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Segmentation of regions of interest in an image has impboagaplications in medical image analysis, particularly amputer aided diagnosis. Segmentation
can enable further quantitative analysis of anatomicaictires. We present efficient image segmentation schenses! loa the solution of distinct partial
differential equations (PDESs). For each known image reggoRDE is solved, the solution of which locally representswieighted distance from a region
known to have a certain segmentation label. To achieve ta§ ge propose the use of two separate PDEs, the Eikonalieqand a diffusion equation. In
each method, the segmentation labels are obtained by a ttarperiterion between the solutions to the PDEs correslitg to each region. We discuss how
each method applies the concept of information propagétamn the labeled image regions to the unknown image regiergerimental results are presented
on magnetic resonance (MR), computed tomography (CT), &resaund images and for both two-region and multi-regiegnsentation problems. These
results demonstrate the high level of efficiency as well asattturacy of the proposed methods.

1. Introduction

Content extraction from images typically relies on segragaon, i.e., extraction of the borders of target structures
Automated segmentation by computer algorithms has beenus fof decades of research [1-3] and remains an
active problem in the computer vision literature [4—6]. hagtice, the accuracy of segmentation algorithms can be
hampered by noise in the image acquisition and the complekihe arrangement of target objects with respect to
their surroundings within the image. In order to achieveustbess to such hindrances, many algorithms demand
an increase in computational cost. However, practicalbfulssegmentation techniques should be accurate and
computationally efficient for clinical interpretation asd that extensive quantitative analysis can be automated.
In this study, highly efficient and mathematically pringgltechniques are presented to segment the boundaries of
closed structures. The techniques are based on ideas ofrapis information propagation apparentin certain types
of partial differential equations (PDESs). This work is mvatied by anatomical structures such as lymph nodes, as
shown in Fig. 1, whose extraction from medical images, ssamagnetic resonance (MR) images, is an important
task for subsequent quantitative analysis.

Segmentation methods based on information propagatioa hegn performed using distance functions. For
example, in [7], simultaneous propagations are performedtimate two potentials between two points in order to
extract the path made by a vessel. The minimal paths betwaepdints,p, andp,, are computed by simultaneous
propagations from the two points until they meet at a commuintp-, and by back-propagating to the original
two points. They also described an approach to build a pamgbnly a starting point and a given path length.
While this approach is suitable for the extraction of tubstauctures, our goal is different. Although we also make
use of two distance maps, we do not need to extract a minintlalfpam the point where the two fronts meet, but
we seek the result of the competition of the two fronts in &g a given point. Similarly, in [8, 9] a fast marching
algorithm was used for segmenting tubular structures léssels. A multiphase fast marching algorithm was used
in [10] in a Bayesian framework, where all distinct regioms propagated simultaneously according to different
velocities, which each depended on the posterior distabatfor each region.

There are also similarities between distance functiondakrithms and the watershed algorithm. The Eikonal
PDE has been used in [11] for modelling watershed segmenttiat is constructed from the watershed of the
gradient image. Different segmentation results were obthby changing the flooding criterion [12]. A form of
diffusion has been used for image segmentation in [5] by doarwalk concept motivatived by electric potentials.
This technique differs from our approach in that it was idtroed in a graph theoretic framework, as has become
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popular recently [3, 4], and formulated as system of linegragions solved through conjugate gradient.

Distance functions are intimately linked to level set melththat provide implicit ways to represent boundaries in
a way that is free of parameterization and allows for natisablogy change. The original applications of level set
methods to image segmentation were introduced by Caseldd£3], Malladi et al. [14], and Kichenassamy et al.
[15]. Distance functions are used in these techniques tremf mathematically well-behaved embedding function
for the level set of interest, typically the zero level setvel set methods were soon applied to implementations of
the Mumford-Shah functional [16-18].

In this paper we present four methods. The first three metbonigpute distance functions treating image loca-
tions containing edges or higher gradient magnitude adlyoslawer to propagate information or as having higher
local distance. These three methods employ the Eikonatiequend thus can be computedGi{ N log N), where
N is the number of image pixels, by the fast marching algorith®j. Inspired by the same information propagation
concepts, we also present a fourth method based on diffidddts, in which edge information is propagated from
the interior of the desired anatomical structure or fromlibendary of the region of interest.

Figure 1. Example of magnetic resonance (MR) image with @negf interest (ROI) around a lymph node.

2. Segmentation by Distance Function Competition

We will explain the technique for the case of two-region segtations and later explain the natural generalization
to the case of multiple region segmentations. The first stépe proposed segmentation technique is to compute
a distance function for each known image region. Each dist&amction represents the distance to the nearest of a
set of prespecified points interior to the desired structihe second distance function represents the distance to
a set of prespecified points exterior to the structure. Wedeiler choice of the prespecified interior and exterior
points until later, but for now we will state that they shaulekspectively, be clearly inside or outside the boundaries
of the desired structure to be segmented. The local trawalfoo each distance function depends on the local
image intensity variation. Regions that are more likelyéoebiges should be interpreted as regions that have higher
local distance. After the computation of the two distangefions, a simple competition criterion between the two
distance functions determines which image pixels belontpecinterior region and which belong to the exterior
region.

This concept will be implemented in several different wdgighe first, we weight the distance function directly
on the binary map resulting from an edge detection on the émfag instance using a Canny edge detector [20].
In this method, edges correspond to impassable obstadebhanlistance function is computed accordingly. The
second method generalizes the first method, by defining taé didsstance as a function of the gradient magnitude of
the image. The third method combines the different weighthe distance function. The fourth method is inspired
by distance propagation ideas but uses diffusion PDEs &abeviéxplained. The next sections briefly describe the
techniques in more detail.
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2.1. Eikonal Equation Method

The Eikonal equation,
\VD|=F,D=00onG (1)

is a well known PDE whose solutio) : 2 € R™ — R, wheren is the dimensionality of the image, represents
the arrival time of a moving front with spatially varying sggk1/F, that starts at a given set of poinés,C (2, at
time 0. HereV denote the gradient operator. When the speed of the fromifisrm within the domain, the arrival
time is proportional to the minimum distance@ the set of starting points. It is for this reason that theisoh to

the Eikonal equation is often called a “distance” functi®hus, a common alternate interpretation of the solution
to Eq. (1) is thatD represents the weighted distance to the(seitith locally varying travel costF'. In this paper,

we will use this interpretation and therefore refefl@s a distance function. In our segmentation method the local
distance weight will vary accordingly with the presencemége edge or with local intensity variation.

The fast marching algorithm was introduced to yield an effitisolution to the Eikonal equation on a uniform
discrete grid [19]. While the theory behind the proposedoétolds for continuous image domains with differen-
tiable images, we will herein refer to discrete grid locai@nd thus, we will use finite difference approximations
to the derivatives.

The proposed Eikonal PDE-based methods proceed as follows:

(i) Initialize for the computation of two distance funct®nD? and D¢, corresponding to the distance from the
interior and exterior regions, respectively.

a) D’ will be solved on the image domain by settiGgto a set of points inside the structure to be segmented.
Discretely, this will be done by setting the corresponding|s to a value of 0 and by labelling the corre-
sponding pixels aKknown

b) D¢ will be solved on the image domain by settingto a set of points clearly outside the structure to
be segmented. Discretely, this will be done by setting threesponding pixels to 0 and by labelling the
corresponding pixels asnown

(i) Compute the two distance function®! andD¢, by solving two Eikonal PDEs.

The Eikonal PDE (solved through fast marching): Label theslsithat are neighbors of the alreadgown
points asTrial pixels. All other image pixels are labeledker points. Then, until ndrial pixels remain, do the
following action: take thd@tial pixel with the lowest distance valug, label it as a&nownpixel, and verify that
each neighbor pixel tg that is notKnownis labelled as drial pixel while updating its value according to the
chosen distance function. See [19] for more details.

a) Interior: Compute the distance function to the interietr\sith local travel costF’, as will be explained in
the next sections. The value of each pixel then correspanttietweighted distance to the interior set and is
denoted ag)’. This step is initialized with interior points &nownset.

b) Exterior: Compute the distance function to the exteraivgth local travel costF'. The value of each pixel
then corresponds to the weighted distance to the exteri@angkis denoted a®¢. This step is initialized
with exterior points agknownset.

(iii) The interior region is considered the set of points whthe interior distance is less than the exterior distance,
i.e., the interior seti§(z,y) : D'(z,y) < D¢(z,y)} in the case of a two-dimensional image.

The local travel costF', of the distance functions are explained in the followingtiems. We are proposing
three different techniques for assigning this travel cesigal on the image data. The first technique is based on the
presence or absence of edge in the image. The second is bakedbintensity variation and the third is a hybrid
of the first two techniques.

2.1.1. Fast Marching with Edge Map. Our first approach is to compute the distance function in a swh that
edge pixels represent points where the moving front canogiggate at all. The Eikonal equation is then,

1
HVD||:E>DZOOV‘G7 (2)
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whereF is the edge map that assumes the value-et where there are edges and the value af all other pixels.
Note that we are interested in the nature of the solution &her 0 approaches 0 in order to represent locally
infinite travel cost. The edge map can be derived from any edge detection algotiitat has binary output. In our
results, we use a Canny edge detector [20].

At this point it is important to note how the proposed methdffeds from using the Canny edge detection
algorithm alone. The Canny edge detection algorithm simmpports an edge map that has agriori known
topology, i.e., it does not necessarily partition the ragid interest into clear interior and exterior regions. The
problem of obtaining a labelling for each pixel as an intedpexterior region is thus not solved by edge detection
alone. It for this reason that we propose the use of the catigpeglgorithm.

In the fast marching algorithm the edge pixels are markedwis infinite local travel cost and their initial label
is set toKnown In this way they will not be processed during the distaneefion computation. The first column
in Figure 2 depicts the two distance functions computed bytiay from both the exterior and the interior seed
points. The distance is represented in gray scale with wbiteesponding to high distance and black corresponding
to low distance. Note how the exterior distance functionliigh distance inside the lymph node and low distance
outside the lymph node, and the opposite is true for theiortdistance function.

2.1.2. Fast Marchingwith Gradient. Inthe second method, we treat regions with high gradientitade as having
high local travel cost, and regions with low gradient magghét as having low local distance. The Eikonal equation
then takes the form:

IVD|| = [[VI]|,D =00nG, @)

Note that this method has the potential to be more robustrtosein the edge map since it allows moderate levels
of intensity variation to affect the local travel cost by adecate amount instead of necessarily being classified as
either edge or non-edge, neither of which classificatiorormmetely appropriate. Contrast this to the edge map
method in Section 2.1.1 in which pixels that are erroneoaslysidered as edge or non-edge will have a definite
negative impact on the distance functions and, as a resutheofinal segmentations.

Furthermore, note that by considering the Eikonal equatianD| = f(||VI||), we further generalize this
method. Note thaf should typically be non-negative and monotonically insreg. Certain choices of the function,
f, in particular those that resemble thresholding functigunsh as the sigmoid, show the relationship between the
current method and the method in Section 2.1.1 since edgs typjzally resemble such functions of the image
gradient magnitudd|V I|].

The second column in Figure 2 depicts the two distance fonsttomputed in this way.

2.1.3. Combined Method. In the second method explained in Section 2.1.2, which usegradient magnitude in

the computation of the distance function, there were casesemhe distance function was allowed to propagate
too quickly through breaks in the boundary of the structorkea segmented. To prevent such leaks and to increase
robustness to noise, one can combine the first two methodscitio 2.1.1 and 2.1.2. This corresponds to weighting
the distance function by edge information. The method aasif the computation of the edge mdj,to result in

a binary image assuming the valtle= 1 on edge pixels and’ = 0 elsewhere. This binary image is then directly
added to the gradient image by a factorThe Eikonal equation then takes the form:

IVD|| = (V][ + aE) . (4)
Specific choice of the parameter, depends on the level of trust that can be placed in the edgewith higher

trust corresponding to higher values®f This will result in increased gradient effects where thame edges as
compared with the method in Section 2.1.2.

1The implementation of this technique does not require tleeafidimits or a specific choice af since we can implement the locally infinite travel cost
present at edges by simply not allowing information to pogztea with the fast marching algorithm.
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Figure 2. Top row: Exterior distance function; Bottom rowtdrior distance function. Columns 1. edge map method; @gégradient magnitude method,;
3. diffusion method.

Note that this technique, which assigns additional tragst to areas where there are definite image edges, is in
the spirit of considering the Eikonal equatidfW D|| = f(||VI]|), i.e., with non-linear functions of the gradient
image. For instance, choosing the function,

1

= ®)

f(z)

wheret represents an image gradient magnitude threshold and cahdsen automatically based on the range
values that magnitude of the image gradient assumes. Masigeshcan be made for the functiofi, but a full
exploration of these choices is beyond the scope of thisrp¥yeefind that the Eikonal equation in Eq. 4 achieves
suitable results and combines the previous two methods atuaal fashion.

Part of the flexibility of the proposed methods in this paperthat different PDEs can be used for each region.
That is, the interior distance function can be obtained Byisg a different PDE than that producing the exterior
distance function. This flexibility may, for example, as@isthe segmentation of interior regions that are textured.
One can add, to the interior distance function, some imteniensity based term, which will smooth the local
gradient and decrease some texture or noise influence. Obe t@ture of the main application, i.e., lymph node
segmentation, we do not smooth the exterior distance fométi a similar fashion since exterior regions may
include other structures that may interfere with the sedgatgm. In order to achieve this, we compute the mean
intensity of a set of points adjacent to the foreground sesutpasl. The image at each pixep, will then have
a local weight of(I(p) — 1)2, which we add to the local travel cost in the Eikonal equatirthe interior region
with a weighting parametef; as follows,

IVD'| = <|yv1|y +aE+ﬂ<[—f>2> , 6)

where againf is the binary edge map andis the mean intensity of points adjacent to the interiorsagieed
points. Thus, the final combined method assumes the use dffegcomputation of the exterior distance function
and Eq. 6 for the computation of the interior distance fuorcti

2.2. Diffusion Equation

The technique proposed in this section differs from the alteehniques in that we use a diffusion equation to
propagate image information rather than the Eikonal eqoabilote that although the nature of information prop-
agation in diffusion equations is significantly differehaih that in the Eikonal equation, particularly that diffarsi

equations propagate information with infinite speed, we tirad this technique propagates information in a similar
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manner to the previously mentioned distance function beedthiques. Perhaps the reason for this similarity is that
diffusion equations propagate information in a gradual mesrthat depends on the proximity to the information
source. Diffusion equations propagate information witlinite speed, but in a way such that the majority of the
effect is local.

The linear heat equation on a functidiz, t) : 2 x [0,00) — R, wherez € Q, is given by% = AD. Here,
A denotes the Laplacian operator. We consider initial cambtD (z)|;—o = Do(z) = 0 and Dirichlet boundary
conditionsD = 1 on G for a prespecified seed s8tC 2. For more information on the linear heat equation, initial
conditions, and Dirichlet boundary conditions, we refex thader to [21]. An update equation corresponding to
the finite difference approximation to this equation for tdimensional images, that is obtained by implementing
a forward Euler numerical scheme with the maximally staihetstep (¢ = 0.25) is,

D(z,y) < D(z,y) + At (AD(z,y)) (7)

1 1
D(z,y) < ZD(OC +1,y) + ZD(OC —1,y)

1 1
+1D(x>y_1)+ZD(x>y+l)v (8)
hence diffusing edge information from the boundaries towdhne non-boundary regions.

Inspired by the Eikonal equation and fast marching techesgwhere we propagate the information from the
boundaries or the seeds of the image domain towards unthpelats, diffusion equations can also be used for
segmentation by creating two smooth distance functiomse for the interior seed points and one the exterior seed
points. For the interior distance functiab?, the boundary conditions are set to 1 at the interior seautpand the
function is initialized to a value of 0 at all other points hretimage domain. For the exterior distance functioh,
the boundary conditions are set to 1 at the exterior seedspaird the function is initialized to a value of O at all
others points in the image domain.

To introduce image dependent terms to the diffusion equatie propose the use of an anisotropic diffusion that
depends on the local image variation, allowing less diffasn directions where the image derivative is lower and
more diffusion where the image derivative is higher. Therdtdin of the four one-sided image derivatives around
a pixel are given by

I;(iC,y) = I(ZC,y) - I(ZU - 1ay)7 I;(l’,y) = I(l’—i— 17y) —I(l’,y)
We can create an image-based discrete diffusion equatiémrimglucing the image-driven weights to the discrete
heat equation as follows,

E W

w
D = — D(x+1 —D(x—1
(z,y) T (z+1y)+ SRT (x—1,y)
’LUN ’LUS
D )+ —=—D 1 9
+Ziw2 (z,y HZZ-W (z,y + 1), 9)

_ +32 _ —\2
wE = e U W)W = e—U2)

)

W = e—w(l;f7 wS = 6—7(1;)27 ie{E,W,N,S}.

Note thaty represents a damping coefficient that affects the level Ho&opy inherent in this method. Higher
values ofy allow for greater anisotropy, i.e., allow for the infornatidiffusion to be more sensitive to differences
in image intensity across the image. We have found a reatoraipe for this parameter@001 < v < 0.01.
Hence, using the set of seeds for the exterior region andntieeior region as two distinct set of boundary
conditions, we estimate the two distance functiaBé,and D?, corresponding to the exterior and interior after a

INote that for consistency with the previous sections, werres these functions as distance functions, however tlest tiore closely resemble heat
functions as is typically the case with such diffusion etret.
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set amount of diffusion time. Similar to our approach usirgpBal equation, we form the segmentation map by
considering the interior region to be the set of points whileesinterior distance function is higher than the exterior
distance function. The third column in Figure 2 depicts #hsuiting distance functions estimated by the diffusion
method. We run the diffusion for a sufficiently long time fdirgixels to be affected by the diffusion but for a short
enough time for the diffusion to be practically useful, it®. avoid the constant solution D = 1 along the entire
domain. In practice, we found that= 1000 forward Euler iterations produced suitable results anttti&results
were not particularly sensitive to moderate variations.in

This image-weighted diffusion we seek for our distance fiomcD is similar to that of the diffusion equation
presented in the work of Perona and Malik [22] who used aropit diffusion for filtering images based on
the direction of the image gradient. Using a weighted diffnsequation based on image gradients@s,0t =
V - (w(|VI|)VI), their purpose is to diffuse intensities of the original geal, in an edge-preserving manner and
not to derive distance function®¢ and D¢, as we do.

3. Experimental Results

3.1. Two Region Segmentations

The algorithm is not sensitive to the placement of the intesind exterior seed points. It is possible to use any set
of exterior or interior seed points as long as they are gleautside or inside of the target structure, respectively.
Of course, a carefully hand labelled contour placed at soumifdistance from the outside of the structure may be
ideal for the exterior seed points. However, for simplicand to show the robustness of the proposed method to
the choice of initial contour, we opted to use a simple mouag dperation on the image that sets exterior seeds
in the form of a 2D rectangular border, as shown in Fig. 1, therinterior seeds are automatically set to the set of
pixels in the center of this rectangle. This type of 2D itiiation is used in both the 2D and 3D experiments, and
is simple and fast for the user since it essentially only eguspecifying two points, i.e., the top left point and the
bottom right point of the rectangular region of interest.

In Figure 3, sample segmentation results (labeled as bln®gs) are presented for different lymph nodes in
MR images. In analyzing the results based on the edge mapthlgpwe see that in some cases the segmentation is
not as precise as the other methods. The Canny edge detempagates strong edges and discards the weak ones,
and this leads to either “holes” in the edge map as in row 1dgeeaoise as in rows 3, 4 and 5. This will directly
influence the distance functions and in turn, will influertee final segmentation. Still, the result is acceptable and
can be used as a suitable fast initialization to a more stpdiied segmentation algorithm. Those errors are reduced
by our second approach that uses image gradient in the HiR@ta The distances found are more robust to errors
in the edge map functions, and our segmentation matcheg#ned structure more closely. In cases where a strong
edge is situated near the edges of the lymph node, but yehekte the lymph node itself, the method presented
in this paper may be slightly attracted to it, such as thedoottight the image in row 1 and the entire surrounding
region for the image in row 5. Note that such errors can be fiealssuming more than two regions are presentin
the image. We will show example of this in the next section.

The diffusion method performs well when images edges aomgtand is robust to higher levels of image noise
especially the noise that occurs at a single pixel as is camymeferred to as “salt and pepper” noise. The reason
for this is the ability of the diffusion equation to propagaiformation around a single pixel that, due to noise, has
an abnormally high intensity value. This property does rodd for the image gradient based technigues since such
noise affects the image gradient in a neighborhood aroumgittel, thereby creating a larger region of high local
travel cost. However, this method is prone to error whendhget objects are merged with other external structures
containing high edge content. A startling example of this loa seen in the fifth row of Fig. 3. The high amounts
of external intensity variation that are external to thg¢aiobject will often produce such unsatisfactory results.

Finally, our combined method produces the best resultsewiciy a suitable tradeoff between the results in the
edge map method and the image gradient method, even in Hifficdes. This method specifically prohibits the
propagation of information where edge is detected, whesgasinformation often propagates in the image gradient
method. However, when edge is not detected, it allows foyimgrdegrees of information propagation depending
on the magnitude of the image gradient. We can see in thetsdsigl 3 that a suitable tradeoff between the first
two methods is achieved and excellent segmentations agei@ed even in such noisy and complex images.
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3.2. Comparison with Ground Truth

The results are confirmed by the statistics we found durindesis as shown in Table 1. The ground truth of each
node segmentation was hand labelled by our own learnegbietation from clinicians. We estimated the empirical
probabilities of pixels falsely accepted as foregrouncp@ierror) or pixels falsely rejected as foreground (Type Il
error) on the resulting contours of the presented four seggtion methods compared with the manually delineated
node contours. These results are compiled over a databas® different regions of interest containing lymph
nodes in T2 weighted and T2-star weighted magnetic reseniamages. The seed regions were kept constant for
each node and only the segmentation method varied.

The very low value in the Type | error of the edge map methodkjdained by its preference to label pixels
as foreground. This is highlighted by the large probabitifyType Il error. On the other hand, the gradient and
diffusion methods are more prone to erroneous informatropagation around edges and thus have then a higher
Type | error. However, it is important to note that the oviepmbbability of error is lower in the gradient and
diffusion methods than in the edge map method. Finally, tmlined method yields the lowest overall error rate.

3.3. Further Experimental Results

Segmentation in 3D through Eikonal PDEs is easily achieyegkbending the fast marching, and the gradient com-
putations to three dimensions. Example results from twaena@de shown in Fig. 4. We also show the effectiveness
of the proposed segmentation techniques in other imagirdptities. The example in Fig. 5 on a Computed To-
mography (CT) image shows a selected region of interesagung a liver tumor on the left and the segmentation
of the tumor as shown on the right.

In Fig. 6, we show segmentation results on the same sliceeafdme CT volume as in Fig. 5. However, in Fig. 6
we vary the region of interest (ROI) substantially to shoe thbustness of the segmentation result to different
possible ROIs that are likely to have been designated fotuh®r in question. In the first row, we show the
performance of the algorithm with expected input ROIs, ghifted around the tumor, and the corresponding stable
segmentation results. In the second row, we show the peafacenof the algorithm with extreme, not commonly
expected ROIs. In these cases, the proposed algorithroagtifires the tumor boundaries in a reasonable way.

The 3D tumor extraction results are shown in Fig. 7. Such 3fmsntations can be useful when trying to
determine the volume of a tumor, for example to assess thggtimtinal efficacy of treatment. Figure 8 shows an
example of a breast mass segmentation in an ultrasound imAagee can see, ultrasound images have speckle
noise that hampers segmentation, and therefore we had4argeess the image with high level of smoothing to
reduce it. However, the method remains accurate and effigiean the proper level of smoothing is applied. The
results show that our algorithm works for different typesstfictures that have a clear interior and exterior and
may be tuned for applications other than lymph node segrtienta

3.4. Computation Speed

The Eikonal PDE-based approaches presented in this pappacted, are very fast due to the fast computation of
the fast marching algorithm. On6® by 60 pixel region of interest, the segmentation is complete $s kan 0.03
seconds for the 2D algorithm, and 0.76 seconds for the 3Ditlgoon a 60 by 60 by 60 pixel region of interest. All
results are reported with the algorithms running on a Pendiiprocessor operating at 2.4 GHz. With the diffusion
PDE, the segmentation is completed in 1.75 seconds for a pl2zimentation. Although we extended the diffusion
approach to 3D, the computation times increased to appaigisnl to 2 minutes, therefore, we have not used the
diffusion-based approach for the 3D experiments. Conisigéine high level of accuracy of the proposed algorithms
in noisy and complex images, and the relative simplicityhaf tiser supplied labelling, these algorithms achieve a
very high computational efficiency.

3.5. Multi-Region Segmentation

To illustrate the principled nature of the proposed segat@nt techniques, particularly the distance function tech
nigues, we explain the generalization of this techniquetpreentation of multiple regions. We will show examples
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on regions of interest that have three clear regions. Thergéimation of this technique is mathematically natural.
Instead of choosing only interior and exterior seed regama the two region segmentation, the multiple region
segmentation technique allows for any number of seed regitiere each seed region should correspond to a struc-
ture of interest within the image. For each seed region, we tompute a distance function from that seed region
as before. The segmentation labels are assigned by detegmihich distance function has the lowest value for a
given pixel. That is, for a each label indeéxthe set of points corresponding to that regibpis given by,

Note that some pixels may be defined with multiple labels wiithh a definition, however, these pixels are typi-
cally pixels that are on the border between two or more regand can be thus considered border pixels, or can
be assigned to one region of the other without any loss in tiieywof the method. This generalization is both
mathematically natural and matches our geometric intuitio

Figure 9 shows some examples of three region segmentaianh.row in this figure corresponds to a different
region of interest in the MR lymph node segmentation apptica The left column shows the initial region of
interest (ROI) along with the user specified seeds in yeldote that there are typically two foreground seeds and
a single background seed surrounding the entire regiomdifinal row however, there are two foreground seeds,
one of which is split along the two dark blood vessels, andadwehich is in the white lymph node.

The middle column shows the gradient of the smoothed ROl thadight column shows the corresponding
final segmentation result using the method of distance fomdbcally weighted by the image gradient alone, i.e.,
IVD| = ||VI|. For each image, one seed region is the rectangular boxuswlirey the structure and two interior
seed regions are chosen, one inside of each region of inesehown in the first column. Using a multi-region
segmentation method is particularly helpful in that it @iofor explicit modelling of structures that have signifitan
edge information and that are external to the structuretefést, rather than having these structures confound the
distance functions and thus, create errors in the final &gisn segmentation. This is particularly the situation for
the lymph node application, where lymph nodes are foundervitinity of the vessels.

We should finally note that, as shown in the example in Fighé nulti-region version of the algorithm shows
similar levels of flexibility when the center points are nader directly in the center of the object to be segmented.
This level of flexibility is attained by the design of the @iste functions, which are not very sensitive to small
shifts in the center points.

4, Conclusion

In conclusion, we presented efficient image segmentatimiques based on ideas from the Eikonal and diffusion
PDEs, by computing the distance functions for the exten iaterior regions, and by determining the final seg-
mentation labels by a competition criterion between th&adise functions for reaching a given point. Each method
has its pros and cons, according to the image characteribticour experiments demonstrated that among the pre-
sented methods, the combined edge map and image gradidmidathieves the most accurate segmentations, and
hence the best utility when compared to the other three rdsthde have additionally shown the natural generaliza-
tion of the two-region method to segmenting multiple regicrhe segmentations resulting from this algorithm are
both fast and accurate and are beneficial for clinical apfitias that require segmentation with a minimal amount
of user interaction.
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Table 1. Estimate type | and type Il error probabilities caetatabase of 50 nodes

| Edge Map Method Gradient Method Diffusion Method | Combined Method

Type | 0.015 0.247 0.256 0.081
Type Il 0.453 0.115 0.189 0.257
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Figure 3. Segmentation Results. Columns(a—f): a. ROl imagdode manually delineated; c. Edge Map Method; d. Gradiethod; e. Diffusion
Method, f. Combined Method.

Figure 5. A liver tumor is segmented using the Combined Atgor on a CT volume.
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Figure 6. Liver tumor from same CT volume as in Fig. 5 segntentigh different regions of interest (ROISs) of varying sizedashape. The resulting
segmentations of the liver tumor are shown. First row: witheeted input ROIs, shifted around the tumor, and stablmeatation results. Second row: even
with extreme, not commonly expected ROls, the proposedittgo still captures the tumor boundaries in a reasonable wa

Figure 8. A breast mass segmented using the Combined Aigooh a Ultrasound image.
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(s)

Figure 9. Example three-region segmentations with lymptes@nd blood vessels as the two foreground regions resgigcti
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