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Abstract are automatic and work on scenes composed of surfaces of

We present an efficient image-based rendering algo- arbitrary geometry.
rithm that generates views of a scene’s photo hull. The  Recently, researchers have become interested in recon-
photo hull is the largest 3D shape that is photo-consistent structing time-varying scenes [2, 3, 4, 5, 6]. Most standard
with photographs taken of the scene from multiple view- approaches to the 3D scene reconstruction problem such
points. Our algorithm)mage-Based Photo HuUl$BPH), as multi-baseline stereo, structure from motion, and shape
like thelmage-Based Visual HulldBVH) algorithm from from shading were not designed for realtime performance
Matusik et. al. on which it is based, takes advantage of and thus are too slow to process the images online. When
epipolar geometry to efficiently reconstruct the geometry working with multi-view video data, most techniques per-
and visibility of a scene. Our IBPH algorithm differs from form the 3D reconstruction offline after the images have
IBVH in that it utilizes the color information of the images been acquired. Once the reconstruction is complete, it is
to identify scene geometry. These additional color con- rendered in realtime.
straints result in more accurately reconstructed geometry, A notable exception is the Image-Based Visual Hulls
which often projects to better synthesized virtual views of (IBVH) algorithm [7], developed by Matusik et. al. This
the scene. We demonstrate our algorithm running in a re- algorithm is efficient enough to reconstruct and render new
altime 3D telepresence application using video data ac- views of the scene in realtime. The key to this algorithm’s

quired from multiple viewpoints. efficiency is its use of epipolar geometry for computing the
geometry and visibility of the scene. By taking advantage
Keywords of epipolar relationships, all of the steps of the algorithm

Photo hull, image-based rendering, 3D photography, function in the image space of the photographs (also called
new view synthesis, voxel coloring, space carving, color reference viewsaken of the scene.

consistency, view-dependent scene reconstruction. While the IBVH algorithm is exceptionally efficient,
) the geometry it reconstructs is not very accurate. This
1 Introduction is because the IBVH algorithm only reconstructs the vi-

The task of generating a photo-realistic 3D representa- sual hull of the scene. The visual hull is a conservative
tion of a visual scene is an important and challenging prob- shape that contains the scene surfaces being reconstructed.
lem. Debevec et. al. [1] demonstrated in their Campanile When photographed by only a few cameras, the scene’s
movie that it is possible, using a user-assisted 3D mod- visual hull is much larger than the true scene. Even if
elling program and a handful of photos of a college cam- photographed by an infinite number of cameras, many ob-
pus, to produce a digital model of the scene that when ren-jects with concavities cannot not be modelled correctly by
dered, yields images of stunning photorealism from new a visual hull. One can partially compensate for such ge-
viewpoints. Since this work, there has been much interest ometric inaccuracies by view-dependent texture-mapping
in producing results of similar quality using algorithms that (VDTM), as done in the IBVH approach.



Figure 1: Visual hull reconstruction (upper row) vs. photo hull reconstruction (lower row) of a pinwheel. Left to right:
synthesized view and depth map.

However, artifacts resulting from the inaccurate geom- the efficiency of the IBVH algorithm with the improved
etry are still apparent in new synthesized views of the geometric accuracy of the photo hull.
scene, as shown in Figure 1. This figure demonstrates a The rest of this paper is organized as follows. In Sec-
reconstruction of a pinwheel photographed from five view- tion 2 we discuss related work. Since our algorithm ex-
points. A new view of the scene, placed half-way between tends the IBVH algorithm, we briefly review IBVH in Sec-
two reference views, is rendered from the reconstruction. tion 3. We describe the details of our approach in Section 4,
The top row shows the visual hull reconstruction. At this and then present experimental results in Section 5 and eval-
viewpoint, the right side of the reconstructed pinwheel is uation in Section 6. Note that this paper is an expanded
texture-mapped with one reference image, while the left version of a symposium paper [9].
side of the pinwheel is texture-mapped with another. Due
to the geometric inaccuracy of the visual hull, there is a 2 Related Work
salient seam along the pinwheel where there is a transition2 1 V/isual Hulls
between the two images used to texture-map the surface.
In particular, the center of the pinwheel is not present in
the synthetic view. The improved geometry of the photo
hull corrects this problem, as shown in the bottom row of
the figure.

A standard approach to reconstructing a 3D object us-
ing multi-view images is to compute the visual hull [8].
For each reference view, a silhouette is generated by seg-
menting the photograph into foreground and background.
Foreground pixels correspond to points to which the 3D

In this paper we adapt the IBVH algorithm to recon- object projects. Everything else is background.
struct photo hulls. The photo hull is the largest shape that Each silhouette constrains the 3D space in which the
is consistent with the photographs taken of the scene. Typ-object is located. If a 3D point projects to background
ically, the photo hull is also a shape that contains the scenein any of the images, it cannot be part of the 3D object
surfaces; however it is a tighter fit to the true scene ge- being reconstructed. After eliminating such points, the
ometry than the visual hull. New views synthesized us- surface of the region of space that remains is\tiseial
ing the more accurate geometry of the photo hull have im- hull. The visual hull is guaranteed to contain the 3D ob-
proved photorealism. Like IBVH, all the steps of our al- ject. Using more reference views produces a visual hull
gorithm function in image space (hence, we call our algo- that more closely resembles the geometric shape of the true
rithm Image-BasedPhoto Hulls). Our approach combines 3D object. However, even with an infinite number of pho-



4 2. Itis unique.

3. It can be easily computed.

A number of algorithms that compute photo hulls have
. been developed [11, 12, 13, 14]. These methods utilize
A Fd ) photo-consistency [11] as a constraint to identify scene sur-
g} % % faces. A point in space is said to photo-consistent (1)
it does not project to background and (2) when visible, the
(@) (b) light exiting the point (i.e. radiance) in the direction of
each reference view is equal to the observed color in the
photograph.
For simplicity, one often assumes that the scene is Lam-
bertian, although this isn’t strictly necessary. Under this
assumption, a point on a scene surface will project to a

tographs, the visual hull cannot model surface concavities similar color in each reference view. The photo hull is then

Figure 2: The problem of 3D scene reconstruction from
multiple photographs is ill-posed.

that are not apparent in the silhouettes. computed by finding the spatially largest set of points in
A variety of algorithms have been developed to com- _3D space that project to matching colors in the reference
images.

pute the visual hull of a scene. Perhaps the most common
approach is to operate in a volumetric framework. A good
example is given in [10]. A volume that contains the scene

being reconstructed is defined. The volume is then tes- ) :
sellated into voxels. All the voxels that project to solely [OF Photo-consistency and those that are found to be in-

background pixels in one or more reference views are re- consistent are carved, i.e. made transparent. Convergence

moved (carved). The remaining voxels represent the visual ©Curs when all the remaining opaque voxels are photo-
hull and its interior. Such an algorithm can adopt a multi- consistent. When these final voxels are assigned the colors

resolution strategy to achieve faster results. they project to in the input images, they form a model that
Recently, the Image-Based Visual Hulls [7] algorithm closely resembles the scene. This model is the photo hull.

was developed and demonstrated to produce realtime new\eW. phato-realistic views of the scene can be synthesized

views of a scene. Our IBPH algorithm is based on the by rendering the photo hull to virtuc_al yiewpoints.
IBVH algorithm, so we will briefly review IBVH in Sec- Our IBPH algorithm adopts a similar strategy to com-
tion 3 ' pute views of the photo hull. The algorithm starts with a

surface larger than the scene, and then iteratively carves
2.2 Photo Hulls space using a photo-consistency measure until the visi-
The problem of reconstructing a 3D model of a scene ble recon_structed points_become photo-consistent. .Our ap-
using multiple 2D photographs is ill-posed. For a given proach dnffers from previous phqto hull recpnstr_uct_mn al-
set of 2D photographs, multiple 3D models that reproduce 9°Tithms in that the IBPH algorithm functions in image
the photographs can and often do exist. For example, con-SPace and produces a view-dependent reconstruction. Un-
sider Figure 2. Here, two (of several) different models that 'l [11, 12, 13, 14, 15], our approach does not employ a

reproduce the photographs are shown. Without more con-Static 3D voxel space _for reconstru_ction. Rather3 the re-
straints on the reconstruction, it is impossible to determine constructed geometry is computed in a space defined by a
which is a better representation of the true scene. virtual camera, and changes as the camera is moved about

Given this ambiguity, Kutulakos and Seitz [11] intro- the scene. Rather than reconstruct the full photo hull geom-

duce thgphoto hull which is theargestshape that contains etry, our_me_th_od only rect_)nstructs the portion of the photo

all reconstructions in the equivalence class of 3D models hull that is V'S'bl_e to the virtual camera. .

that reproduce the photographs. The photo hull can be For an overview of methods that reconstruct visual and

thought of as the spatial union of all 3D models that re- photo hulls, please refer to [16, 17].

produce the photographs. Since the true scene is one suct\gtation

3D model, the photo hull is typically larger than the true

scene. The photo hull is interesting because: Before proceeding to the description of our algorithm,
let us define some notation. A point in 3D space is repre-

1. It is itself a photo-consistent reconstruction of the sented in homogeneous coordinates by a boldface capital
scene. letter, such a®. In thispaperP = [z y z w |,

These algorithms begin with a voxel space of initially
opaque voxels that encompasses the scene to be recon-
structed. As the algorithms run, opaque voxels are tested
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Figure 3: View-dependent geometry.
Figure 4: Determining a ray’s visual hull intervals.

The projection of this point into an image is a 2D point

represented in homogeneous coordinate; by a boldfacne pack-projected ray. Once this procedure has been per-
lowercase letter, such gs = [ = y w |". Tocon-  fymed on all rays back-projected from the desired view,

vert a homogeneous image point to iNhomMogeneous €o-e reconstruction of the view-dependent geometry of the
ordinates (i.e. pixel coordinates), one simply divides  \;isual hull is complete.

by thew component. Thus, a pixel will have coordinates
p=[z/w y/w 1] L
3.2 Computing visibility
3 Imgge-Based Vlgual Hglls . In order to color a point on the visual hull, it is nec-
In this section, we briefly review the IBVH algorithm.  assary to determine which cameras have an unoccluded
In the foIIov_vmg section, we Wlll_show how we extend the \jiew of the point. Thus, visibility must be computed be-
IBVH algorithm to reconstruct views of the photo hull. fore texture-mapping the reconstructed geometry.

3.1 Computing geometry At a pixel p in the desired view, the first point (if any)

One of the unique properties of the IBVH algorithm is along the first \{isual hull int_ervz_sll _indi(_:ates a poEnin 3p
that the geometry it reconstructs is view-dependent. A user SPace that projects to and is visible in the desired view,
moves a virtual camera about the scene. For each virtual2S Shown in Figure 5 (a). To compute visibility, for each
camera placement (also callddsired view, the IBVH al- reference view we need to determin®ifs visible. P must
gorithm computes the extent that back-projected rays from P€ Visible in the reference view if t,he line segmét,
the center of projectio®, intersect the visual hull in 30 PetweenP and the reference view's center of projection
space, stored as a layered depth image [18]. This is shownCr does notintersect any visual hull geometry.
in Figure 3. Thus, the representation of the geometry is  The layered depth image representation of the visual
specified for the desired view, and changes as the userhull makes this easy to determine. In the desired view,
moves the virtual camera. PC,. projects to an epipolar line segmepe, wheree is

Consider an individual ray, as shown in Figure 4. The the epipole, found by projectin@. into the desired view,
ray is back-projected from the desired view’s center of pro- as shown in Figure 5 (b). For each pixel alopg, the
jection, through a pixel in the image plane, and into 3D Visual hull intervals can be checked to see if they contain
space. This ray projects to an epipolar line in each refer- geometry that intersec®C,.. If an intersection occurs,
ence view. The IBVH algorithm determines the 2D inter- Point P is not visible in the reference view, and no more
vals where the epipolar line crosses the silhouette. Thesepixels alongpe need be evaluated. Otherwise, one con-
2D intervals are then “lifted” back onto the 3D ray using tinues evaluating pixels alonge, until there are no more
a Simp|e projecti\/e transformation. The intervals a|ong the piXG'S to evaluate. If no visual hull interval has intersected
3D ray from all reference views are intersected. The re- PC,, then the poinP is visible in the reference view.
sultant set of intervals describe where the ray pierces the The IBVH paper [7] discusses discretization issues
visual hull. These are calledsual hull intervalsin this in computing visibility using this approach, as well as
paper. In Figure 4, one visual hull interval is found along occlusion-compatible orderings to improve its efficiency.
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Figure 5:P is visible in the reference view if there is no occluding geometry alBag..

4 Image-Based Photo Hulls
In this section we describe our IBPH algorithm, which
produces views of the photo hull.

4.1 Approach

Our IBPH approach first computes the visual hull using
the IBVH algorithm, which quickly eliminates a large por-
tion of 3D space that does not contain scene surfaces. Our

. algorithm then evaluates the photo-consistency of the clos-
¢ | I est point on the visual hull along each ray back-projected
Reference view 1 pe e from the desired view. If the point is inconsistent, we take
Reforence view 3 Cr a small step along the ray, moving away from the desired

Desiredvisy view, as depicted in Figure 7. We continue stepping along

Cy an inconsistent ray until it either becomes consistent or we

have stepped beyond all visual hull intervals along the ray.

This latter case indicates that no photo-consistent geometry
Figure 6: View-dependent texture-mapping. along the ray was found.

Note that in this approach, only the points on the hull

that are visible in the desired view are processed. Initially,

3.3 View-dependent texture mapping these points are the first points in the first visual hull inter-
o val along each back-projected ray. By stepping along the

Once visibility has been computed, one can color the hconsistent rays until convergence, the IBPH algorithm re-

visual hull using the reference views. The IBVH paper constructs only the portion of the photo hull that is visible
employs view-dependent texture mapping, which retains g the desired view.

view-dependent effects present in the photos, and works _
well with the inaccurate geometry of the visual hull. To 4.2 Photo-Consistency

color a pointp in the desired view, the closest poiRton To determine the photo-consistency of a 3D pdht
the hull is found. Then, for each reference view that has along a ray, we projed into theith reference view, yield-
visibility of P, the angle betweeRC,; andPC.,. is found, ing an image-space poigt;. We only perform this pro-

as shown in Figure 6. The reference view with the smallest jection for the reference views that have visibility Bf
angle is chosen to color the visual hull. This is the refer- Around eachp; we collect a small neighborhood of pixels,
ence view that has the “best” view Bffor the virtual cam- N; to use in our color matching function.

era’s location. For example, in Figure 6, reference view 2 There are many methods one can employ for matching
would be chosen sinagg > 6. color distributions to determine photo-consistency. A stan-
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Figure 8: Stepping along an epipolar line.
Figure 7: Computing the image-based photo hull.

observed in the 3D point’s projection. The valuesofvill
dard approach is to threshold the standard deviation of all be small when the 3D point projects to homogenous colors
the pixels. That is, in each image. In this case, there will be little difference
between the two consistency measures 1 and 2. If these
1) colors are similar, the point will be declared consistent. If
these colors are dissimilar, the point will be declared in-

whereo is the standard deviation of all pixel§;, N;, and ~ consistent. When the point projects to highly varying pix-
T, is a user-defined threshold. In our work, we reconstruct €ls in each image, the term will increase the maximum

the scene using RGB imagesy SO we Compute the Standard/alue of o allowable for the pOint to be declared consis-
tent. This allows for textured surfaces, as well as edges,

viation = /02 2 2 whereo,., o,, and .
deviation ass UT + %9 T % . 77 9 b to be correctly reconstructed. It also eases the Lambertian
are the standard deviations computed in the red, green, a”%ssumption. The threshold, allows one to weight the

blue color channels, respectively. contribution of this adaptive term to the photo-consistency

This measure of photo-consistency works reasonably neasyre. This two-parameter consistency measure is the
well for many scenes. However, it can perform poorly for one used to produce photo hulls in this paper.
surfaces that project to consistent, yet highly varying colors

in the reference images. This can occur on edges as well4.3  Stepping Along Epipolar Lines

as textured surfaces. In such a case, each reference im- As we step in 3D along an inconsistent ray, looking for

age will observe multiple different colors for the surface. the point at which it becomes consistent, we must simulta-

Consequently, the standard deviation will be high, and the neously step along an epipolar line in each reference view.

photo-consistency measure can incorrectly return false.  The brute-force way of stepping along the epipolar line in a
Textured surfaces and edges will project to pixels with a reference view is to simply project each 3D pdihton the

high standard deviation ieachimage. We use this factto  ray to the reference view poigt; by multiplying the refer-

modify the consistency measure described above to han-ence view’s projection matriff with P;, i.e. p, = HP;.

dle such surfaces. Let the standard deviation of a set of Such an approach will work, but will require a large num-

pixels N; from a reference view be;. Our new photo- ber of matrix multiplications.

True, ifo < T}

consistency= { False, otherwise

consistency measure is then While the step sizéAP| in 3D is constant, the step size
_ True, ifo < Ty +oTh between_adjacer_lt points along the_eplpolar lineina 2D_ref-
consistency= : (2) erence view varies due to the projection. However, since
False, otherwise

the projection is a homography (linear projective transfor-

wherez is the average af; andT; is a second user-defined mation), the step sizis constant in homogeneous coordi-

threshold. nates. We use this fact to produce a more efficient proce-
This consistency measure simply adds an additional dure for stepping along the epipolar line.

terma; to the one defined in Equation 1. This term spa-  Consider the 3D poinP, on the ray, as shown in Fig-

tially adapts the consistency measure based on the colorsure 8. It projects to a poinpy = HP, in a reference



image. If we take a step along the ray, we arrive at a 3D multi-resolution fashioh The algorithm is executed not

pointP; = Py + AP. The pointp,, the projection o, for every pixel in the desired view, but rather on a coarse

into the reference view can be written as raster. One first computes the hull at sampling locations
(z-DX,y-DY) in the desired image, where DX and DY are

p1 = HP constants that specify the sampling size. The sampling lo-

= H(Py+ AP) cations are shown as black dots in Figure 9. For in-between

— py+ HAP pixels on the boundary, indicated using black squares in the

figure, the hull is computed at every pixel so that the edges
of the synthesized image are at full resolution. For pixels
inside the boundary, the closest point of the hull interval

(i.e. depth) is interpolated from adjacent samples. This ap-

Thus, we can incrementally update the homogeneous po-
sition of the point along the epipolar line in the reference

view. That is, D
proach significantly reduces the number of rays that must
HPy, i = be processed, resulting in a faster reconstruction.
Pi = { pi—1+ HAP, i>0 @) Figure 10 shows the effect increasing the sampling size
DX and DY for a pinwheel photographed from five view-
We set|AP| to a size that results in a projected sjZep| points. The leftmostimage shows the depth map when DX

of roughly one pixel for most reference views. We then and DY are 1. In this case, we are computing a depth value
pre-compute the constalf AP for each ray in a refer-  for every pixel in the desired image. While the depth map
ence view and store it in a look-up table. As we step along is crisp, the frame rate is only 0.4 frames per second (FPS).
the epipolar line, we use Equation 3 to compute the ho- Increasing the sampling size has a significant impact on
mogeneous position of the poipt. With this approach, the frame rate. For the rightmost image, the DX and DY

stepping along an epipolar line is very efficient. are both five, and the frame rate is 8.3 FPS. The tradeoff
o for this improvement in frame rate is blurring of the depth
4.4 |BPH Visibility map, since the depth values at pixels inside the border are

When evaluating the photo-consistency of a 3D point, interpolated from the sampling locations. Continuing to
only pixels from the reference views that have visibility of increase the sampling size further blurs the depth map, but
the 3D point should be used. As one steps along the in- has little impact on the frame rate, as more pixels become
consistent rays, the visibility of the scene may change. A boundary pixels, which are sampled at full resolution.
point that was not visible in a reference view before may
become visible after the step is taken. Therefore, it is nec-4.6  Convergence
essary to update visibility after stepping. This is achieved  The IBPH algorithm steps along the inconsistent rays,
by re-executing the visibility procedure described in Sec- stopping at the point at which each ray becomes photo-
tion 3.2. consistent. For convergence, one can require that all rays

Visibility could be updated each time a step is taken are photo-consistent. However, often during a reconstruc-
along each ray. However, such an excessive number oftion, a significant majority of the rays will become consis-
visibility updates results in a slow reconstruction. Instead, tent quickly. Continuing to process a handful of inconsis-
our algorithm takes one step along each inconsistent ray,tent rays will yield little impact on the overall quality of
and then updates visibility. As a result, the visibility may the reconstruction, but can take a lot of time. In our imple-
be out-of-date when evaluating some 3D points. However, mentation, we have introduced a mechanism to terminate
such an approach is conservative. Pixels from only a subsetthe reconstruction whei/ or less rays are inconsistent.
of the references views that have visibility of the point will When M is a small number, good quality hulls are pro-
contribute to the consistency measure. For a monotonic duced quickly.
photo-consistency function [11], this may result in some Figure 11 justifies our use d@ff to terminate the recon-
3D points being erroneously classified as consistent, while struction before all rays are consistent. This plot shows
a full visibility calculation would show that they are really ray classifications versus iteration for reconstruction of
inconsistent. Since visibility is updated periodically, such our Sam data set, which consists of a person’s head pho-
erroneous classifications are properly classified on a latertographed from four viewpoints. The visual hull projected
iteration of the algorithm. Such an approach is similar to to 1333 of the 80 x 60 points on the coarse raster. Rays
that used in the GVC-IB [13] algorithm. back-projected through these points were analyzed using
the IBPH algorithm. Initially, 635 were inconsistent and

4.5 Sampling 698 were consistent, as shown in the figure. At each iter-

One way to trade off accuracy for speed in both the
IBVH and IBPH algorithms is to compute the hull in a Lhttp://graphics.Ics.mit.edwvojciech/vh/ctof.html
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Figure 10: Effect of increasing sampling size DX, DY on the reconstructed depth map and frame rate.
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ation of the algorithm, a step was taken along each incon-
sistent ray. The plot of the number of inconsistent rays is
very steep at first, indicating that many rays become con-
sistent quickly. After 60 iterations, most rays are consis-
tent. However, it takes an additional 140 iterations for the
few remaining inconsistent rays to become consistent. For
a realtime application, one would rather not continue pro-
cessing these rays, as they will not significantly contribute
to the quality of the reconstructed model. Figure 12: Varying'. From top to bottomj = 1, 2, and
There are several ways one might specify the value of 5
M. For example, one may chose to 9dtto be a cer-
tain percentage of the total number of rays on the coarse
raster. Alternatively, the value can be determined through gorithm. The smoothing also helps mitigate reconstruction
experimentation. One can run a experiment like that done €frors due to noise and specularities.
to produce Figure 11 to determine at what point the recon- ~ When stepping along an inconsistent ray, we keep track
struction is mostly complete for views of a scene. This is Of the number of steps we have takén, Before taking
the technique used to produce the reconstructions in thisanother step, we compateto a local mean computed by
paper. In another approach, one could terminate the recon-averaging the number of steps taken along rays in a small
struction once the absolute value of the slope of a curve in neighborhood around the inconsistent ray. We denote this
the plot in Figure 11 goes below a threshold. Effectively, local average:. If £ > k + K, whereK is a small con-
such a method would adaptively set the valué/bf stant, we do not step along the ray. This ensures that the
For scenes with deep concavities that must be carved outhumber of steps taken along a ray is not significantly differ-
from the visual hull, one may choose a lower value\of ent from that of its nEighborS, I’eSUIting in a surface that is
to ensure enough carving occurs before the reconstructionspatially coherent. This smoothing approach requires very

terminates. little computation and works naturally with the representa-
] tion of the hull geometry used in our algorithm.
4.7 Spatial Coherence Figure 12 shows the effect of changiig for a recon-

Most scenes exhibit a high degree of spatial coherence,struction of a person’s head. Notice that there are less
as they consist of surfaces that do not radically change theirabrupt transitions in the depth map in the top-most re-
position over a small region of space. Accordingly, many construction f = 1) compared to the bottom-most re-
stereo vision algorithms impose a regularization criterion construction f = 5). We note that this very simple
that requires the reconstructed geometry to be smooth. In asmoothing approach is not ideal for reconstructing surfaces
similar vein, we have developed a very simple and efficient with large depth discontinuities observed from a small re-
smoothing technique that we incorporate into our IBPH al- gion in the desired view. For such situations, the smooth-



ing mechanism could be turned off. To better handle ure 1 shows the reconstruction at one time instant. For
such scenes, more sophisticated (and most likely, morethis reconstruction, the sampling rate parameters DX and
compute-intensive) smoothing methods would be required DY were 4, and the resolution of the desired view was 320
to analyze the 3D position of surface points to ensure that x 240. The algorithm reconstructed the scene and gener-
depth discontinuities are properly preserved. In this pa- ated new views at 6 FPS. The IBPH algorithm produces
per, we do not reconstruct such scenes so we will apply themore geometrically accurate results than the IBVH algo-
smoothing method to all experimental results presented in rithm. However, the IBVH algorithm ran at 25 FPS for this
Section 5. data.

Figure 14 shows a view from a realtime 3D telepresence
application we are currently developing with HP labs. The
3D model of the person’s head and neck is reconstructed
online using the IBPH algorithm. The reconstructed ge-
ometry of the person is then depth-composited with a 3D
model of a conference room. New synthesized views of
this composited scene are generated at 7.5 frames per sec-
ond. The upper image in the figure shows the texture-

4.8 Homogeneous Surfaces

Surfaces that have a homogeneous color are difficult
to properly reconstruct using color matching methods. A
point in space near the surface will project to similar col-
ors in the reference images. Such a point will be photo-
consistent even though it is not actually on the surface be-
ing reconstructed. This results in cusps [12], which are
3D protrusions in the direction of the cameras, a common . ?
artifact seen in photo hulls. Our IBPH algorithm is not mggped model, while the lower image shows the depth
immune to this problem, as is visible in any of the recon- '
structions shown in Figure 12. The depth map indicates 6 Evaluation
some extra geometry jutting out of the person’s chest, re-  \when working with this class of algorithms, a problem
sulting from a homogeneously colored shirt the person was that often arises is evaluation. How can one objectively

wearing. Fortunately, geometrical inaccuracies due to ho- quantify the quality of a 3D scene reconstruction used in a
mogeneous surfaces are not that significant for new view pey view synthesis application?

synthesis, once the model is texture-mapped. For example,  an intuitive approach is to use 3D ground truth informa-

the seams shovyn in _Figure 1 will not be present pecausetion_ When there is known 3D geometry, one can compute
the geometry will project to a homogeneous color in each 3 3p spatial error measure that characterizes the mismatch

reference view. between actual and reconstructed geometry. While such
4.9 Pseudo-Code a 3D spatial error measure is often quite insightful, it can
The pseudo-code for our IBPH algorithm appears in potentially be an inafjequate indicator for how well a re-
Figure 13. constructed scene will produce new views. An alternative
evaluation approach measures the 2D error of new views
5 Results synthesized from the reconstruction. If there afeefer-

We have implemented the IBPH algorithm on a multi- ence views, the reconstruction is performed uswg- 1
camera system. We have five calibrated Sony DFW-V500 of them. The reconstructed model is then projected to the
digital cameras. The cameras are synchronized so that theyeference view that was left out, forming an image. This
take images of the scene at the same instant of time. Eaclprojected image is then compared with the reference view
camera is connected to an 800 MHz HP Kayak machine. that was left out.

These machines perform background subtraction on the To better characterize the IBPH algorithm, and to com-
incoming frames, segmenting them into foreground and pare it to the IBVH and GVC algorithms, we perform both

background regions. The resolution of the reference im- a 3D spatial error analysis and a 2D new view synthesis
ages is 320 x 240 pixels. error analysis for a synthetic data set we call SynthPlane,

The segmented reference images are sent over a 10@vhich consists of views of a multi-colored plane on the
Mb/s switch to our server machine, which computes the 3D axis. The plane was photographed from 24 different view-
reconstruction. Our server machine is a dual processor 2points, each with a radius= 10.5 units from the center of
GHz HP x4000 workstation. Our algorithm has been multi- the plane. Figure 15 shows the camera placements, as well
threaded to take advantage of our multi-processor machine.as a bounding box containing the plane. Viewpoints were
Theith thread reconstructs the scene using a set of imagesplaced atl5° intervals of azimuth anglé and elevation an-
corresponding to time;. In this way, the IBPH algorithm  gles of¢ = 15°,40°, and65°. Figure 16 shows three of
can very naturally be parallelized. the reference views fdt = 0° and¢ = 15°,40°, and65°.

The bottom row of Figure 1 shows the results of IBPH These images have a resolution of 640 x 480 pixels.
algorithm in reconstructing a pinwheel. We placed the pin- ~ While a multi-colored plane is not the most exciting sur-
wheel in front of the cameras and spun the wheel. Fig- face to reconstruct, it is useful and interesting for several



compute IBVH
compute visibility
pre-compute homogeneous ray steps HAP in each reference image
do
evaluate photo-consistency
for each inconsistent ray in desired view
if (number of steps along ray k<=k+ K)
step along inconsistent ray
else
set ray consistent
if (updating visibility)
update visibility
} while(number of inconsistent rays > M)
display hull using VDTM

Figure 13: Pseudo-code for the IBPH algorithm. See text for details.

Figure 14: Using IBPH in a realtime 3D telepresence application.



whereh(z,y) is the height of reconstructed surface. We
take the absolute value &z, y) to ensure that all contri-
butions to the 3D error are positive. We chilz, y)| the
height field

For each reconstruction approach, we reconstruct the
scene three times, using the highest 8 views, the highest
16 views, and all 24 views shown in Figure 15. Perform-
ing these three reconstructions shows the effect of recon-
structing the scene using more oblique views. Since the
IBVH and IBPH algorithms view-dependently reconstruct
the scene, we placed the virtual camera directly above the
xy plane, for an elevation angle= 0°, and a radius 10.5
units up thez axis. Using a sampling lattice of 4 x 4, we
generated a synthetic view with resolution 640 x 480 pix-
els. IBVH and IBPH produced a layered-depth image at
Figure 15: Camera placements and reconstruction volumethis virtual camera position. We then converted the clos-
for the SynthPlane scene. est point on the hull into a 3D height map for analysis.
We note that for IBPH, we turned off the spatial smooth-
ing described in Section 4.7 in order to better evaluate the
algorithm.

The results of these experiments are presented in Fig-
ure 17. We show the height field as well as the 3D error
E3p computed from each reconstruction. As one might
expect, all reconstruction approaches benefited from using
more (and more oblique) reference views. The visual hull
for this configuration of cameras and silhouettes is pyra-
. midal, as is apparent in the top row of the figure. Clearly,
m the image-based visual hull reconstruction deviates signifi-
cantly from a plane, and thus the 3D error is high. Note that
in the figure, the color map ranges from 0 to 6 for the IBVH
reconstructions. The middle row of the figure presents the
results from the GVC algorithm, which was executed using
Figure 16: Three of 24 reference views for the SynthPlane & 160 X 160 x 45 voxel space. The GVC (and IBPH) re-
scene, for = 15° (top), 40°, (bottom left) ands5° (bot- ponstru_cted surfaces exhibit cusps, which were descrlbed
tom right). in Section 4.8. As reference views that are more oblique

to the plane are included, the height of the cusps dimin-

ishes. The GVC reconstruction attained using all 24 refer-
reasons. First, it is easy to compare reconstructed geome£nce views is quite close to planar. Note that the color map
try to that of a plane; we will describe our method below. [N the figure ranges from 0 to 2.5 for the GVC and IBPH
Second, while the planar geometry is simple, it is effective econstructions.
for comparing different reconstruction algorithms since the  Finally, the bottom row of the figure presents the re-
reconstructed geometry exhibits the characteristics presensults of the IBPH algorithm. Each IBPH reconstruction
in reconstructions of more geometrically complex surfaces. is a big improvement over its corresponding IBVH recon-

struction, as evinced in the lower 3D error. The 3D sur-
6.1 3D Error face found using 8 reference views compared quite well to

Our 3D error metridZ; p measures the volume of space GVC. However, the surfaces generated using 16 and 32 ref-
that exists between the reconstructed surface and true surérence views were noisier than those produced using GVC.

mined by solving the double integral, ror. The inaccuracy of the IBPH height fields compared to

GVCis hardly surprising, since IBPH sacrifices some qual-

ity for speed. When computing photo-consistency, IBPH
E3p = / / (2, y)|dady, (4) uses a small, fixed size footprint in each reference view that




8 views 16 views 24 views
»>

IBVH

Ep (units®) 64.7 30.0 12.5
GVC

E3p (units®) 18.8 6.41 217
IBPH

E;p (units”) 17.9 7.53 3.94

Figure 17: Reconstructions of the SynthPlane data set. From left to right: using 8, 16, and 24 reference views. From top to
bottom: IBVH, IBPH, and GVC. See text for details.

is independent of the location of the reference view relative 6.2 2D Error
to the surface being reconstructed. It has been shown [20]
that using such an imprecise approximation to the projec-
tion of a voxel can result in some geometric inaccuracy on
the reconstructed surface. The IBVH/IBPH algorithms are
conservative in their approach to computing visibility [7],
while visibility in GVC (in particular, GVC-LDI [13]) is
exact. Since visibility is part of the photo-consistency mea-
sure, imprecise modeling of visibility in IBPH also results
in some geometric inaccuracy. Finally, recall that in IBPH

we terminate the reconstruction before all rays are photo- _ )
consistent, as described in Section 4.6. In these experi- This 2D error measures the difference betwéeand

ments, we sed/ = 10. This also results in some geomet- £ SinceS and R are color images, they have pixels with
ric inaccuracies on the reconstructed surface. However, for”» ¢, ahdb components. Let the color components in the

the SynthPlane data set, the IBPH algorithm ran roughly ith pixel of S be referenced as(i).r, S(i).g, andS(i).b,
two orders of magnitude faster than GVC. respectively, and likewise faR. We then define the new

view synthesis error to be the mean square error between

After performing a 3D reconstruction, we can render
the reconstructed model to generate a synthetic insagie
a new viewpointl’. We can then compare the pixels$h
to the pixels in reference view, taken at locatiorl that
is not a viewpoint for one of the reference views used to
reconstruct the scene.



S andR, 3D and 2D error as a function of camera calibration noise.
) < As expected, the both the 3D and 2D error increase with
" (S(?)'T - R(?)'T)2 + more camera calibration noise.
dim1 (5(2_)9 - R(Z)~9)2 + Next, we added white, zero-mean Gaussian noise to the
(5(i).b — R(i).b) 5) pixels in each color plane of the reference views. After
M ’ adding the noise, the value was clipped to the range [0,

whereM is the number of pixels used in the comparison. 255]. The standard deviation of the noise was fixed for

We generated an image of the SynthPlane scene by each experimental run. Multiple runs were performed for
rendering the multi-colored plane to a camera locafion each standard deviation and the results averaged. The ex-

directly above the plane, for an elevation angle 0°, and per.imental results appear in the bottom row of Figure _19,
a radius 10.5 units up theaxis. This view is synthesized which presents plots of the 3D and 2D error as a function

using the IBVH, GVC, and IBPH algorithms, for the three O PiXel noise. As expected, the both the 3D and 2D error
sets of images as before. The synthesized images, as well"Céase as the noise increases.
as their corresponding 2D error are presented in Figure 18.7 Conclusion
As seen in the top row of the figure, the new views syn-
thesized using the IBVH algorithm have a large 2D error
which results from the pyramidal geometry of the visual
hull.

The new views synthesized using the GVC and IBPH
algorithms are shown in the middle and bottom rows of
the figure, respectively. These synthesized views have sig-

nificantly lower error due to the more accurate 3D ge- . .
y 9 Our IBPH algorithm’s efficiency comes from the fol-

ometry they reconstruct, - Contrary to intuition, for the lowing sources. First, it computes the photo hull startin
IBPH new views, the 2D error did not consistently de- 9 . ' . P phot 9
from the visual hull. Using the IBVH algorithm, we are

crease as more reference views were used. We demon_able to quickly find the visual hull, efficiently removing a
strated in Section 6.1 that using more reference views with q y ! y rem 9

. : . large part of the 3D space that does not contain the sur-
the IBPH algorithm results in a more geometrically accu- faces beina reconstructed. Second. our IBPH alaorithm
rate reconstruction. However, the view-dependent texture onlv com Stes that ortion.of the hc;to hull that is ?/isible
mapping approach used by the algorithm becomes prob- y comp . P . ph . .

. : . to the virtual viewpoint. Since this is the viewpoint that
lematic when many reference views are used on a nOISyis being synthesized, it is not necessary to reconstruct that
surface, since the reference view being used to texture map 95y ' . ssary )

art of the 3D scene that is not visible in rendered view.

local point on the surface changes quickly along the sur- ™ . .
alocal point on the surtace changes q yaong Sl Finally, we have demonstrated the effect of increasing the
face. In the presence of inaccurate geometry, this results in

small miscolorings, especially on the edges between two sampling size DX and DY to tradeoff accuracy for speed.

different colors as seen in Figure 18. GVC, in contrast, h ?ur met?odtl?:entﬁ ?” :"TI Ilrgltatmns OI algorlthmtsb
determines a color for a voxel by averaging all the pixels at reconstruct the photo hufl. -Scene surtaces must be

to which the voxel projects in each of the reference views. sufficiently C°'°Tf”' in order to be properly reconstructed.
Such an averaging scheme could be used instead of VDTMThe photo-consistency measure we use assumes a Lamber-
in the IBPH approach, when helpful tian scene. Reconstruction of significantly non-Lambertian

) ] scenes requires a more sophisticated approach for deter-

6.3 Noise Experiments mining photo-consistency. We should note that visual hull
Finally, we present experimental results that analyze the reconstruction algorithms like IBVH do not have a problem

system sensitivity to noise, both in the camera calibration with non-Lambertian scenes, as they do not perform color

and the image pixels. matching. The depth maps that are reconstructed with the
First, we injected noise into the camera calibration of |BPH algorithm, while geometrically more accurate, can

the SynthPlane data set, by displacing the 2D projection be noisier that those of the IBVH algorithm. Finally, the

of each 3D point in a random direction, for each reference IBPH algorithm is significantly slower that the IBVH al-

view. The length of the displacement was fixed for each gorithm.

experimental run. Multiple runs were performed for each

length and the results averaged. The experimental results8  Future work

appear in the top row of Figure 19. To keep the presenta- There are several future directions we are interested in

tion concise, we do not show the 3D height fields and 2D pursuing. The photo-consistency measure presented here

new view synthesis images, and instead present plots of thedoes not take into account surface orientation or the dis-

E>p =

In this paper we have presented our Image-Based Photo
' Hulls algorithm that efficiently reconstructs views of the
photo hull. Our algorithm extends IBVH by utilizing the
color information in the reference views to further con-
strain the 3D space containing scene surfaces. The more
accurate geometry reconstructed by our technique often re-
sults in better new views synthesized of the scene.



8 views 16 views 24 views
IBVH
Esp 3776 1778
GVC
Esp 565.3 64,2
IBPH
Esp 522.3 742.8 691.1

Figure 18: Synthesized new views of the SynthPlane data set. From left to right: using 8, 16, and 24 reference views. From
top to bottom: IBVH, IBPH, and GVC. See text for detalils.

tance of the reference view from the surface. Correlation- code and system configuration with us. We also thank

based matching similar to [19] might improve reconstruc- Bruce Culbertson, Tom Malzbender, and Irwin Sobel of

tion quality. Additionally, we do not take into considera- HP Labs for several useful discussions regarding the IBPH

tion temporal coherence. Mation constraints could be im- algorithm. Finally, we thank Dan Gelb for producing the

posed to improve efficiency and reconstruction quality. Fi- virtual conference room model used in Figure 14. This

nally, an adaptive approach to determinidgP|, the step work has been funded by HP labs.
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