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According to recent estimates, hearing loss affects approximately 314 in 1000 adults over 

the age of 65.  While there are many causes of hearing loss, including genetic factors, disease, 

trauma, and exposure to damaging noise, the most common treatment is a hearing aid. Since a 

patient typically uses a hearing aid for many hours during the day, it must be comfortable to wear.  

Hearing aids are typically custom-made to match the three-dimensional (3D) geometry of the 

patient’s ear in order to achieve a comfortable fit. 

This article presents a software-based approach to interactive 3D shape modeling for 

geometric design of hearing instruments.  We review various shape modeling operations that 

transform a raw impression to the final shape of the hearing aid device.  In addition, we present 

state-of-the-art methods for automating the design process. 

 

HEARING AIDS 

Anatomical Perspective 

When designing a hearing aid, surface manipulations are often carried out with respect to 

anatomical features of the ear.  In Figure 1 (a) and (b), we simultaneously an image of a right ear 

along with an impression (described below) to show the major relevant features.  The canal is top-

most portion of the surface and is the part that goes inside the ear canal.  The aperture is a plane 

that separates the inner ear and the outer ear.  The tragus is the small flap of cartilage near the 

aperture.  Across from the tragus is the anti-tragus.  The tragus and anti-tragus are protrusions of 

the ear geometry so they appear as indentations on the impression.  Between the tragus and anti-

tragus is the notch.  Also near the aperture, the concha is the bowl-shaped cavity that appears as a 

hump on the impression.  The crus is a ridge of cartilage on the ear and appears as a valley on the 

impression.  The cymba is an indented region next to the crus, while the anti-cymba is the flap of 

cartilage above the cymba in the picture of the ear.  On the impression, the cymba is a protrusion 

and the anti-cymba is an indentation.  Please see Gray’s anatomy [1] for more details.   
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Figure 1.  Major anatomical features of the outer ear. 

 

Engineering Perspective 

Hearing aid design is complex, as each patient has different ear geometry, and based on the 

extent of the patient’s hearing loss, different electronic components are required.  As a result, 

hearing aids come in a variety of types, as shown in Figure 2, including completely in the canal 

(CIC), in the canal (ITC), and in the ear (ITE) devices.  For discretion, patients who experience 

hearing loss typically prefer CIC hearing aids.  However, more severe loss requires larger hearing 

aids to house larger electronic components. 

 

Figure 2.  Different types of hearing aids.  From left to right: CIC, mini-ITC, ITC, ITE. 

 

Design and manufacturing 

Historically, hearing aids were made through a tedious manual process that was highly 

operator dependent and error-prone.  Within the last five years, advances in 3D scanning 

technologies, computational geometry, and layered manufacturing have dramatically transformed 
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hearing aid manufacturing.  Today, a large percentage of hearing aids are produced using software-

based systems.  The process begins at an audiologist’s office, where thermosetting material is 

placed into the patient’s ear.  The material hardens, taking the shape of the patient’s ear, and is 

removed.  This mold, or impresion, is then scanned using a projected light scanner, which captures 

the 3D impression geometry as a point cloud, sent electronically to the manufacturing site.  The 

impression is loaded into 3D design sofware and the surface is processed in two steps: detailing, and 

modeling, described below.  The final surface is output as a stereo-lithography (STL) file, which is 

then built into a physical model a layered manufacturing system.  After the electronic components 

are added and the hearing aid is tested for quality assurance, the final product is shipped to the 

customer.  The block diagram for the overall process appears in Figure 3. 

 

Figure 3.  Overall block diagram for hearing aid manufacturing, from the impression to the 

final product.  This article considers the 3D Design Software in the dotted box. 

 

Challenges 

There are numerous challenges facing the design and development of 3D hearing aid 

software.  First, ear geometry vary dramatically from person to person, and therefore the software 

must be robust to this variation.  The final device should be as small as possible and must fit inside 

the original impression.  Since existing tools are interactive, computational performance is critical 

so that operators do not wait significantly when working with the data.   

Previous work 

Previous attempts to apply computed-aided design (CAD) principles hearing instrument 

design relied on multiple general-purpose 3D software systems, including Parasoid and CATIA.  

Such approaches took approximately 20-25 minutes to model one complete hearing instrument.  

Subsequently, hearing-aid specific software, like Materialise MagicsRSM addressed the modeling 

part but did not have suitable functionality for detailing.  This paper is based on AutoMoDe, the 



 4

first all-encompassing detailing and modeling technology with an artificial intelligence basis for 

hearing instrument design [4]. 

 

SIGNAL PROCESSING OF 3D SHAPES IN HEARING AID DESIGN 

We begin with a description of the detailing operations, which reduce the impression to the 

shape of the hearing aid as depicted in Figure 4. 

Detailing 

Triangulation and topology correction 

The first step of the detailing process is surface reconstruction, which transforms the point 

cloud into a polygonal mesh, which is easily rendered with graphics hardware and supports queries 

about neighborhood geometry.  Surface reconstruction is a classic problem in computer graphics, 

and several well known solutions exist, including power crust [1] and ball pivoting [2].  After 

triangulation (Fig. 4a), it is possible that small holes exist on the surface.  Holes are easy to locate, 

since at a hole an edge connecting two vertices will only be part of one face.  By grouping such 

edges together, connected hole contours are detected and then filled using constrained Delaunay 

triangulation (Fig. 4b).  After hole filling, the resulting surface is a two-manifold with a boundary at 

the base of the surface. 

Interactive Surface Manipulation Tools 

In the detailing process, interactive surface manipulation tools allow the operator to 

transform the surface into a hearing aid shape.   

Smoothing tools 

Smoothing is available at any time in the detailing process.  Smoothing tools rely on a 

Laplacian smoothing algorithm that is sensitive to the convexity of the surface.  In particular, they 

locally deform mesh vertices using the equation  

  

where vi is a mesh vertex to be smoothed, iλ is a diffusivity coefficient that controls the degree of 

smoothing, 
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is the discrete Laplacian operator that determines a displacement Li using the M vertices vj in the 

(one-ring) neighborhood of vi, and  

  

is an indicator function that determines if the displacement is inward using Ni, the surface normal at 

vi.  Outward displacements are avoided to ensure the deformed surface fits inside the original 

impression.  Note that Equation 1 is simply a discretized form of the heat equation.  By integrating 

this equation over time, the high frequencies on the mesh become dispersed, while the main surface 

shape, represented by the lower frequencies, is largely unaffected. 

Cutting tools 

The bottom of the impression is cut with a plane that passes through the tragus, anti-tragus, 

and anti-cymba, (Figs. 4c and 4d).  For ITE models, this defines the length of the hearing aid.  Then, 

the canal is tapered at the tip (Fig. 4e), using cutting and Laplacian smoothing. For ITE devices, a 

cut is applied to remove part of the cymba, while for CIC and ITC devices, a cut applied at the crus 

completely removes the cymba (Fig. 4f).  Using the Laplacian smoothing algorithm, local inward 

deformations are applied along the crus in for ITE.  Finally, for CIC devices, a cut is applied at the 

aperture so that the device is completely in the canal (Fig. 4g).   

 

Figure 4.  Surface detailing process.  See text for description. 
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Virtual cast and color mapping 

The software can provide a virtual cast, which renders the original impression transparently 

along with the detailed surface (Fig. 4h).  With this visualization, the operator can check the quality 

of the detailed surface, as well as visualize the distance between the detailed shape and the 

impression (Fig. 4i).  Distance queries between a vertex on the detailed surface and the impression 

surface are efficiently processed using a k-d tree [5]. 

 

Modeling 

After detailing, the surface has the shape of a hearing aid.  The modeling process, depicted 

in Figure 4, considers the components that are placed inside the device. 

Thickness and vent 

The first step of modeling is to add thickness, which is typically uniform and achieved by 

computing an offset surface (inner wall) from the surface from detailing (outer wall).  A connecting 

surface stitches the inner wall and outer wall together, and topologically, the resulting surface S is a 

manifold without boundary (Fig. 5a).  The next step is to add a vent, which is a tubular structure 

that runs the length of the hearing aid.  The vent allows air to pass through the hearing aid so that 

when inserted, the air pressure inside the patient’s ear canal will match the ambient air pressure 

outside the ear.  A surface path is determined on the outer wall using a curvature-weighted geodesic 

algorithm between a point on the canal tip and on the base of the impression (Fig. 5b).  From this 

path, two tubular surfaces are generated, forming an inner wall I, and an outer wall O of the vent.  

Using Boolean operations, the vent is attached, shown in Fig. 5c, using OISS U)(' −= , where “–“ 

is a mesh difference operator and “U ” is a mesh union operator.  Boolean operations permit logical 

combinations of meshes. 

Components and labeling 

The hearing aid contains several components, including a battery, microphone, amplifier, 

receiver, and faceplate.  The receiver converts the amplified electrical signal into an acoustic signal 

for transmission into the ear.  It is desirable to place the receiver as far up the canal as possible.  

However, the geometry of the surface limits the receiver placement.  An automatic receiver 

placement tool searches the 6D space of translations and rotations of the receiver and places the 

receiver at its optimal location and orientation, as shown in Fig. 5d.  A 3D text label is applied to 

the inner wall of the surface for later identification of the device.  Labeling is achieved by using 

Windows path functions to determine 2D letter geometry and a 3D surface is extruded and merged 
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with Boolean operations onto the surface (Fig. 5e and 5f).  If the receiver touches the inner wall of 

the surface or label, the surface is locally deformed to accommodate the components.   

 

Figure 5.  Modeling process.  See text for description. 

 

AUTOMATION OF DETAILING AND MODELING 

Automating the design of hearing aids increases operator efficiency as well as the 

reproducibility of design. 

Binaural processing 

A large percentage of patients experiencing hearing loss require two hearing aids; one for 

the left ear and another for the right.  Typically, the left and right ear impressions are largely 

symmetric with mirror symmetry.  Therefore, binaural processing allows an operator to apply 

detailing and modeling operations on a left (right) impression, and automatically have the 

operations applied with mirror-symmetry to the right (left) impression.  This requires accurate 

registration between the impressions.  First, one mesh is transformed to have mirror symmetry, by 

multiplying all vertices by a matrix 
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M .  Then, registration between two shapes can 

be achieved using iterated closest points (ICP).  For proper convergence, ICP requires a good initial 

alignment.  One way to estimate the initial rotational alignment is to construct extended Gaussian 

images (EGIs) [6], which are translation-independent orientation histograms formed over 

T]^,[ φθα =  by binning a mesh’s surface normals in spherical bins.  Two EGIs can then be 

efficiently cross-correlated to estimate the rotational shift that brings them into alignment using 

 

(4) 

where )3(SOR ∈ is a rotation in the Lie group of rotations about the origin of 3-dimensional 

Euclidean space, and H1 and H2 are the EGIs of the two surfaces.  Using the spherical Fourier 
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transform [3], Equation 4 can be efficiently implemented in the frequency domain.  The peak of 

G(R) indicates the rotational shift that will align the two meshes.  Then, to estimate the translational 

alignment, a similar procedure is formed using 3D histograms formed in x, y, z and the standard 

cross-correlation operator, also implemented in the frequency domain, but using the standard 3D 

Fourier transform. 

 

Feature recognition 

Most of the operations applied in detailing and modeling are based on the anatomic features 

of the ear impression.  Therefore, automatic recognition of these features enables automation of 

detailing and modeling.  One way to recognize features is through analysis of contours that intersect 

parallel planes running through the shell.  For example, the aperture can be detected by looking for 

a large increase in contour area going from the canal tip to the base of the impression.  Any 

triangles above the aperture are part of the canal.  Forming a polyline through the contour centroids 

gives a rough centerline.  The tragus, anti-tragus, and anti-helix can be found by studying the 

curvature of contours near the base of the impression.  Other features can be found using similar 

geometric analysis.  See Figure 6 (a) and (b) for an example. 

 

Figure 6.  Feature detection and surface segmentation.  Contours generated from slicing planes (a) 

and analyzed in (b) to find the canal tip (top most point), aperture (blue contour), concha (red point), 

anti-tragus (green point near bottom), anti-cymba (purple point).  Atlas surface (c) and automatically 

segmented surface (d). Colors correspond to those in Figure 1. 

 

Surface segmentation 

Feature recognition determines individual points or planes.  However, sometimes regional 

information of impression is useful.  Surface segmentation determines a unique label for each vertex 

on the impression.  This can be achieved by using a manually labeled atlas.  Vertices on an 
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unlabeled surface are compared using a shape descriptor, such as the shape context [7] (log polar 

spherical histogram of points), to vertices on the labeled atlas.  In this way, the labels from the atlas 

can be transferred to the new surface.  See Figure 6 (c) and (d) for an example. 

 

Outlook 

Advances 3D scanning and fabrication hardware as well as 3D geometric design software 

have transformed a once labor-intensive manual manufacturing into an efficient digital process for 

hearing aid design, resulting in higher quality, reduced cost, and better fitting devices.  Future work 

in this field will continue to focus on increasing automation until the process is fully automatic.   
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