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Abstract tation, and thereby reduces the noise in the problem of reg-
istration. In this paper, we present a feature-based registra-
We present a registration framework based on feature pointstion framework for anatomical 3D surfaces. Surfaces are
of anatomical 3D shapes represented in the point cloud do-assumed to be similar in the sense of possessing anatomi-
main. Anatomical information is utilized throughout the cal regions of the same meaning but with varying geometry
complete registration process. The surfaces, which in thisamong objects. Our particular interest is for the registration
paper are ear impression models, are considered to be sim-of human ear impression models for the manufacturing of
ilar in the way that they possess the same anatomical re-hearing aids especially between left and right ear impres-
gions but with varying geometry. First, in a shape analy- sion of one person. In general it can be used to register any
sis step, features of important anatomical regions (such aspair of human ear impression models.
canal, aperture, and concha) are extracted automatically.
Next these features are used in ordinary differential equa-
tions that update rigid registration parameters between two
sets of feature points. For refinement of the results, the
GCP algorithm is applied. Through our experiments, we

The importance of development of a specific registration
algorithm for this application is derived from the objec-
tive of automating the workflow with different techniques
such as binaural processing - a simultaneous manipulation
demonstrate our technique’s success in surface registration®! €ft and rightear impressions which requires a robust reg-
through registration of key anatomical regions of human |strz_at|on_bet\(veen them. On the other_hand, afeature-ba_sed
ear impressions. Furthermore, we show that the proposedreg'Strat'O” is essential because during the manufacturing

method achieves higher accuracy and faster performanceprocess that will follow the registration, parts of the sur-
than the standard GCP registration algorithm face are cut and therefore do not play as important a role in
registration as other anatomical regions. This is the reason

why our algorithm needs to be anatomically aware. Another
concern in our application is the speed of the registration
process, which will be incorporated into a rapid prototyp-
ing system. Therefore, using a limited number of feature
points is necessary and very advantageous.

1 Introduction

Registration of surfaces is a fundamental task with numer-
ous applications in different fields such as computer vision
and medical imaging. In general it is defined as alignment A typical ear impression model, also known as an ear
between surfaces by means of certain transformations, forshell, consists of approximateB0, 000 points. Included
instance, rotation and translation. in this point set are some important anatomical landmarks

Given two 3D surfaces, whether from a same or a differ- such as the ear canal, aperture, concha, and cymba, as de-
ent shape class, the problem of generic registration is a diffi-picted in Figure 1. Please refer to [1] for a detailed expla-
cult one usually due to large variability in the inter-shape or nation of these key anatomical features. The organization
even intra-shape classes. Particularly, direct registration be-of the paper is as follows. In Section 4, we discuss auto-
tween two 3D surfaces represented as point clouds may bematic detection of feature points. In Section 5 we present
prone to errors due to the high dimensionality of the shapethe feature-based alignment using a variational approach. In
space in which the anatomic structures are represented. ExSection 6, feature-based refinement for the final registration
traction of useful and relevant feature points from the shapesphase is described. Section 7 presents experimental results
provides a dimensionality reduction in the shape represen-followed by the conclusions in Section 8.



ture extraction stage, correspondences between two sets of
points that belong to anatomical regions of the same mean-
ing have to be found.

Our goal is to utilize the compact information provided
by a set of feature points in description of a surface to aid
in the registration between two shapes. The main idea is
to automatically detect feature points from key anatomical
regions of the ear impression surfaces and to utilize this in-
formation throughout the complete registration process.

Figure 1: A human ear impression depicts important Particularly with regard to hearing aids, the aperture

anatomical landmarks such as the ear canal, aperture, conf€9i0n is one of the most important features [23]. Con-
cha, and cymba on the surface. sequently, our registration method first performs a pre-

registration by rigidly aligning the aperture region of the
impressions. We define an energy functional based on the
L? distance between the apertures, derive ordinary differen-
2 Related work tial equations to update the rigid registration parameters be-
tween these feature points, and minimize this energy func-
As mentioned in [2] there are four approaches to repre-tjong| in a variational framework. Upon convergence, we
senting a surface for the sake of registration: point—based,apmy the estimated registration parameters to the entire
feature-based, and model-based methods as well as tecr’ghape to achieve a reasonable pre-alignment.
niques based on global similarity. The point-based and  ajthough for this type of registration there are closed
model-based methods [3, 4, 5] do not attempt to reduce theform splutions such as Horn's method [24] based on unit
surface representation to a more compact description; rathegyaternions, we found that our iterative solution is more in-
they use all, or a large subset of all, points [6, 7, 8, 9, 10]. tuitive, and easy to use.

By extracting feature points from a shape, one can re- |y order to improve the results, we perform a second re-
duce the dimensionality of shape representation and usgjnement step using a denser set of feature points and the
these lower dimensional but more robust features for regis-gcp algorithm. As in the pre-registration, this refinement
tration. Examples include generalized cylinders [11], super step focuses on anatomic regions of the surfaces that are
quadrics [12], geons [13], deformable regions [14], shock of special importance with respect to the similarity of two
graphs [15], medial axes [16], and skeletons [17, 18, 19]. ear impressions. The final registration results are computed
Our previous research shows that for the case of registramore quickly and have significantly higher accuracy in the

tion Of ear impreSSiOI’l models with 3D Ske|et0nS, SometimESCanaL aperture’ and concha regions than the standard GCP
reasonable results can be obtained but in general their userggistration algorithm.

fulness is limited to rather rough alignments [19].
Landmarks or features extracted from the input medical . .
data are widely used in feature-based surface registratiord ~ Automatic Shape Analysis
[2, 20]. Most commonly, landmarks are identified manually,
which may be tedious to determine and less repeatable tharf0 achieve our goal of registration of ear impressions with
those that are automatically extracted. respect to important anatomic regions such as the aperture,

Two point sets are usua”y registered by iterative|y min- canal and concha, we must first detect these regions from
imizing a global function such as the sum of squared dis- the ear impression. The detection is automatic and is based
tances between mutually closest points of two surfaces. Dif-0n the analysis of scan lines that slice through the surface.
ferences between many of these methods exist strictly at théPuring the laser scanning of an impression, the bottom of
level of the choice of distance metric and of the methods of the surface is invisible, which results in an open bottom of
optimally finding a match based on this metric. Besl and the surface as shown in Figure 2.

McKay [21] propose the well known Iterative Closest Point ~ From this, we detect the bottom opening of the raw im-

(ICP) method as a solution to this problem. Variants of the Pression (see Figure 2) calculating the first two principal
ICP algorithm are discussed in [22]. components of the bottom contour. The bottom plane is

used to find the tip of the canal (the topmost point in the
vertical direction). We then perform a scan in the orienta-
3 Proposed Approach tion perpendicular to the plane.
The aperture of a human ear impression is considered
We consider anatomical regions of surfaces as landmarksas a characteristic contour that connects canal and remain-
and present them as sets of 3D points. After the initial fea- ing impression body. In other words, it is the entrance of

Aperture

Crus

Canal

Concha

¥ cymba




G

Sy

Figure 2: The bottom plane is defined by the first two prin-

ciple components of the boundary points. Figure 4: Calculation of the projection differende for
contour linec;. Vectorv7; shows how the contour point
vectors are defined: from the center of the contotar the
actual contour poini.
\\\
<2
center of the contour, which was extracted at scan levél
is inserted to the aperture profile. The observation shown
in Figure 3(b) led us to use a weighted filter that assigns
(b) weights of higher importance to canal and concha area. This
filter rule (1) works on the first derivative of measures cal-

Figure 3: The set of contours, shown in (a), is obtained by culated on each scan line contour, and helps extraction of
a vertical scan of the surface. In (b), the positions of signif- &" aperture profile function whose maximum value defines

icant changes of contour shapes are highlighted by rectanine contour index corresponding to the aperture scan line
gles. contour.

valy = fi - (di —di—1), fi=1—-i/N,2<i< N (1)
pos = argmax (val;) — 1,1 <pos < N—-1 (2)
the canal. An analysis of adjacent contour lines reveals a ¢
significant change of contour shape around the aperture potn Equation (1)V denotes the number of contour lines. Fig-
sition, and additionally in the area where the concha mergesure 4 shows a schematic top view of aperture profile contour
into the lower part of the surface, as shown in Figure 3(b). lines. The smaller contours depict canal and concha area
We use this observation to detect the aperture as describedespectively. Points of liné are considered as vectofs
in Section 4.1. Due to the anatomical importance of the originated in the contour line center. The valljaneasures
aperture feature, in the variational pre-alignment phase dis-the difference between the two maximum projection values
cussed in the next section, we use feature point4setb- of these vectors onto the second principal compoment
tained from the aperture contour as depicted in Figure 6.  of the lowest contour liney. In this way one would ex-
pect that the first-order backward differente— d; _; has
4.1 Aperture detection iFs maximum value at the desired objept position as high-
lighted with the upper black rectangle in Figure 3(b). The
In Figure 3(a) a complete scan profile of an ear impressionuse of contoury for this purpose is justified by its con-
is depicted in which different colors indicate that more than sistent geometrical properties and topological relations to
one contour line exist at a particular scan level. If that is other object parts like canal, concha and cymba despite of
the case we want to exclude contour lines, as marked inthe diversity among shapes.
the same figure and keep only lines along canal and lower However, our experiments show thit— d;_; alone is
impression part. Usually the number of contour lines at one not robust enough to handle all cases. Especially objects
level will not exceed a value of three. The remaining set of with a shallow concha tend to be candidates for misclassifi-
contour lines - the Aperture profile - is shown in Figure 3(b). cations. In those cases contours below the expected aperture
We extract the aperture profile from the complete set of become more favoured. As a countermeasure differences of
vertical scan lines starting at the canal tip downwards to thesubsequend; are weighted with factof;, which assigns in
bottom of a surface. If there is only one contour line at scan a way a higher importance to the canal region. An exam-
level i it is directly considered as part of the aperture pro- ple output of Equation (1) is shown in Figure 5. Equation
file. In case of more than one contour line at scan lével (2) determines the aperture, which is one contour position
only the contour whose center has minimal distance to theabove the contour extracted with Equation (1).
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Figure 5: Factorf; (b) assigns decreasing weights to the first-order backward diffekéneel; _; (a) leading to the output
of equation (1) shown in (c). The high peak at contour position 9 indicates that the aperture is located at position 8.

(b)

Figure 7: In (a), the red arrow points at the cymba region.
Contours emphasized with red color indicate a topological
split at that particular scan position. The second contour
marked with red color refers to the concha position. In (b),
we show the initial point set, and in (c), the points closer to

4.2 Detection of feature points for the refine-  the detected cymba poipt, have been removed.
ment registration

The second phase of the registration uses a denser set dfom concha to cymba. Expressigp — c|| favours points
points that come from canal, aperture, and concha. Thes&f the cymba region and fact%m provides a direc-
are the regions to which the hearing aid device will be fitin tional constraint which gives a higher weight to the surface
a patient's ear. Another reason why these points are uniquepart where the red arrow in Figure 7 (a) points at.
is the fact that left and right ear impression of one personare We subsample the contour points to produce an initial
most similar in these regions. Accordingly, we do not want feature point set, shown in Figure 7 (b). We avoid sampling
to include points from the cymba region in this step, as the the ear canal tip as it will be removed from the surface dur-
cymba will be removed during the manufacturing process. ing detailing. Next, only those points that are closer to the
To detect the cymba, we look for topological splits of the aperture center tham,. are kept, resulting in a set of points
contour. These can occur both at the concha and the cymbalP that primarily belong to canal, aperture, and concha. An
as shown in Figure 7 (a). example appears in Figure 7 (c), which consists of approxi-
From our experiments we learn that not all impressions mately200 points, which is a very compact shape represen-
do have this clear topological split at the cymba position. In tation when compared to the original input point set with
order to free us from the distinction between the topological order 0f30, 000 points. Point sef is used in the final re-
change in the contour for the concha and cymba we definefinement phase of the registration of a given object with the

a reference poinp . that is definitely located in the region template object given as dense set of points.
of the cymba:

Figure 6: Reduced point set (yellow, red) that will be
used in the variational alignment stage.

_ p—c _ .. . )
pr= argglg;g{ e © lp —c ||} J=zll=1 @ 5 Variational Registration
In equation (3)P refers to the set of all considered contour Given two aperture point set4 ; and A ; of 3D ear shell

points,c is the center point of the aperture contour ants surfaces, we will derive a set of ordinary differential equa-
the z-axis of the local coordinate frame, which is oriented tions (ODES) to estimate the rigid registration parameters



that transform shell 1 to shell 2. We first explain how we 5.2 Variational Optimization
find the correspondences between the two feature4ets
and A 5 using anatomical information from the ear impres-
sion geometry. Then we present the variational solution to
the rigid registration of two point sets.

We want to register two vectors of feature points; and

A,. That is, we want to estimate the six rigid registra-
tion parameters: three parameters for 3D transldfioand
three parameters for 3D rotatidR which map one of the
aperture vectors onto the other one. In order to write a cost
functional which expresses the estimation error for the reg-
istration between the two feature vectors, first we have to
find the correspondences between the aperture points. We
) o resort to the correspondence finding algorithm mentioned
In order to find the best pair-wise correspondences between, ;e 1o tackle this problem.

two sets of aperture points, we consider their relation with — afar we obtain the information necessary to compare
rgspect tothe gI_obaI surfa_ce. Forthis we define al_ocal COOraherture points, we can write an energy functional, which
dinate system (illustrated in Figure 8) in the following way: penalizes the squarekf distance, and vanishes when the

the y-direction is defin_ed by the plang normal Pf the cut- gecond feature vectod , perfectly matches the first one
ting plane for the vertical scan. Its orientation is assumed 4 .

. . 1-
to b_e off the genter of mass. Thedlrectlon_ rgpresents the E(R,T)=||A,— (R -A,+ T)H2 4)
main orientation of the lower surface pointing from canal . . )
to cymba and the second major direction defines:thgis ~ Representing the aperture points as a set of 3D points:
which points from canal to concha. Essentially this coor- A= [X 15X 2, X, andAQ =[Y1,Y ...V,
dinate system is used to extract the reduced set of featurdVNeren is the number of points, we have:
points from the aperture contour in a defined order. Fig- n
ure 8 shows the local coordinate systems of a left and right E=Y|IX,- (RY;+T)|". 5)
ear impression model positioned in the center of the scene i=1
and the resulting important aperture points. Starting at thein this equation, we use the corresponding points from the
red point the circulation continues at the position with the two apertures in the summation of the Euclidean distances
yellow point and so on which defines the correspondencepbetween the points oft ; and the transformedi,. The
order. In our experiments we have used a set of 16 aperturdirst variation of this cost functional w.r.t. the translation
points plus three additional points: the aperture center pointparameterd™™, k = 1, ..., 3 are given by:
and the center points of two canal contour lines above the

5.1 Solving the correspondence problem

k n
aperture contour (Fig.6). We sample the contours in a sim- or — Z <[X;,—(RY,;+T), 8l >, (6)
ilar fashion to produce the feature points in the refinement ot =1 ’ oT*
registration step.
where
oT (1) or (V) or 8
71: ) 72: ) 73: )
oT 0 oT 0 oT 1
and < .,. > denotes an inner product in 3D Euclidean
space.

For defining rotation in 3D, we use exponential (a.k.a.
twist) coordinates where a 3D vectar = (wy, ws, w3)
represents the rotation matrix, and operations can be carried
easily as in the translation vector (for details see [25]). The
skew symmetric matrix correspondingdo is given by

0 —w3 W2
Figure 8: Shown are two 3D point clouds of a left and right e wu?; U? _Z)Ul
— w2 1

hearing aid shell model from the same person together with
their local coordinate systems. The red line represents the, ., the rotation matrix i&
z-axis, the blue line stands for thyeaxis and the yellow line
for the z-axis.

= ¢W . Then the first variation
of the cost in (5) w.r.t. rotation parameters are given by:
ow” "
— = X, —(RY;+T)],R
o =2 <X~ (RY;+T)

i=1

ow
Wyi >, (7)



where

X 0 ) Z; A -Y;
g“’lYi: ~Zi ,%Y; 0 ,%Yi: Xi |
w Y; w _X, w 0

Note that as the initial condition for these ordinary dif-
ferential equations, we také' = 0, 72 = 0, 72 = 0,
and similarly,w, = 0, wy =0, ws = 0, which is equiva-
lent to takingR = I (identity matrix). Furthermore, every
timew = (w1, wq,ws) is updated, the new rotation matrix
can be computed as

R = cos(t)I +sin(t)w , +(1—cos(t))w ,w T,

wheret = [|lw ||, w, = ¥ [25]. We use the simple gra-

Hence we find the motioAR , T" ) that minimizes the sum

of the leastV squared individual distancéd = d?(R,T')

in Equation (9) by means of an algorithm based on the con-
cept of conjugate gradients [28, 26]. We numerically solve
for the derivatives of the error function (9) using finite dif-
ferences.

Additionally we want to steer the registration process
with information about important object regions. As dis-
cussed in Section 4, the important object regions are aper-
ture, concha, and canal. One way to express importance is
to assign weights to points depending on their position. The
most promising weight function we found is a step function
that rejects points not belonging to important object parts.
In this way we avoid biasing the registration, and instead fo-
cus only on the canal, aperture, and concha regions to which

dient descent method with momentum in order to optimize
the motion parameters [26].

Since the pre-alignment registers a reduced set of points,
it is fast, and gives an excellent initialization for subsequent 7
refinement. While it would be possible to adapt the varia-

tional approach to refine the registration using more points ossessment of the required level of accuracy in registration
of the shells, we would again face the problem of finding s an application-dependent problem. It is important to re-
corresponding points between the two surfaces. Instead, afyjize that shapes of ear impressions can vary with respect
ter the_ apertures are aligned using Fhe variational approa_c:ht0 their similarity from almost equal up to very different.
we refine the alignment by performing dense surface regis-yigry similar are usually a left and right ear impression from
tration using a variant of the iterated closest point (ICP) al- the same person. To obtain an accuracy characterization in
gorithm_, which does _not_require e_xplicit correqundences.genera| we focus on the overlap accuracy of three impor-
This refinement step is discussed in the next section. tant visual landmarks namely aperture, concha and (lower)
canal. We measure the registration accuracy with the root
mean square value (MSE) of the sum of the distances be-
tween the two feature point sets.

We compare our framework (including feature detection
and registration) with the standard GCP registration tech-
In this section we address the alignment problem of two pre- nique when applied to ear impression models. While our
registered ear impression models given as 3D dense pointnethod uses a reduced set of important anatomical points,
sets, say? andM . We choose to work with the Grid Clos-  GCP considers all points of the surface to be registered.
est Point (GCP) algorithm [27], which works well in prac-  Figure 9(a) shows the unregistered state of surface
tice and is exceptionally fast. This algorithm determines the (yellow) and surfaces, (blue). The feature points used for
corresponding (closest) model data poildSin every GCP the final registration with our method and the calculation of
step. the MSE are shown in Figures 9 (b) and 9 (c). Figure 10 de-

Again for a Euclidean motion with rotation matrii® picts the alignment betwee$y andS» from three vantage
and translation vectdr’, denote the transformed points of points using our method (left). Now we repeat the experi-
the data seP by ment and registes, with S; by using only GCP with the
complete dense point set 6f. The result is presented in
Figure 10 (right). A comparison of the visualizations shows
that our method achieves a better overlap with respect to im-
portant object parts. After applying GCP one can see that
especially the concha area is not well matched. The accu-
rate overlap of this object part is of specific importance for
binaural processing.

For both registration methods the same points as illus-
trated in Figure 7 (c) are used in order to calculate the MSE.
2 Table 1 presents a comparison between the GCP registra-

(10) tion technique and our method. We used a data set of 30 ear

the hearing aid will be fit.

Experimental results

6 Final Refinement Step in Registra-
tion

pi(R,T)=Rp,+T,1<i<N (8)

Hence, we wish to minimize the sum of the squared indi-
vidual distanced”*:

N
E=Y E, ©)
i=1

with

Ei

arg min _||lm —p;(R,T)||-pi(R,T)
meM
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Figure 9: The initial position of surfac&, (yellow) andS; (blue) is shown in (a). Our method uses the highlighted points
shown in (b) and (c) for the final registration. The calculation of the MSE using these points allows a comparison with other
registration algorithms.

Our method (1) GCP (2) Our method (2) GCP (2) Our method (3) GCP (3)

Figure 10: Example for the registration of two ear impression models. Three pairs of figures depict the result from three
different vantage points using our method (left) and GCP (right). Notice the different accuracies with respect to the concha
region.

Our method GCP 8 Summary and Conclusions
MSE | Time (seconds) MSE | Time (seconds
0.31 22 1.83 180 We presented a registration framework based on feature

points of anatomical 3D shapes represented in the point
cloud domain. Surfaces are considered as similar in the way
that they possess the same anatomical regions but with vary-
ing geometry. The first step is to detect features of impor-
tant anatomical regions automatically. We derived ordinary
differential equations to update six registration parameters
(translation and rotation) between two sets of feature points

round the aperture. Applying the estimated parameters to
he corresponding shapes, our algorithm achieves a fast and
accurate pre-alignment. In order to refine the results the
GCP algorithm is applied, with emphasis on the points of
'{mportant object regions.

Table 1: Comparison of our method with GCP.

impression models, and the average MSE values reporte
in Table 1 support the visual inspection results that our al-
gorithm achieves a more accurate registration particularly
w.r.t. important and relevant anatomical landmarks. An ad-
ditional a_dvantage as can be observed from the table is tha Our experiments reveal that compared to the standard
our algorithm runs much faster than the standard GCP algo-gcp technique for surface registration in the point cloud
rithm. domain, our algorithm achieves more accurate results by
exploiting anatomical information throughout the complete
In Figure 11 we present two more examples of our registrati_on process. Another beneficial property of our al-

. o . gorithm is that it is fast because of the limited number of
method, showing the initial stage in the left column and the points involved in the process. Although in this paper we fo-
result after applying the registration in the right column re- cyssed on the fast and accurate alignment of ear impression
spectively. The yellow colored surface serves as registrationsyrfaces, this framework can be applied to the registration of
template. Notice the successful overlay of Canal, Conchaany structures for which importance can be assigned to dif-
and Aperture. ferent regions although their detection will vary from case



(Initial position)

(Result)

(Initial position)

(Result)

Figure 11: Examples for the registration of two ear impression models with our method.

to case. Besides the integration of the registration frame-[13] K. Wu and M. Levine, “Recovering parametrics geons from
work into our current software system for binaural process-
ing, one of our future goals is to find a more general feature [14] R. Basri, L. Costa, D. Geiger, and D. Jacobs, “Determining
detection approach in order to minimize heuristic decisions
for the detection of important anatomical regions.
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