with level set methods (a) and a slice through segmented
volume (b). We repeat the experiment using the active polyhedron and show the results in (c) and

(d).

Figure 8. Another breast ultrasound example. Continuous surface (a) and (b), and active polyhedron
(c) and (d). Note that the active polyhedron solution is much more robust.

Figure 9. Using an active polyhedron to segment 3D medical data. In (a) and (b) we show a segmen-
tation of an atrial chamber from ultrasound data, and in (c) and (d) we show a segmentation of the
trachea from CT data. A time step of 1.0 was used in both evolutions.

evolution, we derived the equation of motion of a polyhe-
dral surface by minimizing an energy functional using gra-
dient descent. We also described an electrostatic regularizer
that preserves sharper features but prevents the surface from
self-intersecting. We then demonstrated the usefulness of
an active polyhedron in segmenting noisy 3D medical im-
ages, as well as reconstruction from unorganized points, and
offered a comparison to a continuous active surface imple-
mented with level set methods. While more in-depth exper-
imentation is required, from our results we conclude that
the integration of the speed term over the active polyhe-

dron’s faces results in significant robustness to noise. The
increased time step one can use in the active polyhedron
framework is an additional benefit that, depending on the
number of triangles used in the mesh, can result in faster
evolutions than narrowband level set methods. However,
due to space constraints, we do not present runtime results
in this paper.

Like many deformable surfaces, the active polyhedron
described in this paper is capable of mesh refinement, but
does not support topological changes. This is not neces-
sarily a disadvantage, as in many applications the topology
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Figure 10. Using an active polyhedron to reconstruct a portion of a human ear canal shape. Left:
point cloud. Next: reconstruction with edge length = 40, 25, and 10 units. Right: slice going through

distance volume upon convergence.

Figure 11. Different resolutions of reconstruc-
tions of the Stanford Bunny from point cloud
data. A time step of 1.0 was used.

of the object being segmented is known a priori, and topo-
logical changes are undesirable [5]. However, it would be
possible to incorporate topological operations [4, 8, 11] into
our model. This is left for future work.

The quality of the results of presented in this paper
are dependent on the image-based terms we implement to
evolve the active polyhedron, particularly for segmentation.
More advanced functions that rely on higher order statistics,
probabilistic measures, and textural properties [2, 13] will
likely be required to further improve results. We believe
that the active polyhedron framework is very promising and
could also be applied to problems in object recognition, 3D
tracking, and multi-view stereo reconstruction.
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