
Image-Based Photo Hulls for Fast and Photo-Realistic New View Synthesis

GREGORY G. SLABAUGH
Intelligent Vision and Reasoning Department, Siemens Corporate Research, Princeton, NJ 08540

greg.slabaugh@scr.siemens.com

RONALD W. SCHAFER
Center for Signal and Image Processing, Georgia Institute of Technology, Atlanta, GA 30338

rws@ece.gatech.edu

MAT C. HANS
Mobile and Media Systems Lab, Hewlett-Packard Laboratories, Palo Alto, CA 94304

mat hans@hp.com

Abstract
We present an efficient image-based rendering algo-

rithm that generates views of a scene’s photo hull. The
photo hull is the largest 3D shape that is photo-consistent
with photographs taken of the scene from multiple view-
points. Our algorithm,Image-Based Photo Hulls(IBPH),
like theImage-Based Visual Hulls(IBVH) algorithm from
Matusik et. al. on which it is based, takes advantage of
epipolar geometry to efficiently reconstruct the geometry
and visibility of a scene. Our IBPH algorithm differs from
IBVH in that it utilizes the color information of the images
to identify scene geometry. These additional color con-
straints result in more accurately reconstructed geometry,
which often projects to better synthesized virtual views of
the scene. We demonstrate our algorithm running in a re-
altime 3D telepresence application using video data ac-
quired from multiple viewpoints.

Keywords
Photo hull, image-based rendering, 3D photography,

new view synthesis, voxel coloring, space carving, color
consistency, view-dependent scene reconstruction.

1 Introduction
The task of generating a photo-realistic 3D representa-

tion of a visual scene is an important and challenging prob-
lem. Debevec et. al. [1] demonstrated in their Campanile
movie that it is possible, using a user-assisted 3D mod-
elling program and a handful of photos of a college cam-
pus, to produce a digital model of the scene that when ren-
dered, yields images of stunning photorealism from new
viewpoints. Since this work, there has been much interest
in producing results of similar quality using algorithms that

are automatic and work on scenes composed of surfaces of
arbitrary geometry.

Recently, researchers have become interested in recon-
structing time-varying scenes [2, 3, 4, 5, 6]. Most standard
approaches to the 3D scene reconstruction problem such
as multi-baseline stereo, structure from motion, and shape
from shading were not designed for realtime performance
and thus are too slow to process the images online. When
working with multi-view video data, most techniques per-
form the 3D reconstruction offline after the images have
been acquired. Once the reconstruction is complete, it is
rendered in realtime.

A notable exception is the Image-Based Visual Hulls
(IBVH) algorithm [7], developed by Matusik et. al. This
algorithm is efficient enough to reconstruct and render new
views of the scene in realtime. The key to this algorithm’s
efficiency is its use of epipolar geometry for computing the
geometry and visibility of the scene. By taking advantage
of epipolar relationships, all of the steps of the algorithm
function in the image space of the photographs (also called
reference views) taken of the scene.

While the IBVH algorithm is exceptionally efficient,
the geometry it reconstructs is not very accurate. This
is because the IBVH algorithm only reconstructs the vi-
sual hull of the scene. The visual hull is a conservative
shape that contains the scene surfaces being reconstructed.
When photographed by only a few cameras, the scene’s
visual hull is much larger than the true scene. Even if
photographed by an infinite number of cameras, many ob-
jects with concavities cannot not be modelled correctly by
a visual hull. One can partially compensate for such ge-
ometric inaccuracies by view-dependent texture-mapping
(VDTM), as done in the IBVH approach.

Figure 1: Visual hull reconstruction (upper row) vs. photo hull reconstruction (lower row) of a pinwheel. Left to right:
synthesized view and depth map.

However, artifacts resulting from the inaccurate geom-
etry are still apparent in new synthesized views of the
scene, as shown in Figure 1. This figure demonstrates a
reconstruction of a pinwheel photographed from five view-
points. A new view of the scene, placed half-way between
two reference views, is rendered from the reconstruction.
The top row shows the visual hull reconstruction. At this
viewpoint, the right side of the reconstructed pinwheel is
texture-mapped with one reference image, while the left
side of the pinwheel is texture-mapped with another. Due
to the geometric inaccuracy of the visual hull, there is a
salient seam along the pinwheel where there is a transition
between the two images used to texture-map the surface.
In particular, the center of the pinwheel is not present in
the synthetic view. The improved geometry of the photo
hull corrects this problem, as shown in the bottom row of
the figure.

In this paper we adapt the IBVH algorithm to recon-
struct photo hulls. The photo hull is the largest shape that
is consistent with the photographs taken of the scene. Typ-
ically, the photo hull is also a shape that contains the scene
surfaces; however it is a tighter fit to the true scene ge-
ometry than the visual hull. New views synthesized us-
ing the more accurate geometry of the photo hull have im-
proved photorealism. Like IBVH, all the steps of our al-
gorithm function in image space (hence, we call our algo-
rithm Image-BasedPhoto Hulls). Our approach combines

the efficiency of the IBVH algorithm with the improved
geometric accuracy of the photo hull.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related work. Since our algorithm ex-
tends the IBVH algorithm, we briefly review IBVH in Sec-
tion 3. We describe the details of our approach in Section 4,
and then present experimental results in Section 5 and eval-
uation in Section 6. Note that this paper is an expanded
version of a symposium paper [9].

2 Related Work
2.1 Visual Hulls

A standard approach to reconstructing a 3D object us-
ing multi-view images is to compute the visual hull [8].
For each reference view, a silhouette is generated by seg-
menting the photograph into foreground and background.
Foreground pixels correspond to points to which the 3D
object projects. Everything else is background.

Each silhouette constrains the 3D space in which the
object is located. If a 3D point projects to background
in any of the images, it cannot be part of the 3D object
being reconstructed. After eliminating such points, the
surface of the region of space that remains is thevisual
hull. The visual hull is guaranteed to contain the 3D ob-
ject. Using more reference views produces a visual hull
that more closely resembles the geometric shape of the true
3D object. However, even with an infinite number of pho-

(a) (b)

Figure 2: The problem of 3D scene reconstruction from
multiple photographs is ill-posed.

tographs, the visual hull cannot model surface concavities
that are not apparent in the silhouettes.

A variety of algorithms have been developed to com-
pute the visual hull of a scene. Perhaps the most common
approach is to operate in a volumetric framework. A good
example is given in [10]. A volume that contains the scene
being reconstructed is defined. The volume is then tes-
sellated into voxels. All the voxels that project to solely
background pixels in one or more reference views are re-
moved (carved). The remaining voxels represent the visual
hull and its interior. Such an algorithm can adopt a multi-
resolution strategy to achieve faster results.

Recently, the Image-Based Visual Hulls [7] algorithm
was developed and demonstrated to produce realtime new
views of a scene. Our IBPH algorithm is based on the
IBVH algorithm, so we will briefly review IBVH in Sec-
tion 3.

2.2 Photo Hulls
The problem of reconstructing a 3D model of a scene

using multiple 2D photographs is ill-posed. For a given
set of 2D photographs, multiple 3D models that reproduce
the photographs can and often do exist. For example, con-
sider Figure 2. Here, two (of several) different models that
reproduce the photographs are shown. Without more con-
straints on the reconstruction, it is impossible to determine
which is a better representation of the true scene.

Given this ambiguity, Kutulakos and Seitz [11] intro-
duce thephoto hull, which is thelargestshape that contains
all reconstructions in the equivalence class of 3D models
that reproduce the photographs. The photo hull can be
thought of as the spatial union of all 3D models that re-
produce the photographs. Since the true scene is one such
3D model, the photo hull is typically larger than the true
scene. The photo hull is interesting because:

1. It is itself a photo-consistent reconstruction of the
scene.

2. It is unique.

3. It can be easily computed.

A number of algorithms that compute photo hulls have
been developed [11, 12, 13, 14]. These methods utilize
photo-consistency [11] as a constraint to identify scene sur-
faces. A point in space is said to bephoto-consistentif (1)
it does not project to background and (2) when visible, the
light exiting the point (i.e. radiance) in the direction of
each reference view is equal to the observed color in the
photograph.

For simplicity, one often assumes that the scene is Lam-
bertian, although this isn’t strictly necessary. Under this
assumption, a point on a scene surface will project to a
similar color in each reference view. The photo hull is then
computed by finding the spatially largest set of points in
3D space that project to matching colors in the reference
images.

These algorithms begin with a voxel space of initially
opaque voxels that encompasses the scene to be recon-
structed. As the algorithms run, opaque voxels are tested
for photo-consistency and those that are found to be in-
consistent are carved, i.e. made transparent. Convergence
occurs when all the remaining opaque voxels are photo-
consistent. When these final voxels are assigned the colors
they project to in the input images, they form a model that
closely resembles the scene. This model is the photo hull.
New, photo-realistic views of the scene can be synthesized
by rendering the photo hull to virtual viewpoints.

Our IBPH algorithm adopts a similar strategy to com-
pute views of the photo hull. The algorithm starts with a
surface larger than the scene, and then iteratively carves
space using a photo-consistency measure until the visi-
ble reconstructed points become photo-consistent. Our ap-
proach differs from previous photo hull reconstruction al-
gorithms in that the IBPH algorithm functions in image
space and produces a view-dependent reconstruction. Un-
like [11, 12, 13, 14, 15], our approach does not employ a
static 3D voxel space for reconstruction. Rather, the re-
constructed geometry is computed in a space defined by a
virtual camera, and changes as the camera is moved about
the scene. Rather than reconstruct the full photo hull geom-
etry, our method only reconstructs the portion of the photo
hull that is visible to the virtual camera.

For an overview of methods that reconstruct visual and
photo hulls, please refer to [16, 17].

Notation

Before proceeding to the description of our algorithm,
let us define some notation. A point in 3D space is repre-
sented in homogeneous coordinates by a boldface capital
letter, such asP. In this paper,P = [x y z w]T .

Figure 3: View-dependent geometry.

The projection of this point into an image is a 2D point
represented in homogeneous coordinates by a boldface
lowercase letter, such asp = [x y w]T . To con-
vert a homogeneous image point to inhomogeneous co-
ordinates (i.e. pixel coordinates), one simply dividesp
by thew component. Thus, a pixel will have coordinates
p = [x/w y/w 1]T .

3 Image-Based Visual Hulls
In this section, we briefly review the IBVH algorithm.

In the following section, we will show how we extend the
IBVH algorithm to reconstruct views of the photo hull.

3.1 Computing geometry
One of the unique properties of the IBVH algorithm is

that the geometry it reconstructs is view-dependent. A user
moves a virtual camera about the scene. For each virtual
camera placement (also calleddesired view), the IBVH al-
gorithm computes the extent that back-projected rays from
the center of projectionCd intersect the visual hull in 3D
space, stored as a layered depth image [18]. This is shown
in Figure 3. Thus, the representation of the geometry is
specified for the desired view, and changes as the user
moves the virtual camera.

Consider an individual ray, as shown in Figure 4. The
ray is back-projected from the desired view’s center of pro-
jection, through a pixel in the image plane, and into 3D
space. This ray projects to an epipolar line in each refer-
ence view. The IBVH algorithm determines the 2D inter-
vals where the epipolar line crosses the silhouette. These
2D intervals are then “lifted” back onto the 3D ray using
a simple projective transformation. The intervals along the
3D ray from all reference views are intersected. The re-
sultant set of intervals describe where the ray pierces the
visual hull. These are calledvisual hull intervalsin this
paper. In Figure 4, one visual hull interval is found along

Figure 4: Determining a ray’s visual hull intervals.

the back-projected ray. Once this procedure has been per-
formed on all rays back-projected from the desired view,
the reconstruction of the view-dependent geometry of the
visual hull is complete.

3.2 Computing visibility

In order to color a point on the visual hull, it is nec-
essary to determine which cameras have an unoccluded
view of the point. Thus, visibility must be computed be-
fore texture-mapping the reconstructed geometry.

At a pixel p in the desired view, the first point (if any)
along the first visual hull interval indicates a pointP in 3D
space that projects top and is visible in the desired view,
as shown in Figure 5 (a). To compute visibility, for each
reference view we need to determine ifP is visible.P must
be visible in the reference view if the line segmentPCr

betweenP and the reference view’s center of projection
Cr does not intersect any visual hull geometry.

The layered depth image representation of the visual
hull makes this easy to determine. In the desired view,
PCr projects to an epipolar line segmentpe, wheree is
the epipole, found by projectingCr into the desired view,
as shown in Figure 5 (b). For each pixel alongpe, the
visual hull intervals can be checked to see if they contain
geometry that intersectsPCr. If an intersection occurs,
point P is not visible in the reference view, and no more
pixels alongpe need be evaluated. Otherwise, one con-
tinues evaluating pixels alongpe, until there are no more
pixels to evaluate. If no visual hull interval has intersected
PCr, then the pointP is visible in the reference view.

The IBVH paper [7] discusses discretization issues
in computing visibility using this approach, as well as
occlusion-compatible orderings to improve its efficiency.

(a) (b)

Figure 5:P is visible in the reference view if there is no occluding geometry alongPCr.

Figure 6: View-dependent texture-mapping.

3.3 View-dependent texture mapping

Once visibility has been computed, one can color the
visual hull using the reference views. The IBVH paper
employs view-dependent texture mapping, which retains
view-dependent effects present in the photos, and works
well with the inaccurate geometry of the visual hull. To
color a pointp in the desired view, the closest pointP on
the hull is found. Then, for each reference view that has
visibility of P, the angle betweenPCd andPCr is found,
as shown in Figure 6. The reference view with the smallest
angle is chosen to color the visual hull. This is the refer-
ence view that has the “best” view ofP for the virtual cam-
era’s location. For example, in Figure 6, reference view 2
would be chosen sinceθ1 > θ2.

4 Image-Based Photo Hulls
In this section we describe our IBPH algorithm, which

produces views of the photo hull.

4.1 Approach
Our IBPH approach first computes the visual hull using

the IBVH algorithm, which quickly eliminates a large por-
tion of 3D space that does not contain scene surfaces. Our
algorithm then evaluates the photo-consistency of the clos-
est point on the visual hull along each ray back-projected
from the desired view. If the point is inconsistent, we take
a small step along the ray, moving away from the desired
view, as depicted in Figure 7. We continue stepping along
an inconsistent ray until it either becomes consistent or we
have stepped beyond all visual hull intervals along the ray.
This latter case indicates that no photo-consistent geometry
along the ray was found.

Note that in this approach, only the points on the hull
that are visible in the desired view are processed. Initially,
these points are the first points in the first visual hull inter-
val along each back-projected ray. By stepping along the
inconsistent rays until convergence, the IBPH algorithm re-
constructs only the portion of the photo hull that is visible
to the desired view.

4.2 Photo-Consistency
To determine the photo-consistency of a 3D pointP

along a ray, we projectP into theith reference view, yield-
ing an image-space pointpi. We only perform this pro-
jection for the reference views that have visibility ofP.
Around eachpi we collect a small neighborhood of pixels,
Ni to use in our color matching function.

There are many methods one can employ for matching
color distributions to determine photo-consistency. A stan-

Figure 7: Computing the image-based photo hull.

dard approach is to threshold the standard deviation of all
the pixels. That is,

consistency=
{

True, if σ ≤ T1

False, otherwise
(1)

whereσ is the standard deviation of all pixels,
∑

i Ni, and
T1 is a user-defined threshold. In our work, we reconstruct
the scene using RGB images, so we compute the standard

deviation asσ =
√

σ2
r + σ2

g + σ2
b , whereσr, σg, andσb

are the standard deviations computed in the red, green, and
blue color channels, respectively.

This measure of photo-consistency works reasonably
well for many scenes. However, it can perform poorly for
surfaces that project to consistent, yet highly varying colors
in the reference images. This can occur on edges as well
as textured surfaces. In such a case, each reference im-
age will observe multiple different colors for the surface.
Consequently, the standard deviation will be high, and the
photo-consistency measure can incorrectly return false.

Textured surfaces and edges will project to pixels with a
high standard deviation ineachimage. We use this fact to
modify the consistency measure described above to han-
dle such surfaces. Let the standard deviation of a set of
pixels Ni from a reference view beσi. Our new photo-
consistency measure is then

consistency=
{

True, if σ ≤ T1 + σT2

False, otherwise
(2)

whereσ is the average ofσi andT2 is a second user-defined
threshold.

This consistency measure simply adds an additional
termσT2 to the one defined in Equation 1. This term spa-
tially adapts the consistency measure based on the colors

Figure 8: Stepping along an epipolar line.

observed in the 3D point’s projection. The value ofσ will
be small when the 3D point projects to homogenous colors
in each image. In this case, there will be little difference
between the two consistency measures 1 and 2. If these
colors are similar, the point will be declared consistent. If
these colors are dissimilar, the point will be declared in-
consistent. When the point projects to highly varying pix-
els in each image, theσ term will increase the maximum
value ofσ allowable for the point to be declared consis-
tent. This allows for textured surfaces, as well as edges,
to be correctly reconstructed. It also eases the Lambertian
assumption. The thresholdT2 allows one to weight the
contribution of this adaptive term to the photo-consistency
measure. This two-parameter consistency measure is the
one used to produce photo hulls in this paper.

4.3 Stepping Along Epipolar Lines
As we step in 3D along an inconsistent ray, looking for

the point at which it becomes consistent, we must simulta-
neously step along an epipolar line in each reference view.
The brute-force way of stepping along the epipolar line in a
reference view is to simply project each 3D pointPi on the
ray to the reference view pointpi by multiplying the refer-
ence view’s projection matrixH with Pi, i.e. pi = HPi.
Such an approach will work, but will require a large num-
ber of matrix multiplications.

While the step size|∆P| in 3D is constant, the step size
between adjacent points along the epipolar line in a 2D ref-
erence view varies due to the projection. However, since
the projection is a homography (linear projective transfor-
mation), the step sizeis constant in homogeneous coordi-
nates. We use this fact to produce a more efficient proce-
dure for stepping along the epipolar line.

Consider the 3D pointP0 on the ray, as shown in Fig-
ure 8. It projects to a pointp0 = HP0 in a reference

image. If we take a step along the ray, we arrive at a 3D
pointP1 = P0 + ∆P. The pointp1, the projection ofP1

into the reference view can be written as

p1 = HP1

= H(P0 + ∆P)
= p0 + H∆P

Thus, we can incrementally update the homogeneous po-
sition of the point along the epipolar line in the reference
view. That is,

pi =
{

HP0, i = 0
pi−1 + H∆P, i > 0 (3)

We set|∆P| to a size that results in a projected size|∆p|
of roughly one pixel for most reference views. We then
pre-compute the constantH∆P for each ray in a refer-
ence view and store it in a look-up table. As we step along
the epipolar line, we use Equation 3 to compute the ho-
mogeneous position of the pointpi. With this approach,
stepping along an epipolar line is very efficient.

4.4 IBPH Visibility
When evaluating the photo-consistency of a 3D point,

only pixels from the reference views that have visibility of
the 3D point should be used. As one steps along the in-
consistent rays, the visibility of the scene may change. A
point that was not visible in a reference view before may
become visible after the step is taken. Therefore, it is nec-
essary to update visibility after stepping. This is achieved
by re-executing the visibility procedure described in Sec-
tion 3.2.

Visibility could be updated each time a step is taken
along each ray. However, such an excessive number of
visibility updates results in a slow reconstruction. Instead,
our algorithm takes one step along each inconsistent ray,
and then updates visibility. As a result, the visibility may
be out-of-date when evaluating some 3D points. However,
such an approach is conservative. Pixels from only a subset
of the references views that have visibility of the point will
contribute to the consistency measure. For a monotonic
photo-consistency function [11], this may result in some
3D points being erroneously classified as consistent, while
a full visibility calculation would show that they are really
inconsistent. Since visibility is updated periodically, such
erroneous classifications are properly classified on a later
iteration of the algorithm. Such an approach is similar to
that used in the GVC-IB [13] algorithm.

4.5 Sampling
One way to trade off accuracy for speed in both the

IBVH and IBPH algorithms is to compute the hull in a

multi-resolution fashion1. The algorithm is executed not
for every pixel in the desired view, but rather on a coarse
raster. One first computes the hull at sampling locations
(x·DX, y ·DY) in the desired image, where DX and DY are
constants that specify the sampling size. The sampling lo-
cations are shown as black dots in Figure 9. For in-between
pixels on the boundary, indicated using black squares in the
figure, the hull is computed at every pixel so that the edges
of the synthesized image are at full resolution. For pixels
inside the boundary, the closest point of the hull interval
(i.e. depth) is interpolated from adjacent samples. This ap-
proach significantly reduces the number of rays that must
be processed, resulting in a faster reconstruction.

Figure 10 shows the effect increasing the sampling size
DX and DY for a pinwheel photographed from five view-
points. The leftmost image shows the depth map when DX
and DY are 1. In this case, we are computing a depth value
for every pixel in the desired image. While the depth map
is crisp, the frame rate is only 0.4 frames per second (FPS).
Increasing the sampling size has a significant impact on
the frame rate. For the rightmost image, the DX and DY
are both five, and the frame rate is 8.3 FPS. The tradeoff
for this improvement in frame rate is blurring of the depth
map, since the depth values at pixels inside the border are
interpolated from the sampling locations. Continuing to
increase the sampling size further blurs the depth map, but
has little impact on the frame rate, as more pixels become
boundary pixels, which are sampled at full resolution.

4.6 Convergence
The IBPH algorithm steps along the inconsistent rays,

stopping at the point at which each ray becomes photo-
consistent. For convergence, one can require that all rays
are photo-consistent. However, often during a reconstruc-
tion, a significant majority of the rays will become consis-
tent quickly. Continuing to process a handful of inconsis-
tent rays will yield little impact on the overall quality of
the reconstruction, but can take a lot of time. In our imple-
mentation, we have introduced a mechanism to terminate
the reconstruction whenM or less rays are inconsistent.
WhenM is a small number, good quality hulls are pro-
duced quickly.

Figure 11 justifies our use ofM to terminate the recon-
struction before all rays are consistent. This plot shows
ray classifications versus iteration for reconstruction of
our Sam data set, which consists of a person’s head pho-
tographed from four viewpoints. The visual hull projected
to 1333 of the 80 x 60 points on the coarse raster. Rays
back-projected through these points were analyzed using
the IBPH algorithm. Initially, 635 were inconsistent and
698 were consistent, as shown in the figure. At each iter-

1http://graphics.lcs.mit.edu/∼wojciech/vh/ctof.html

Figure 9: Multi-resolution sampling for faster performance. In this example, DX= DY = 2.

1x1 2x2 3x3 4x4 5x5
0.4 FPS 1.6 FPS 4.7 FPS 6.8 FPS 8.3 FPS

(a) (b) (c) (d) (e)

Figure 10: Effect of increasing sampling size DX, DY on the reconstructed depth map and frame rate.

Figure 11: Ray classifications vs. iteration.

ation of the algorithm, a step was taken along each incon-
sistent ray. The plot of the number of inconsistent rays is
very steep at first, indicating that many rays become con-
sistent quickly. After 60 iterations, most rays are consis-
tent. However, it takes an additional 140 iterations for the
few remaining inconsistent rays to become consistent. For
a realtime application, one would rather not continue pro-
cessing these rays, as they will not significantly contribute
to the quality of the reconstructed model.

There are several ways one might specify the value of
M . For example, one may chose to setM to be a cer-
tain percentage of the total number of rays on the coarse
raster. Alternatively, the value can be determined through
experimentation. One can run a experiment like that done
to produce Figure 11 to determine at what point the recon-
struction is mostly complete for views of a scene. This is
the technique used to produce the reconstructions in this
paper. In another approach, one could terminate the recon-
struction once the absolute value of the slope of a curve in
the plot in Figure 11 goes below a threshold. Effectively,
such a method would adaptively set the value ofM .

For scenes with deep concavities that must be carved out
from the visual hull, one may choose a lower value ofM
to ensure enough carving occurs before the reconstruction
terminates.

4.7 Spatial Coherence
Most scenes exhibit a high degree of spatial coherence,

as they consist of surfaces that do not radically change their
position over a small region of space. Accordingly, many
stereo vision algorithms impose a regularization criterion
that requires the reconstructed geometry to be smooth. In a
similar vein, we have developed a very simple and efficient
smoothing technique that we incorporate into our IBPH al-

Figure 12: VaryingK. From top to bottom,K = 1, 2, and
5.

gorithm. The smoothing also helps mitigate reconstruction
errors due to noise and specularities.

When stepping along an inconsistent ray, we keep track
of the number of steps we have taken,k. Before taking
another step, we comparek to a local mean computed by
averaging the number of steps taken along rays in a small
neighborhood around the inconsistent ray. We denote this
local averagēk. If k > k̄ + K, whereK is a small con-
stant, we do not step along the ray. This ensures that the
number of steps taken along a ray is not significantly differ-
ent from that of its neighbors, resulting in a surface that is
spatially coherent. This smoothing approach requires very
little computation and works naturally with the representa-
tion of the hull geometry used in our algorithm.

Figure 12 shows the effect of changingK for a recon-
struction of a person’s head. Notice that there are less
abrupt transitions in the depth map in the top-most re-
construction (K = 1) compared to the bottom-most re-
construction (K = 5). We note that this very simple
smoothing approach is not ideal for reconstructing surfaces
with large depth discontinuities observed from a small re-
gion in the desired view. For such situations, the smooth-

ing mechanism could be turned off. To better handle
such scenes, more sophisticated (and most likely, more
compute-intensive) smoothing methods would be required
to analyze the 3D position of surface points to ensure that
depth discontinuities are properly preserved. In this pa-
per, we do not reconstruct such scenes so we will apply the
smoothing method to all experimental results presented in
Section 5.

4.8 Homogeneous Surfaces
Surfaces that have a homogeneous color are difficult

to properly reconstruct using color matching methods. A
point in space near the surface will project to similar col-
ors in the reference images. Such a point will be photo-
consistent even though it is not actually on the surface be-
ing reconstructed. This results in cusps [12], which are
3D protrusions in the direction of the cameras, a common
artifact seen in photo hulls. Our IBPH algorithm is not
immune to this problem, as is visible in any of the recon-
structions shown in Figure 12. The depth map indicates
some extra geometry jutting out of the person’s chest, re-
sulting from a homogeneously colored shirt the person was
wearing. Fortunately, geometrical inaccuracies due to ho-
mogeneous surfaces are not that significant for new view
synthesis, once the model is texture-mapped. For example,
the seams shown in Figure 1 will not be present because
the geometry will project to a homogeneous color in each
reference view.

4.9 Pseudo-Code
The pseudo-code for our IBPH algorithm appears in

Figure 13.

5 Results
We have implemented the IBPH algorithm on a multi-

camera system. We have five calibrated Sony DFW-V500
digital cameras. The cameras are synchronized so that they
take images of the scene at the same instant of time. Each
camera is connected to an 800 MHz HP Kayak machine.
These machines perform background subtraction on the
incoming frames, segmenting them into foreground and
background regions. The resolution of the reference im-
ages is 320 x 240 pixels.

The segmented reference images are sent over a 100
Mb/s switch to our server machine, which computes the 3D
reconstruction. Our server machine is a dual processor 2
GHz HP x4000 workstation. Our algorithm has been multi-
threaded to take advantage of our multi-processor machine.
Theith thread reconstructs the scene using a set of images
corresponding to timeti. In this way, the IBPH algorithm
can very naturally be parallelized.

The bottom row of Figure 1 shows the results of IBPH
algorithm in reconstructing a pinwheel. We placed the pin-
wheel in front of the cameras and spun the wheel. Fig-

ure 1 shows the reconstruction at one time instant. For
this reconstruction, the sampling rate parameters DX and
DY were 4, and the resolution of the desired view was 320
x 240. The algorithm reconstructed the scene and gener-
ated new views at 6 FPS. The IBPH algorithm produces
more geometrically accurate results than the IBVH algo-
rithm. However, the IBVH algorithm ran at 25 FPS for this
data.

Figure 14 shows a view from a realtime 3D telepresence
application we are currently developing with HP labs. The
3D model of the person’s head and neck is reconstructed
online using the IBPH algorithm. The reconstructed ge-
ometry of the person is then depth-composited with a 3D
model of a conference room. New synthesized views of
this composited scene are generated at 7.5 frames per sec-
ond. The upper image in the figure shows the texture-
mapped model, while the lower image shows the depth
map.

6 Evaluation
When working with this class of algorithms, a problem

that often arises is evaluation. How can one objectively
quantify the quality of a 3D scene reconstruction used in a
new view synthesis application?

An intuitive approach is to use 3D ground truth informa-
tion. When there is known 3D geometry, one can compute
a 3D spatial error measure that characterizes the mismatch
between actual and reconstructed geometry. While such
a 3D spatial error measure is often quite insightful, it can
potentially be an inadequate indicator for how well a re-
constructed scene will produce new views. An alternative
evaluation approach measures the 2D error of new views
synthesized from the reconstruction. If there areN refer-
ence views, the reconstruction is performed usingN − 1
of them. The reconstructed model is then projected to the
reference view that was left out, forming an image. This
projected image is then compared with the reference view
that was left out.

To better characterize the IBPH algorithm, and to com-
pare it to the IBVH and GVC algorithms, we perform both
a 3D spatial error analysis and a 2D new view synthesis
error analysis for a synthetic data set we call SynthPlane,
which consists of views of a multi-colored plane on thexy
axis. The plane was photographed from 24 different view-
points, each with a radiusr = 10.5 units from the center of
the plane. Figure 15 shows the camera placements, as well
as a bounding box containing the plane. Viewpoints were
placed at45◦ intervals of azimuth angleθ and elevation an-
gles ofφ = 15◦, 40◦, and65◦. Figure 16 shows three of
the reference views forθ = 0◦ andφ = 15◦, 40◦, and65◦.
These images have a resolution of 640 x 480 pixels.

While a multi-colored plane is not the most exciting sur-
face to reconstruct, it is useful and interesting for several

compute IBVH
compute visibility
pre-compute homogeneous ray steps H∆P in each reference image
do

evaluate photo-consistency
for each inconsistent ray in desired view

if (number of steps along ray k <= k̄ + K)
step along inconsistent ray

else
set ray consistent

if (updating visibility)
update visibility

} while(number of inconsistent rays > M)
display hull using VDTM

Figure 13: Pseudo-code for the IBPH algorithm. See text for details.

Figure 14: Using IBPH in a realtime 3D telepresence application.

Figure 15: Camera placements and reconstruction volume
for the SynthPlane scene.

Figure 16: Three of 24 reference views for the SynthPlane
scene, forφ = 15◦ (top), 40◦, (bottom left) and65◦ (bot-
tom right).

reasons. First, it is easy to compare reconstructed geome-
try to that of a plane; we will describe our method below.
Second, while the planar geometry is simple, it is effective
for comparing different reconstruction algorithms since the
reconstructed geometry exhibits the characteristics present
in reconstructions of more geometrically complex surfaces.

6.1 3D Error
Our 3D error metricE3D measures the volume of space

that exists between the reconstructed surface and true sur-
face located on thez = 0 plane. This volume can be deter-
mined by solving the double integral,

E3D =
∫ ∫

|h(x, y)|dxdy, (4)

whereh(x, y) is the height of reconstructed surface. We
take the absolute value ofh(x, y) to ensure that all contri-
butions to the 3D error are positive. We call|h(x, y)| the
height field.

For each reconstruction approach, we reconstruct the
scene three times, using the highest 8 views, the highest
16 views, and all 24 views shown in Figure 15. Perform-
ing these three reconstructions shows the effect of recon-
structing the scene using more oblique views. Since the
IBVH and IBPH algorithms view-dependently reconstruct
the scene, we placed the virtual camera directly above the
xy plane, for an elevation angleφ = 0◦, and a radius 10.5
units up thez axis. Using a sampling lattice of 4 x 4, we
generated a synthetic view with resolution 640 x 480 pix-
els. IBVH and IBPH produced a layered-depth image at
this virtual camera position. We then converted the clos-
est point on the hull into a 3D height map for analysis.
We note that for IBPH, we turned off the spatial smooth-
ing described in Section 4.7 in order to better evaluate the
algorithm.

The results of these experiments are presented in Fig-
ure 17. We show the height field as well as the 3D error
E3D computed from each reconstruction. As one might
expect, all reconstruction approaches benefited from using
more (and more oblique) reference views. The visual hull
for this configuration of cameras and silhouettes is pyra-
midal, as is apparent in the top row of the figure. Clearly,
the image-based visual hull reconstruction deviates signifi-
cantly from a plane, and thus the 3D error is high. Note that
in the figure, the color map ranges from 0 to 6 for the IBVH
reconstructions. The middle row of the figure presents the
results from the GVC algorithm, which was executed using
a 160 x 160 x 45 voxel space. The GVC (and IBPH) re-
constructed surfaces exhibit cusps, which were described
in Section 4.8. As reference views that are more oblique
to the plane are included, the height of the cusps dimin-
ishes. The GVC reconstruction attained using all 24 refer-
ence views is quite close to planar. Note that the color map
in the figure ranges from 0 to 2.5 for the GVC and IBPH
reconstructions.

Finally, the bottom row of the figure presents the re-
sults of the IBPH algorithm. Each IBPH reconstruction
is a big improvement over its corresponding IBVH recon-
struction, as evinced in the lower 3D error. The 3D sur-
face found using 8 reference views compared quite well to
GVC. However, the surfaces generated using 16 and 32 ref-
erence views were noisier than those produced using GVC.
This noise in the height fields results in a higher 3D er-
ror. The inaccuracy of the IBPH height fields compared to
GVC is hardly surprising, since IBPH sacrifices some qual-
ity for speed. When computing photo-consistency, IBPH
uses a small, fixed size footprint in each reference view that

Figure 17: Reconstructions of the SynthPlane data set. From left to right: using 8, 16, and 24 reference views. From top to
bottom: IBVH, IBPH, and GVC. See text for details.

is independent of the location of the reference view relative
to the surface being reconstructed. It has been shown [20]
that using such an imprecise approximation to the projec-
tion of a voxel can result in some geometric inaccuracy on
the reconstructed surface. The IBVH/IBPH algorithms are
conservative in their approach to computing visibility [7],
while visibility in GVC (in particular, GVC-LDI [13]) is
exact. Since visibility is part of the photo-consistency mea-
sure, imprecise modeling of visibility in IBPH also results
in some geometric inaccuracy. Finally, recall that in IBPH
we terminate the reconstruction before all rays are photo-
consistent, as described in Section 4.6. In these experi-
ments, we setM = 10. This also results in some geomet-
ric inaccuracies on the reconstructed surface. However, for
the SynthPlane data set, the IBPH algorithm ran roughly
two orders of magnitude faster than GVC.

6.2 2D Error

After performing a 3D reconstruction, we can render
the reconstructed model to generate a synthetic imageS at
a new viewpointV . We can then compare the pixels inS
to the pixels in reference viewR, taken at locationV that
is not a viewpoint for one of the reference views used to
reconstruct the scene.

This 2D error measures the difference betweenS and
R. SinceS andR are color images, they have pixels with
r, g, andb components. Let the color components in the
ith pixel of S be referenced asS(i).r, S(i).g, andS(i).b,
respectively, and likewise forR. We then define the new
view synthesis error to be the mean square error between

S andR,

E2D =

∑M
i=1

(S(i).r −R(i).r)2 +
(S(i).g −R(i).g)2 +
(S(i).b−R(i).b)2

M
, (5)

whereM is the number of pixels used in the comparison.
We generated an imageR of the SynthPlane scene by

rendering the multi-colored plane to a camera locationV
directly above the plane, for an elevation angleφ = 0◦, and
a radius 10.5 units up thez axis. This view is synthesized
using the IBVH, GVC, and IBPH algorithms, for the three
sets of images as before. The synthesized images, as well
as their corresponding 2D error are presented in Figure 18.
As seen in the top row of the figure, the new views syn-
thesized using the IBVH algorithm have a large 2D error,
which results from the pyramidal geometry of the visual
hull.

The new views synthesized using the GVC and IBPH
algorithms are shown in the middle and bottom rows of
the figure, respectively. These synthesized views have sig-
nificantly lower error due to the more accurate 3D ge-
ometry they reconstruct. Contrary to intuition, for the
IBPH new views, the 2D error did not consistently de-
crease as more reference views were used. We demon-
strated in Section 6.1 that using more reference views with
the IBPH algorithm results in a more geometrically accu-
rate reconstruction. However, the view-dependent texture
mapping approach used by the algorithm becomes prob-
lematic when many reference views are used on a noisy
surface, since the reference view being used to texture map
a local point on the surface changes quickly along the sur-
face. In the presence of inaccurate geometry, this results in
small miscolorings, especially on the edges between two
different colors as seen in Figure 18. GVC, in contrast,
determines a color for a voxel by averaging all the pixels
to which the voxel projects in each of the reference views.
Such an averaging scheme could be used instead of VDTM
in the IBPH approach, when helpful.

6.3 Noise Experiments
Finally, we present experimental results that analyze the

system sensitivity to noise, both in the camera calibration
and the image pixels.

First, we injected noise into the camera calibration of
the SynthPlane data set, by displacing the 2D projection
of each 3D point in a random direction, for each reference
view. The length of the displacement was fixed for each
experimental run. Multiple runs were performed for each
length and the results averaged. The experimental results
appear in the top row of Figure 19. To keep the presenta-
tion concise, we do not show the 3D height fields and 2D
new view synthesis images, and instead present plots of the

3D and 2D error as a function of camera calibration noise.
As expected, the both the 3D and 2D error increase with
more camera calibration noise.

Next, we added white, zero-mean Gaussian noise to the
pixels in each color plane of the reference views. After
adding the noise, the value was clipped to the range [0,
255]. The standard deviation of the noise was fixed for
each experimental run. Multiple runs were performed for
each standard deviation and the results averaged. The ex-
perimental results appear in the bottom row of Figure 19,
which presents plots of the 3D and 2D error as a function
of pixel noise. As expected, the both the 3D and 2D error
increase as the noise increases.

7 Conclusion
In this paper we have presented our Image-Based Photo

Hulls algorithm that efficiently reconstructs views of the
photo hull. Our algorithm extends IBVH by utilizing the
color information in the reference views to further con-
strain the 3D space containing scene surfaces. The more
accurate geometry reconstructed by our technique often re-
sults in better new views synthesized of the scene.

Our IBPH algorithm’s efficiency comes from the fol-
lowing sources. First, it computes the photo hull starting
from the visual hull. Using the IBVH algorithm, we are
able to quickly find the visual hull, efficiently removing a
large part of the 3D space that does not contain the sur-
faces being reconstructed. Second, our IBPH algorithm
only computes that portion of the photo hull that is visible
to the virtual viewpoint. Since this is the viewpoint that
is being synthesized, it is not necessary to reconstruct that
part of the 3D scene that is not visible in rendered view.
Finally, we have demonstrated the effect of increasing the
sampling size DX and DY to tradeoff accuracy for speed.

Our method inherits all the limitations of algorithms
that reconstruct the photo hull. Scene surfaces must be
sufficiently colorful in order to be properly reconstructed.
The photo-consistency measure we use assumes a Lamber-
tian scene. Reconstruction of significantly non-Lambertian
scenes requires a more sophisticated approach for deter-
mining photo-consistency. We should note that visual hull
reconstruction algorithms like IBVH do not have a problem
with non-Lambertian scenes, as they do not perform color
matching. The depth maps that are reconstructed with the
IBPH algorithm, while geometrically more accurate, can
be noisier that those of the IBVH algorithm. Finally, the
IBPH algorithm is significantly slower that the IBVH al-
gorithm.

8 Future work
There are several future directions we are interested in

pursuing. The photo-consistency measure presented here
does not take into account surface orientation or the dis-

Figure 18: Synthesized new views of the SynthPlane data set. From left to right: using 8, 16, and 24 reference views. From
top to bottom: IBVH, IBPH, and GVC. See text for details.

tance of the reference view from the surface. Correlation-
based matching similar to [19] might improve reconstruc-
tion quality. Additionally, we do not take into considera-
tion temporal coherence. Motion constraints could be im-
posed to improve efficiency and reconstruction quality. Fi-
nally, an adaptive approach to determining|∆P|, the step
size taken along each ray might improve the efficiency of
our algorithm. When the photo-consistency measure is
very inconsistent, one might take larger steps. As the con-
sistency improves, one could take smaller steps until the
ray becomes photo-consistent.

9 Acknowledgements
We thank Wojceich Matusik, Chris Buehler, and

Leonard McMillan of MIT for sharing the IBVH source

code and system configuration with us. We also thank
Bruce Culbertson, Tom Malzbender, and Irwin Sobel of
HP Labs for several useful discussions regarding the IBPH
algorithm. Finally, we thank Dan Gelb for producing the
virtual conference room model used in Figure 14. This
work has been funded by HP labs.

References
[1] Debevec P, Taylor C, Malik J. Modeling and Ren-

dering Architecture from Photographs: A Hybrid
Geometry- and Image-based Approach. Proceedings of
SIGGRAPH, 1997; p. 11–20.

[2] Prock A, Dyer C. Towards Real-Time Voxel Coloring.
Proceedings of the Image Understand Workshop, 1998;
p. 315–321.

Figure 19: Noise analysis. The upper plots present the 3D and 2D errors as a function of increasing noise in the camera
calibration, while the lower plots present the 3D and 2D error as a function of increasing noise added to the image pixels.

[3] Narayanan P, Rander P, Kanade T. Constructing Vir-
tual Worlds Using Dense Stereo. Proceedings of the In-
ternational Conference on Computer Vision, 1998; p.
3–10.

[4] Moezzi S, Tai LC, Gerard P. Virtual View Generation
for 3D Digital Video. IEEE Multimedia 1997; 4(1):18–
26.

[5] Vedula S, Baker S, Seitz S, Kanade T. Shape and
Motion Carving in 6D. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2000; p. 592–598.

[6] Carceroni R, Kutulakos K. Multi-View Scene Capture
by Surfel Sampling: From Video Streams to Non-Rigid
Motion, Shape, and Reflectance. Proceedings of the In-
ternational Conference on Computer Vision, 2001; p.
60–67.

[7] Matusik W, Buehler C, Raskar R, Gortler SJ, McMil-
lan L. Image-Based Visual Hulls. Proceedings of SIG-
GRAPH, 2000; p. 369–374.

[8] Laurentini A. The Visual Hull Concept for Silhouette-
based Image Understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1997;
16(2):150–162.

[9] Slabaugh G, Schafer R, Hans M. Image-Based Photo
Hulls. Proceedings of the 1st International Symposium
on 3D Data Processing, Visualization, and Transmis-
sion, 2002; p. 704–708.

[10] Szeliski R. Rapid Octree Construction from Im-
age Sequences. CVGIP: Image Understanding 1993;
58(1):23–32.

[11] Kutulakos K, Seitz S. A Theory of Shape by Space
Carving. International Journal of Computer Vision
2000; 38(3):199–218.

[12] Seitz S, Dyer C. Photorealistic Scene Reconstruction
by Voxel Coloring. International Journal of Computer
Vision 1999; 35(2): 151–173.

[13] Culbertson WB, Malzbender T, Slabaugh G. Gener-
alized Voxel Coloring. Proceedings of the ICCV Work-

shop: Vision Algorithms Theory and Practice, 1999; p.
100–115.

[14] Eisert P, Steinbach E, Girod B. Multi-Hypothesis,
Volumetric Reconstruction of 3-D Objects From Multi-
ple Calibrated Camera Views. Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal
Processing, 1999; p. 3509–3512.

[15] Broadhurst A, Drummond TW, Cipolla R. A Prob-
abilistic Framework for Space Carving. Proceedings
of the International Conference on Computer Vision,
2001; p. 388–393.

[16] Dyer C. Volumetric Scene Reconstruction from Mul-
tiple Views. In: Davis L, editor. Foundations of Image
Understanding. Kluwer; 2001, p. 469–489.

[17] Slabaugh G, Culbertson WB, Malzbender T, Schafer
R. A Survey of Volumetric Scene Reconstruction Meth-
ods from Photographs. Proceedings of Volume Graph-
ics, 2001; p. 81–100.

[18] Shade J, Gortler S, He L, Szeliski R. Layered Depth
Images. Proceedings of SIGGRAPH, 1998; p. 231–242.

[19] Faugeras O, Keriven R. Variational Principles, Sur-
face Evolution, PDE’s, Level Set Methods and the
Stereo Problem. IEEE Transactions on Image Process-
ing 1998; 7(3):336–344.

[20] Steinbach E, Girod, B, Eisert, P, and Betz A. 3-D
Reconstruction of Real-World Objects Using Extended
Voxels. Proceedings of the International Conference on
Image Processing, 2000; vol 1, p. 569–572.

