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Abstract

We present a registration framework based on feature points
of anatomical 3D shapes represented in the point cloud do-
main. Anatomical information is utilized throughout the
complete registration process. The surfaces, which in this
paper are ear impression models, are considered to be sim-
ilar in the way that they possess the same anatomical re-
gions but with varying geometry. First, in a shape analy-
sis step, features of important anatomical regions (such as
canal, aperture, and concha) are extracted automatically.
Next these features are used in ordinary differential equa-
tions that update rigid registration parameters between two
sets of feature points. For refinement of the results, the
GCP algorithm is applied. Through our experiments, we
demonstrate our technique’s success in surface registration
through registration of key anatomical regions of human
ear impressions. Furthermore, we show that the proposed
method achieves higher accuracy and faster performance
than the standard GCP registration algorithm.

1 Introduction

Registration of surfaces is a fundamental task with numer-
ous applications in different fields such as computer vision
and medical imaging. In general it is defined as alignment
between surfaces by means of certain transformations, for
instance, rotation and translation.

Given two 3D surfaces, whether from a same or a differ-
ent shape class, the problem of generic registration is a diffi-
cult one usually due to large variability in the inter-shape or
even intra-shape classes. Particularly, direct registration be-
tween two 3D surfaces represented as point clouds may be
prone to errors due to the high dimensionality of the shape
space in which the anatomic structures are represented. Ex-
traction of useful and relevant feature points from the shapes
provides a dimensionality reduction in the shape represen-

tation, and thereby reduces the noise in the problem of reg-
istration. In this paper, we present a feature-based registra-
tion framework for anatomical 3D surfaces. Surfaces are
assumed to be similar in the sense of possessing anatomi-
cal regions of the same meaning but with varying geometry
among objects. Our particular interest is for the registration
of human ear impression models for the manufacturing of
hearing aids especially between left and right ear impres-
sion of one person. In general it can be used to register any
pair of human ear impression models.

The importance of development of a specific registration
algorithm for this application is derived from the objec-
tive of automating the workflow with different techniques
such as binaural processing - a simultaneous manipulation
of left and right ear impressions which requires a robust reg-
istration between them. On the other hand, a feature-based
registration is essential because during the manufacturing
process that will follow the registration, parts of the sur-
face are cut and therefore do not play as important a role in
registration as other anatomical regions. This is the reason
why our algorithm needs to be anatomically aware. Another
concern in our application is the speed of the registration
process, which will be incorporated into a rapid prototyp-
ing system. Therefore, using a limited number of feature
points is necessary and very advantageous.

A typical ear impression model, also known as an ear
shell, consists of approximately30, 000 points. Included
in this point set are some important anatomical landmarks
such as the ear canal, aperture, concha, and cymba, as de-
picted in Figure 1. Please refer to [1] for a detailed expla-
nation of these key anatomical features. The organization
of the paper is as follows. In Section 4, we discuss auto-
matic detection of feature points. In Section 5 we present
the feature-based alignment using a variational approach. In
Section 6, feature-based refinement for the final registration
phase is described. Section 7 presents experimental results
followed by the conclusions in Section 8.



Figure 1: A human ear impression depicts important
anatomical landmarks such as the ear canal, aperture, con-
cha, and cymba on the surface.

2 Related work

As mentioned in [2] there are four approaches to repre-
senting a surface for the sake of registration: point-based,
feature-based, and model-based methods as well as tech-
niques based on global similarity. The point-based and
model-based methods [3, 4, 5] do not attempt to reduce the
surface representation to a more compact description; rather
they use all, or a large subset of all, points [6, 7, 8, 9, 10].

By extracting feature points from a shape, one can re-
duce the dimensionality of shape representation and use
these lower dimensional but more robust features for regis-
tration. Examples include generalized cylinders [11], super
quadrics [12], geons [13], deformable regions [14], shock
graphs [15], medial axes [16], and skeletons [17, 18, 19].
Our previous research shows that for the case of registra-
tion of ear impression models with 3D skeletons, sometimes
reasonable results can be obtained but in general their use-
fulness is limited to rather rough alignments [19].

Landmarks or features extracted from the input medical
data are widely used in feature-based surface registration
[2, 20]. Most commonly, landmarks are identified manually,
which may be tedious to determine and less repeatable than
those that are automatically extracted.

Two point sets are usually registered by iteratively min-
imizing a global function such as the sum of squared dis-
tances between mutually closest points of two surfaces. Dif-
ferences between many of these methods exist strictly at the
level of the choice of distance metric and of the methods of
optimally finding a match based on this metric. Besl and
McKay [21] propose the well known Iterative Closest Point
(ICP) method as a solution to this problem. Variants of the
ICP algorithm are discussed in [22].

3 Proposed Approach

We consider anatomical regions of surfaces as landmarks
and present them as sets of 3D points. After the initial fea-

ture extraction stage, correspondences between two sets of
points that belong to anatomical regions of the same mean-
ing have to be found.

Our goal is to utilize the compact information provided
by a set of feature points in description of a surface to aid
in the registration between two shapes. The main idea is
to automatically detect feature points from key anatomical
regions of the ear impression surfaces and to utilize this in-
formation throughout the complete registration process.

Particularly with regard to hearing aids, the aperture
region is one of the most important features [23]. Con-
sequently, our registration method first performs a pre-
registration by rigidly aligning the aperture region of the
impressions. We define an energy functional based on the
L2 distance between the apertures, derive ordinary differen-
tial equations to update the rigid registration parameters be-
tween these feature points, and minimize this energy func-
tional in a variational framework. Upon convergence, we
apply the estimated registration parameters to the entire
shape to achieve a reasonable pre-alignment.

Although for this type of registration there are closed
form solutions such as Horn’s method [24] based on unit
quaternions, we found that our iterative solution is more in-
tuitive, and easy to use.

In order to improve the results, we perform a second re-
finement step using a denser set of feature points and the
GCP algorithm. As in the pre-registration, this refinement
step focuses on anatomic regions of the surfaces that are
of special importance with respect to the similarity of two
ear impressions. The final registration results are computed
more quickly and have significantly higher accuracy in the
canal, aperture, and concha regions than the standard GCP
registration algorithm.

4 Automatic Shape Analysis

To achieve our goal of registration of ear impressions with
respect to important anatomic regions such as the aperture,
canal and concha, we must first detect these regions from
the ear impression. The detection is automatic and is based
on the analysis of scan lines that slice through the surface.
During the laser scanning of an impression, the bottom of
the surface is invisible, which results in an open bottom of
the surface as shown in Figure 2.

From this, we detect the bottom opening of the raw im-
pression (see Figure 2) calculating the first two principal
components of the bottom contour. The bottom plane is
used to find the tip of the canal (the topmost point in the
vertical direction). We then perform a scan in the orienta-
tion perpendicular to the plane.

The aperture of a human ear impression is considered
as a characteristic contour that connects canal and remain-
ing impression body. In other words, it is the entrance of
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Figure 2: The bottom plane is defined by the first two prin-
ciple components of the boundary points.

(a) (b)

Figure 3: The set of contours, shown in (a), is obtained by
a vertical scan of the surface. In (b), the positions of signif-
icant changes of contour shapes are highlighted by rectan-
gles.

the canal. An analysis of adjacent contour lines reveals a
significant change of contour shape around the aperture po-
sition, and additionally in the area where the concha merges
into the lower part of the surface, as shown in Figure 3(b).
We use this observation to detect the aperture as described
in Section 4.1. Due to the anatomical importance of the
aperture feature, in the variational pre-alignment phase dis-
cussed in the next section, we use feature point setA ob-
tained from the aperture contour as depicted in Figure 6.

4.1 Aperture detection

In Figure 3(a) a complete scan profile of an ear impression
is depicted in which different colors indicate that more than
one contour line exist at a particular scan level. If that is
the case we want to exclude contour lines, as marked in
the same figure and keep only lines along canal and lower
impression part. Usually the number of contour lines at one
level will not exceed a value of three. The remaining set of
contour lines - the Aperture profile - is shown in Figure 3(b).

We extract the aperture profile from the complete set of
vertical scan lines starting at the canal tip downwards to the
bottom of a surface. If there is only one contour line at scan
level i it is directly considered as part of the aperture pro-
file. In case of more than one contour line at scan leveli
only the contour whose center has minimal distance to the

Figure 4: Calculation of the projection differencedi for
contour lineci. Vector ~v ij shows how the contour point
vectors are defined: from the center of the contouri to the
actual contour pointj.

center of the contour, which was extracted at scan leveli−1
is inserted to the aperture profile. The observation shown
in Figure 3(b) led us to use a weighted filter that assigns
weights of higher importance to canal and concha area. This
filter rule (1) works on the first derivative of measures cal-
culated on each scan line contour, and helps extraction of
an aperture profile function whose maximum value defines
the contour index corresponding to the aperture scan line
contour.

vali = fi · (di − di−1) , fi = 1 − i/N, 2 ≤ i ≤ N (1)

pos = arg max
i

(vali) − 1, 1 ≤ pos ≤ N − 1 (2)

In Equation (1)N denotes the number of contour lines. Fig-
ure 4 shows a schematic top view of aperture profile contour
lines. The smaller contours depict canal and concha area
respectively. Points of linei are considered as vectors~vij

originated in the contour line center. The valuedi measures
the difference between the two maximum projection values
of these vectors onto the second principal component~pc2

of the lowest contour linecN . In this way one would ex-
pect that the first-order backward differencedi − di−1 has
its maximum value at the desired object position as high-
lighted with the upper black rectangle in Figure 3(b). The
use of contourcN for this purpose is justified by its con-
sistent geometrical properties and topological relations to
other object parts like canal, concha and cymba despite of
the diversity among shapes.

However, our experiments show thatdi − di−1 alone is
not robust enough to handle all cases. Especially objects
with a shallow concha tend to be candidates for misclassifi-
cations. In those cases contours below the expected aperture
become more favoured. As a countermeasure differences of
subsequentdi are weighted with factorfi, which assigns in
a way a higher importance to the canal region. An exam-
ple output of Equation (1) is shown in Figure 5. Equation
(2) determines the aperture, which is one contour position
above the contour extracted with Equation (1).
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(a) (b) (c)

Figure 5: Factorfi (b) assigns decreasing weights to the first-order backward differencedi − di−1 (a) leading to the output
of equation (1) shown in (c). The high peak at contour position 9 indicates that the aperture is located at position 8.

Figure 6: Reduced point set (yellow, red)A that will be
used in the variational alignment stage.

4.2 Detection of feature points for the refine-
ment registration

The second phase of the registration uses a denser set of
points that come from canal, aperture, and concha. These
are the regions to which the hearing aid device will be fit in
a patient’s ear. Another reason why these points are unique
is the fact that left and right ear impression of one person are
most similar in these regions. Accordingly, we do not want
to include points from the cymba region in this step, as the
cymba will be removed during the manufacturing process.
To detect the cymba, we look for topological splits of the
contour. These can occur both at the concha and the cymba,
as shown in Figure 7 (a).

From our experiments we learn that not all impressions
do have this clear topological split at the cymba position. In
order to free us from the distinction between the topological
change in the contour for the concha and cymba we define
a reference pointp r that is definitely located in the region
of the cymba:

p r = arg max
p∈P

�
p − c

‖p − c ‖ · x · ‖p − c ‖
�

, ‖x ‖ = 1 (3)

In equation (3)P refers to the set of all considered contour
points,c is the center point of the aperture contour andx is
thex-axis of the local coordinate frame, which is oriented

(a) (b) (c)

Figure 7: In (a), the red arrow points at the cymba region.
Contours emphasized with red color indicate a topological
split at that particular scan position. The second contour
marked with red color refers to the concha position. In (b),
we show the initial point set, and in (c), the points closer to
the detected cymba pointp r have been removed.

from concha to cymba. Expression‖p − c ‖ favours points
of the cymba region and factorp−c

‖p−c ‖ ·x provides a direc-
tional constraint which gives a higher weight to the surface
part where the red arrow in Figure 7 (a) points at.

We subsample the contour points to produce an initial
feature point set, shown in Figure 7 (b). We avoid sampling
the ear canal tip as it will be removed from the surface dur-
ing detailing. Next, only those points that are closer to the
aperture center thanp r are kept, resulting in a set of points
P that primarily belong to canal, aperture, and concha. An
example appears in Figure 7 (c), which consists of approxi-
mately200 points, which is a very compact shape represen-
tation when compared to the original input point set with
order of30, 000 points. Point setP is used in the final re-
finement phase of the registration of a given object with the
template object given as dense set of points.

5 Variational Registration

Given two aperture point setsA 1 andA 2 of 3D ear shell
surfaces, we will derive a set of ordinary differential equa-
tions (ODEs) to estimate the rigid registration parameters

4



that transform shell 1 to shell 2. We first explain how we
find the correspondences between the two feature setsA 1

andA 2 using anatomical information from the ear impres-
sion geometry. Then we present the variational solution to
the rigid registration of two point sets.

5.1 Solving the correspondence problem

In order to find the best pair-wise correspondences between
two sets of aperture points, we consider their relation with
respect to the global surface. For this we define a local coor-
dinate system (illustrated in Figure 8) in the following way:
the y-direction is defined by the plane normal of the cut-
ting plane for the vertical scan. Its orientation is assumed
to be off the center of mass. Thex-direction represents the
main orientation of the lower surface pointing from canal
to cymba and the second major direction defines thez-axis
which points from canal to concha. Essentially this coor-
dinate system is used to extract the reduced set of feature
points from the aperture contour in a defined order. Fig-
ure 8 shows the local coordinate systems of a left and right
ear impression model positioned in the center of the scene
and the resulting important aperture points. Starting at the
red point the circulation continues at the position with the
yellow point and so on which defines the correspondence
order. In our experiments we have used a set of 16 aperture
points plus three additional points: the aperture center point
and the center points of two canal contour lines above the
aperture contour (Fig.6). We sample the contours in a sim-
ilar fashion to produce the feature points in the refinement
registration step.

Figure 8: Shown are two 3D point clouds of a left and right
hearing aid shell model from the same person together with
their local coordinate systems. The red line represents the
x-axis, the blue line stands for they-axis and the yellow line
for thez-axis.

5.2 Variational Optimization

We want to register two vectors of feature points,A 1 and
A 2. That is, we want to estimate the six rigid registra-
tion parameters: three parameters for 3D translationT , and
three parameters for 3D rotationR which map one of the
aperture vectors onto the other one. In order to write a cost
functional which expresses the estimation error for the reg-
istration between the two feature vectors, first we have to
find the correspondences between the aperture points. We
resort to the correspondence finding algorithm mentioned
above to tackle this problem.

After we obtain the information necessary to compare
aperture points, we can write an energy functional, which
penalizes the squaredL2 distance, and vanishes when the
second feature vectorA 2 perfectly matches the first one
A 1:

E(R ,T ) = ||A 1 − (R · A 2 + T )||2 (4)

Representing the aperture points as a set of 3D points:
A 1 = [X 1,X 2, ...,X n], andA 2 = [Y 1,Y 2, ...,Y n],
wheren is the number of points, we have:

E =
n∑

i=1

||X i − (R Y i + T )||2 . (5)

In this equation, we use the corresponding points from the
two apertures in the summation of the Euclidean distances
between the points ofA 1 and the transformedA 2. The
first variation of this cost functional w.r.t. the translation
parametersT k, k = 1, ..., 3 are given by:

∂T k

∂t
=

n∑
i=1

< [X i − (R Y i + T )],
∂T

∂T k
>, (6)

where

∂T

∂T 1
=

 1
0
0

,
∂T

∂T 2
=

 0
1
0

,
∂T

∂T 3
=

 0
0
1

,

and < ., . > denotes an inner product in 3D Euclidean
space.

For defining rotation in 3D, we use exponential (a.k.a.
twist) coordinates where a 3D vectorw = (w1, w2, w3)
represents the rotation matrix, and operations can be carried
easily as in the translation vector (for details see [25]). The
skew symmetric matrix corresponding tow is given by

ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0


and the rotation matrix isR = eŵ . Then the first variation
of the cost in (5) w.r.t. rotation parameters are given by:

∂wk

∂t
=

n∑
i=1

< [X i − (R Y i + T )],R
∂ŵ

∂wk
Y i >, (7)
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where

∂ŵ

∂w1
Y i =

0
@ 0
−Zi

Yi

1
A,

∂ŵ

∂w2
Y i =

0
@ Zi

0
−Xi

1
A,

∂ŵ

∂w3
Y i =

0
@−Yi

Xi

0

1
A.

Note that as the initial condition for these ordinary dif-
ferential equations, we takeT 1 = 0, T 2 = 0, T 3 = 0,
and similarly,w1 = 0, w2 = 0, w3 = 0, which is equiva-
lent to takingR = I (identity matrix). Furthermore, every
timew = (w1, w2, w3) is updated, the new rotation matrix
can be computed as

R = cos(t)I +sin(t)ŵ ∗+(1−cos(t))w ∗w
T
∗ ,

wheret = ||w ||, w ∗ = w
t [25]. We use the simple gra-

dient descent method with momentum in order to optimize
the motion parameters [26].

Since the pre-alignment registers a reduced set of points,
it is fast, and gives an excellent initialization for subsequent
refinement. While it would be possible to adapt the varia-
tional approach to refine the registration using more points
of the shells, we would again face the problem of finding
corresponding points between the two surfaces. Instead, af-
ter the apertures are aligned using the variational approach,
we refine the alignment by performing dense surface regis-
tration using a variant of the iterated closest point (ICP) al-
gorithm, which does not require explicit correspondences.
This refinement step is discussed in the next section.

6 Final Refinement Step in Registra-
tion

In this section we address the alignment problem of two pre-
registered ear impression models given as 3D dense point
sets, sayP andM . We choose to work with the Grid Clos-
est Point (GCP) algorithm [27], which works well in prac-
tice and is exceptionally fast. This algorithm determines the
corresponding (closest) model data pointsM in every GCP
step.

Again for a Euclidean motion with rotation matrixR
and translation vectorT , denote the transformed points of
the data setP by

p i(R ,T ) = Rp i + T , 1 ≤ i ≤ N (8)

Hence, we wish to minimize the sum of the squared indi-
vidual distancesEi:

E =
N∑

i=1

Ei, (9)

with

Ei =





arg min
m∈M

‖m − p i(R , T )‖ − p i(R , T )






2

(10)

Hence we find the motion(R ,T ) that minimizes the sum
of the leastN squared individual distancesEi = d2

i (R ,T )
in Equation (9) by means of an algorithm based on the con-
cept of conjugate gradients [28, 26]. We numerically solve
for the derivatives of the error function (9) using finite dif-
ferences.

Additionally we want to steer the registration process
with information about important object regions. As dis-
cussed in Section 4, the important object regions are aper-
ture, concha, and canal. One way to express importance is
to assign weights to points depending on their position. The
most promising weight function we found is a step function
that rejects points not belonging to important object parts.
In this way we avoid biasing the registration, and instead fo-
cus only on the canal, aperture, and concha regions to which
the hearing aid will be fit.

7 Experimental results

Assessment of the required level of accuracy in registration
is an application-dependent problem. It is important to re-
alize that shapes of ear impressions can vary with respect
to their similarity from almost equal up to very different.
Very similar are usually a left and right ear impression from
the same person. To obtain an accuracy characterization in
general we focus on the overlap accuracy of three impor-
tant visual landmarks namely aperture, concha and (lower)
canal. We measure the registration accuracy with the root
mean square value (MSE) of the sum of the distances be-
tween the two feature point sets.

We compare our framework (including feature detection
and registration) with the standard GCP registration tech-
nique when applied to ear impression models. While our
method uses a reduced set of important anatomical points,
GCP considers all points of the surface to be registered.

Figure 9(a) shows the unregistered state of surfaceS1

(yellow) and surfaceS2 (blue). The feature points used for
the final registration with our method and the calculation of
the MSE are shown in Figures 9 (b) and 9 (c). Figure 10 de-
picts the alignment betweenS1 andS2 from three vantage
points using our method (left). Now we repeat the experi-
ment and registerS2 with S1 by using only GCP with the
complete dense point set ofS2. The result is presented in
Figure 10 (right). A comparison of the visualizations shows
that our method achieves a better overlap with respect to im-
portant object parts. After applying GCP one can see that
especially the concha area is not well matched. The accu-
rate overlap of this object part is of specific importance for
binaural processing.

For both registration methods the same points as illus-
trated in Figure 7 (c) are used in order to calculate the MSE.
Table 1 presents a comparison between the GCP registra-
tion technique and our method. We used a data set of 30 ear
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(a) (b) (c)

Figure 9: The initial position of surfaceS1 (yellow) andS2 (blue) is shown in (a). Our method uses the highlighted points
shown in (b) and (c) for the final registration. The calculation of the MSE using these points allows a comparison with other
registration algorithms.

Our method (1) GCP (1) Our method (2) GCP (2) Our method (3) GCP (3)

Figure 10: Example for the registration of two ear impression models. Three pairs of figures depict the result from three
different vantage points using our method (left) and GCP (right). Notice the different accuracies with respect to the concha
region.

Our method GCP
MSE Time (seconds) MSE Time (seconds)
0.31 22 1.83 180

Table 1: Comparison of our method with GCP.

impression models, and the average MSE values reported
in Table 1 support the visual inspection results that our al-
gorithm achieves a more accurate registration particularly
w.r.t. important and relevant anatomical landmarks. An ad-
ditional advantage as can be observed from the table is that
our algorithm runs much faster than the standard GCP algo-
rithm.

In Figure 11 we present two more examples of our
method, showing the initial stage in the left column and the
result after applying the registration in the right column re-
spectively. The yellow colored surface serves as registration
template. Notice the successful overlay of Canal, Concha
and Aperture.

8 Summary and Conclusions

We presented a registration framework based on feature
points of anatomical 3D shapes represented in the point
cloud domain. Surfaces are considered as similar in the way
that they possess the same anatomical regions but with vary-
ing geometry. The first step is to detect features of impor-
tant anatomical regions automatically. We derived ordinary
differential equations to update six registration parameters
(translation and rotation) between two sets of feature points
around the aperture. Applying the estimated parameters to
the corresponding shapes, our algorithm achieves a fast and
accurate pre-alignment. In order to refine the results the
GCP algorithm is applied, with emphasis on the points of
important object regions.

Our experiments reveal that compared to the standard
GCP technique for surface registration in the point cloud
domain, our algorithm achieves more accurate results by
exploiting anatomical information throughout the complete
registration process. Another beneficial property of our al-
gorithm is that it is fast because of the limited number of
points involved in the process. Although in this paper we fo-
cussed on the fast and accurate alignment of ear impression
surfaces, this framework can be applied to the registration of
any structures for which importance can be assigned to dif-
ferent regions although their detection will vary from case
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(Initial position) (Result) (Initial position) (Result)

Figure 11: Examples for the registration of two ear impression models with our method.

to case. Besides the integration of the registration frame-
work into our current software system for binaural process-
ing, one of our future goals is to find a more general feature
detection approach in order to minimize heuristic decisions
for the detection of important anatomical regions.
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