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Abstract
In this paper, we present methods for 3D volumetric

reconstruction of visual scenes photographed by multiple
calibrated cameras placed at arbitrary viewpoints. Our
goal is to generate a 3D model that can be rendered to syn-
thesize new photo-realistic views of the scene. We improve
upon existing voxel coloring / space carving approaches
by introducing new ways to compute visibility and photo-
consistency, as well as model infinitely large scenes. In
particular, we describe a visibility approach that uses all
possible color information from the photographs during
reconstruction, photo-consistency measures that are more
robust and/or require less manual intervention, and a volu-
metric warping method for application of these reconstruc-
tion methods to large-scale scenes.

Keywords
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1 Introduction

In this paper, we consider the problem of reconstructing
a 3D model of a scene of unknown geometric structure us-
ing a set of photographs (also called reference views) of the
scene taken from calibrated and arbitrarily placed cameras.
Our goal is to reconstruct geometrically complex scenes

using a set of easily obtained photographs taken with inex-
pensive digital cameras. We then project this reconstructed
3D model to virtual viewpoints in order to synthesize new
views of the scene, as shown in Figure 1.

To accomplish this task, we have developed methods
that improve upon the quality, usability, and applicabil-
ity of existing volumetric scene reconstruction approaches.
We present innovations in the computation of visibility and
photo-consistency, which are two crucial aspects of this
class of algorithms. One of our visibility approaches mini-
mizes photo-consistency evaluations, which results in effi-
cient computation, and our histogram intersection method
of computing photo-consistency requires almost no user in-
tervention. We also present a volumetric warping approach
designed to reconstruct infinitely large scenes using a finite
number of voxels. These techniques are aimed at bringing
volumetric scene reconstruction out of the laboratory and
towards the reconstruction of complex, real-world scenes.

1.1 Related Work
The 3D scene reconstruction problem has received con-

siderable attention in the literature, and a multitude of so-
lutions have been proposed. Many solutions have been de-
veloped for specific camera configurations (e.g., a small
number of cameras [28], short baselines, parallel optical
axes [4], an ordinal visibility constraint [39], etc.); or spe-
cific classes of scenes (e.g., scenes composed of geometric
primitives such as planes [15, 21], lines, or curves, scenes
exhibiting or lacking texture [54], etc.). Some solutions re-
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Figure 1: One of 24 reference views of our “Ceevah” data set (a) and a new view synthesized after scene reconstruction (b).

quire user interaction [11, 41]. In this paper, we are inter-
ested in a more general case, for which a scene of unknown
geometric structure is photographed from any number of
arbitrarily placed cameras. We are most interested in tech-
niques that require minimal interaction with the user.

In the literature, several methods to represent a visual
scene have been proposed, including layered depth im-
ages [40], surface meshes, surfels [6, 34], light fields [18,
26], etc. In this paper, we focus on volumetric representa-
tions, which provide a topologically flexible way to char-
acterize a 3D surface inferred from multiple images. If
desired, a voxel-based surface can be converted into any of
the above representations with relative ease.

Due to the large number of scene reconstruction ap-
proaches, it would be impossible to provide a comprehen-
sive review here; see [12, 43] for a survey of volumetric
approaches. Techniques such as multi-view stereo [17, 32]
and structure from motion [1, 20, 35] have been quite suc-
cessful at reconstructing 3D scenes. These methods com-
pute and then triangulate correspondences between views
to yield a set of 3D points that are then fit to a surface.
The effectiveness of these reconstruction methodologies
relies upon accurate image-space correspondence match-
ing. Such matching typically falters as the baseline be-
tween views increases since the effects of occlusion and
perspective are difficult to model in image space when the
scene geometry is unknown. Consequently, many of these
methods are not well suited to the arbitrary placement of
cameras.

A level set approach to the scene reconstruction prob-
lem has been proposed by Faugeras and Keriven [16]. A
surface initially larger than the scene is evolved using par-
tial differential equations to a successively better approx-
imation of true scene geometry. Like the approaches we

present in this paper, this level set method can employ ar-
bitrary numbers of images, account for occlusion correctly,
and deduce arbitrary topologies.

Perhaps the simplest class of volumetric multi-view
reconstruction methods are visual hull approaches [25,
29, 49]. The visual hull, computed from silhouette im-
ages, is an outer-bound approximation to the scene ge-
ometry. Algorithms that compute the visual hull are ap-
plicable to scenes with arbitrary BRDFs as long as fore-
ground/background segmentation at each reference view is
possible, and are relatively simple to implement since vis-
ibility need not be modeled when reconstructing the scene
geometry.

While a visual hull can be rendered to produce new
views of the scene, typically the visual hull geometry is not
very accurate. This can diminish the photo-realism when
new views are synthesized. To increase the geometric ac-
curacy, more information than silhouettes must be used
during reconstruction. Color is an obvious source of such
additional information. Many researchers have attempted
to reconstruct 3D scenes by analyzing colors across multi-
ple viewpoints. Specifically, they have sought a 3D model
that, when projected to the reference views, reproduces the
photographs.

Reconstructing such a model requires a photo-
consistency check, which determines if a point in 3D space
is consistent with the photographs taken of the scene. In
particular, a point is photo-consistent [39, 24] if:

• It does not project to background, if the background
is known.

• When the point is visible, the light exiting the point
(i.e., radiance) in the direction of the camera is equal
to the observed color of the point’s projection in the



photograph.

Kutulakos and Seitz [24] state that surfaces that are not
transparent or mirror-like reflect light in a coherent man-
ner; that the color of light reflected from a single point
along different directions is not arbitrary. The photo-
consistency check takes advantage of this fact to eliminate
visible parts of space that do not contain scene surfaces.

This reconstruction problem is ill-posed in that, given a
set of photographs and a photo-consistency check, there
are typically multiple 3D models that consist of photo-
consistent points. In their insightful work, Kutulakos and
Seitz [24] introduce the photo hull, which is the largest
shape that contains all reconstructions in the equivalence
class of photo-consistent 3D models. For a given mono-
tonic photo-consistency check1, the photo hull is unique,
and is itself a reconstruction of the scene. Since we model
points with voxels, the photo hull is found by identify-
ing the spatially largest volume of voxels that are photo-
consistent with all reference views.

When computing the photo hull, we have found that the
quality of the result depends heavily on two factors. They
are:

1. Visibility: The method of determining of the pixels
from which a voxelV is visible. We denote these
pixelsπV .

2. Photo-consistency test: A function that decides, based
onπV , whether a surface exists atV .

In the algorithm presented in the next paragraph, we will
see that visibility and photo-consistency are inter-related
and, as a result, multiple passes must in general be made
over the voxels to find the photo hull.

Volumetric methods for finding the photo hull adopt the
following approach. First, a voxel space is defined that
contains, by a comfortable margin, the portion of the scene
to be reconstructed. During reconstruction, the voxels are
either completely transparent or opaque; initially, they are
all opaque. Voxels that are visible to the cameras are
checked for photo-consistency, and the inconsistent voxels
are carved, i.e., their opacity is set to transparent. Carving
one voxel typically changes the visibility of other opaque
voxels. Since the photo-consistency of a voxel is a func-
tion of its visibility, the consistency of an uncarved voxel
must be rechecked whenever its visibility changes. The
algorithm continues until all visible, uncarved voxels are
photo-consistent. This set of voxels, when rendered to the
reference views, reproduces the photographs and is there-
fore a model that resembles the scene. Pseudocode is pro-
vided in Figure 2.

1We will discuss monotonicity in Section 2.

set all voxels uncarved
loop {

for every uncarved voxel V {
find π

V

if (π
V is inconsistent)

carve V
}
if (no voxels carved on this iteration)

done
}

Figure 2: Generic pseudocode for reconstructing the photo
hull.

The Voxel Coloring algorithm of Seitz and Dyer [39] re-
constructs the photo hull for scenes photographed by cam-
eras that satisfy theordinal visibility constraint, which re-
stricts the camera placements so that the voxels can be vis-
ited in an order that is simultaneously near-to-far relative to
every camera. Typically, this condition is met by placing
all the cameras on one side of the voxel space, and process-
ing voxels using a plane that sweeps through the volume in
a direction away from the cameras. Under this constraint,
visibility is simple to model using occlusion bitmaps [39].

Voxel Coloring is elegant and efficient, but the ordi-
nal visibility constraint is a significant limitation, since
it means that cameras cannot surround the scene. Kutu-
lakos and Seitz [23] present what we call the Partial Vis-
ibility Space Carving (PVSC) algorithm, which repeat-
edly sweeps a plane through the volume in all six axis-
aligned directions. For each plane sweep, only the subset
of cameras that are behind the plane are used in the photo-
consistency check. This approach permits arbitrary cam-
era placement, which is a significant advantage over Voxel
Coloring. However, when evaluating a voxel’s photo-
consistency, it uses pixels from only a subset of the total
cameras that have visibility of the voxel. To address this
issue, Kutulakos and Seitz [24] subsequently include some
additional per-voxel bookkeeping that accumulates the vis-
ible pixels in the voxel’s projection as the plane is swept
in all six axis-aligned directions. On the sixth sweep, the
full visibility of the voxel is known and considered in the
photo-consistency check. We call this version of their al-
gorithm Full Visibility Space Carving (FVSC).

Such carving algorithms are quite powerful, and have
captured the interest of many researchers who have pro-
posed extensions to or reformulations of the basic ap-
proach. Briefly, Prock and Dyer [36] present a multi-
resolution approach as well as hardware implementations
for improved efficiency. Researchers have performed space
carving using intrinsically calibrated [14] and weakly cali-
brated [22, 37] cameras. Space carving was recast in prob-
abilistic frameworks by Broadhurst et al. [5] and Bhotika et



al. [2]. Researchers have developed carving algorithms for
scenes with shadows [38], opacity [10], mixed pixels [50],
and non-Lambertian surfaces [6, 7]. Vedula et al. [52]
and Carceroni and Kutulakos [6] propose carving algo-
rithms for reconstructing time-varying scenes. Slabaugh et
al. [44] present an epipolar approach to constructing view-
dependent photo hulls at interactive rates.

1.2 Contributions
This paper presents contributions in three areas; visibil-

ity, photo-consistency, and the modeling of infinitely large
scenes. We discuss each below.

As stated above, visibility is a vital part of any algorithm
that reconstructs the photo hull. In Section 2 we present
a scene reconstruction approach, Generalized Voxel Color-
ing (GVC), which introduces novel methods for computing
visibility during reconstruction. These methods support ar-
bitrary camera placement and place minimal requirements
on the order in which voxels are processed, unlike plane
sweep methods [39, 24]. We show that one of our new
methods minimizes photo-consistency checks. We also
demonstrate how full visibility can result in more accurate
reconstructions for real-world scenes.

The photo-consistency test is the other crucial part of an
algorithm that reconstructs the photo hull. In Section 3 we
introduce two novel photo-consistency tests for Lamber-
tian scenes. The first is an adaptive technique that adjusts
the photo-consistency test so that surface edges and tex-
tured surfaces can be more accurately reconstructed. The
second is based on color histograms and treats multi-modal
color distributions in a more principled way than ear-
lier approaches. In addition, our histogram-based photo-
consistency test requires little parameter tuning.

Reconstruction of large-scale scenes that contain ob-
jects both near to and far from the cameras is a challenging
problem. Modeling such a scene with a fixed resolution
voxel space is often inadequate. Using a high enough res-
olution for the foreground may result in an unwieldy num-
ber of voxels that becomes prohibitive to process. Using
a lower resolution more suitable to the background may
result in an insufficient resolution for the foreground. In
Section 4 we present a volumetric warping approach that
represents infinitely large scenes with a finite number of
voxels. This method simultaneously models foreground
objects, background objects, and everything in between,
using a voxel space with variable resolution. Using such
a voxel space in conjunction with our GVC approach, we
reconstruct and synthesize new views of a large outdoor
scene.

We note that some of the content of this paper has ap-
peared in previous workshop and conference papers [9, 42,
47].

2 Generalized Voxel Coloring
We present two closely related space carving algo-

rithms 2 that we collectively call Generalized Voxel Carv-
ing (GVC). They differ from each other, and from earlier
space carving algorithms, primarily in the means they com-
pute visibility. The earlier methods require the voxels to be
scanned in plane sweeps, whereas GVC scans voxels in a
more general order. GVC represents just visible surface
voxels in its main data structure, reducing both computa-
tion and storage. GVC accounts for visibility in a way that
very naturally accommodates arbitrary camera placement
and allows full voxel visibility to be computed efficiently.
The first GVC algorithm, GVC-IB, uses less memory than
the other. It also uses incomplete visibility information
during much of the reconstruction yet, in the end, com-
putes the photo hull using full visibility. The other GVC
algorithm, GVC-LDI, uses full visibility at all times, which
greatly reduces the number of photo-consistency checks re-
quired to produce the photo hull. We show that the use
of full visibility results in better reconstructions than those
produced by earlier algorithms that only use partial visibil-
ity.

As mentioned earlier, carving one voxel can change the
visibility of other voxels, so visibility must be calculated
frequently while reconstructing a photo hull. Because of
self-occlusion in the scene, visibility is complex and po-
tentially costly to compute. Thus, an efficient means of
computing visibility is a key element of any practical space
carving algorithm, including our GVC algorithms.

As a space carving algorithm begins a reconstruction, it
carves voxels based on the visibility of a model that looks
nothing like the final photo hull. One might therefore won-
der: could the algorithm carve a voxel that belongs in the
photo hull? To answer this question, consider the follow-
ing two insights, based on Seitz and Dyer [39]. First, since
voxels change from opaque to transparent during recon-
struction, and never the reverse, the visibility of the remain-
ing voxels can only increase. In particular, ifS is the set of
pixels that have an unoccluded view of an uncarved voxel
at one point in time and ifS′ is the set of such pixels at a
later point in time, thenS ⊆ S′. Second, Seitz and Dyer
make an unstated assumption that the consistency test is
monotonic, meaning for any two sets of pixelsS andS′

with S ⊆ S′, if S is inconsistent, thenS′ is also incon-
sistent. These two facts imply that carving isconservative:
no voxel will ever be carved if it would be photo-consistent
in the final model. (Although carving with non-monotonic
consistency tests is not in general conservative, we show

2Throughout this paper, we will use the term “space carving algo-
rithms” to refer to the class of volumetric scene reconstruction algorithms
that use photo-consistency to carve a voxel space. Voxel Coloring, PVSC,
FVSC, and GVC are all members of this class.
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Figure 3: The data structures used to compute visibility. Anitem buffer (a) is used by GVC-IB and records the ID of the
surface voxel visible from each pixel in an image. A layered depth image (LDI) (b) is used by GVC-LDI and records all
surface voxels that project onto each pixel.

in Section 3 that such tests can nevertheless yield good re-
constructions.)

Both GVC-IB and GVC-LDI maintain a surface voxel
list (SVL), a list of the surface voxels in the current model
that are visible from the cameras. For box-shaped voxel
spaces that contain none of the cameras, we typically ini-
tialize the SVL with the outside layer of voxels. We have
used ad hoc methods to initialize the SVL when we used
more complicated voxel spaces, as in Section 4. When
a voxel is carved, we remove it from the SVL. We also
add to the SVL any voxels that are adjacent to the carved
voxel and that have not been previously carved; this pre-
vents holes from being introduced into the surface repre-
sented by the SVL. As described below, we give each voxel
a unique ID number. We use a hash table to find the voxel
with a given ID in the SVL. The SVL can also be scanned
sequentially.

2.1 The GVC-IB Algorithm
The GVC-IB algorithm maintains visibility using an

item buffer [53] for each reference image. An item buffer
is defined as follows: for each pixelP in a reference im-
age, an item buffer, shown in Figure 3a, stores the voxel
ID of the closest voxel that projects toP (if any). An item
buffer is computed by rendering the voxels into the ref-
erence image usingz-buffering, but storing voxel IDs in-
stead of colors. As with earlier space carving algorithms,
it is assumed that at most one voxel is visible from any
pixel. Therefore, we make no attempt to model blended
colors that arise from transparency [10] or depth disconti-
nuities [50].

Pseudocode for GVC-IB appears in Figure 4. Once
valid item buffers have been computed for the images, their
pixels are then scanned. During the scan, if a valid voxel
ID is found in a pixel’s item buffer value, then the pixel’s

initialize SVL
loop {

for all images
compute item buffer

accumulate color statistics into SVL voxels
for every voxel V in SVL {

if (V is inconsistent) {
carve V (remove V from SVL)
add uncarved neighbors of V to SVL

}
}
if (no voxels carved)

done
}

Figure 4: GVC-IB pseudocode.

color is accumulated into the voxel’s color statistics.

When the pixel scanning is complete, the SVL is
scanned and each voxel is tested for consistency, based on
the collected color statistics. If a voxel is found to be in-
consistent, it is carved and removed from the SVL. After a
voxel is carved, the visibility of the remaining SVL voxels
potentially changes, so all the color statistics must be con-
sidered out-of-date. At this point, it might seem natural to
recompute the item buffers and start the process all over.
However, because the item buffers are time-consuming to
compute, we delay updating them. Although the visibility
found using out-of-date item buffers is no longer valid for
the current model, it is still valid for a superset of the cur-
rent model. Because carving is conservative, no consistent
voxels will be carved using the out-of-date color statistics,
though some voxels that should be carved might not be.
When the entire SVL has been scanned and all voxels with
inconsistent color statistics have been carved, then we re-
compute the item buffers and begin again. These iterations



continue until, during some iteration, no carving occurs.
At this point, the SVL is entirely consistent, based on up-
to-date visibility, so the SVL is in fact the photo hull.

Profiling GVC-IB revealed that nearly all the runtime is
spent rendering item buffers. This suggested two ways to
accelerate the algorithm. Since each item buffer is inde-
pendent of the others, they can be rendered in parallel on a
multi-CPU computer. Using two CPUs and several image
sets, we measured runtime reductions between 46% and
48% compared to a uniprocessor. Next, in other experi-
ments using a one CPU, we rendered the item buffers using
a hardware graphics accelerator. This resulted in runtime
reductions between 56% and 63%. GVC-IB (and GVC-
LDI) can also be executed in a coarse-to-fine manner, as
described in [36]. We have seen runtime reductions of ap-
proximately 50% using such multi-resolution voxel spaces.
These efficiencies can be combined for faster reconstruc-
tions.

2.2 The GVC-LDI Algorithm

GVC-IB computes visibility in a relatively simple man-
ner that also makes efficient use of memory. However, the
visibility information is time consuming to update. Hence,
GVC-IB updates it infrequently and it is out-of-date much
of the time. Using a monotonic photo-consistency mea-
sure, this does not lead to incorrect results but it does re-
sult in inefficiency because a voxel that would be evaluated
as inconsistent using all the visibility information might
be evaluated as consistent using a subset of the informa-
tion. Ultimately, all the information is collected but, in the
meantime, voxels can remain uncarved longer than neces-
sary and can therefore require more than an ideal number
of consistency evaluations. Furthermore, GVC-IB reevalu-
ates the consistency of voxels on the SVL even when their
visibility (and hence their consistency) has not changed
since their last evaluation. By using layered depth images
instead of item buffers, GVC-LDI can efficiently and im-
mediately update the visibility information when a voxel is
carved and also can precisely determine the voxels whose
visibility has changed.

Unlike the item buffers used by the GVC-IB method,
which record at each pixelP just the closest voxel that
projects ontoP , the LDIs store at each pixel a list of all the
surface voxels that project ontoP . See Figure 3b. These
lists are sorted according to the distance from the voxel to
the image’s camera. The head of an LDI list stores the
voxel closest toP , which is the same voxel an item buffer
would store. The LDIs are initialized by rendering the SVL
voxels into them.

Using the LDIs, the set of pixelsπV from which a voxel
V is visible can be found as follows.V is scan converted
into each reference image to find its projection (without

regard to visibility). For each pixelP in V ’s projection, if
the voxel ID at the head ofP ’s LDI equalsV ’s ID, then
P is added toπV . OnceπV is computed,V ’s consistency
can be determined by testingπV .

The uncarved voxels whose visibility changes when an-
other voxel is carved come from two sources:

• They are inner voxels adjacent to the carved voxel
and become surface voxels when the carved voxel be-
comes transparent. See Figure 5a.

• They are already surface voxels (hence they are in the
SVL and LDIs) and are often distant from the carved
voxel. See Figure 5b.

Voxels in the first category are trivial to identify since they
are next to the carved voxel. Voxels in the second cat-
egory are impossible to identify efficiently in the GVC-
IB method; hence, that method must repeatedly evaluate
the entire SVL for color consistency. In GVC-LDI, vox-
els in the second category can be found easily with the
aid of the LDIs; they will be the second voxel on the
LDI list for some pixel in the projection of the carved
voxel. GVC-LDI keeps a list of the SVL voxels whose
visibility has changed, called the changed visibility SVL
(CVSVL). These are the only voxels whose consistency
must be checked. Carving is finished, and the photo hull is
found, when the CVSVL is empty.

When a voxel is carved, the LDIs (and hence the vis-
ibility information) can be updated immediately and effi-
ciently. The carved voxel can be easily deleted from the
LDI list for every pixel in the voxel’s projection. The same
process automatically updates the visibility informationfor
the second category of uncarved voxels whose visibility
has changed; these voxels move to the head of LDI lists
from which the carved voxel has been removed and they
are also added to the CVSVL. Inner voxels adjacent to the
carved voxel are pushed onto the LDI lists for pixels they
project onto. As a byproduct of this process, the algorithm
learns if the voxel is visible; if it is, it is put on the CVSVL.
Pseudocode for GVC-LDI is given in Figure 6.

2.3 GVC Reconstruction Results

We now present experimental results to demonstrate our
GVC algorithms, and provide, for side-by-side compari-
son, results obtained with Space Carving. As discussed in
Section 1.1, there are two versions of the Space Carving al-
gorithm: Partial Visibility Space Carving (PVSC) and Full
Visibility Space Carving (FVSC). As will be shown, PVSC
produces less accurate results than GVC and FVSC. There-
fore, we will focus more on comparing GVC to FVSC.
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Figure 5: When a voxel is carved, there are two categories of other voxels whose visibility changes: (a) inner voxels that
are adjacent to the carved voxel and (b) voxels that are already on the SVL and are often distant from the carved voxel.

initialize SVL
for all images

compute LDI
place all voxels in SVL onto CVSVL
while (CVSVL not empty) {

choose a voxel V from CVSVL
remove V from CVSVL
scan convert V to find π

V

if (π
V is not consistent) {

carve V (remove from SVL, LDIs)
for all inner neighbors U of V

add U to SVL, CVSVL, LDIs
for voxels U that move to head of LDIs

add U to CVSVL
}

}

Figure 6: GVC-LDI pseudocode.

2.3.1 Comparison with Partial Visibility Space Carv-
ing

Figure 7 shows two of fifteen reference views of our
“bench” data set. Calibration of the 765 x 509 pixel images
had accuracy of a maximum 1.2 pixels of reprojection er-
ror for the points used in the calibration. We reconstructed
the scene using a 75 x 71 x 33 voxel volume. New views
synthesized from the GVC-IB and PVSC reconstructions
are shown in Figure 7.

The PVSC image is considerably noisier and more dis-
torted than the GVC image, a trend we observed with all
data sets we tested. In general, PVSC produces less ac-
curate reconstructions than GVC, since, when computing

photo-consistency, PVSC does not use the full visibility of
the scene, unlike GVC. During a plane sweep, the cameras
that are ahead of the plane are not considered by the PVSC
algorithm even though those cameras might have visibility
of voxels on the plane. Since photo-consistency is deter-
mined using a subset of the available color information,
the photo-consistency test sometimes fails to produce the
proper result had the full visibility been considered. For
some data sets, we found the PVSC runs faster, while for
others, GVC runs faster. However, PVSC always requires
less memory than GVC-IB or GVC-LDI.

Additional comparisons between GVC and PVSC ap-
pear in [9].

2.3.2 Comparison with Full Visibility Space Carving

Next, we present results of running GVC-IB, GVC-LDI,
and Full Visibility Space Carving (FVSC) on two data
sets we call “toycar” and “ghirardelli”. In particular, we
present runtime statistics and provide images synthesized
with FVSC and our algorithms. The experiments were run
on a computer with a 1.5 GHz Pentium 4 processor and
768 MB of RAM.

The toycar and ghirardelli data sets are quite different
in terms of how difficult they are to reconstruct. The toy-
car scene is ideal for reconstruction. The seventeen 800 x
600 pixel images are computer-rendered and perfectly cal-
ibrated. The colors and textures make the various surfaces
in the scene easy to distinguish from each other. Two of
our toycar reference views are shown in Figure 8. In con-
trast, the seventeen 1152 x 872 ghirardelli images are im-



perfectly calibrated photographs of an object that has sig-
nificant areas with relatively little texture and color varia-
tion. Two of our ghirardelli reference views are shown in
Figure 9.

We reconstructed the toycar scene in a 167 x 121 x 101
voxel volume. The reconstruction of the ghirardelli data
set occurred in a 168 x 104 x 256 voxel volume; note this
resolution is significantly higher than that used to recon-
struct the toycar scene. New views synthesized from re-
constructions obtained using the GVC-IB, GVC-LDI, and
FVSC algorithms are shown in Figures 8 and 9 for the toy-
car and ghirardelli data sets, respectively. The three re-
constructions in each figure are not identical because we
used a photo-consistency test (the adaptive standard devia-
tion test that will be discussed in Section 3.2.1) that is not
monotonic. Therefore, the order in which the voxels were
processed affected the final result. However, for each data
set, the three reconstructions are comparable in terms of
quality.

There were significant differences between the algo-
rithms in terms of runtime statistics, as shown in Table 1.
The “Checks” column in the table indicates the number of
photo-consistency checks that were required to complete
the reconstruction. For both data sets, FVSC required an
order of magnitude more consistency checks than the GVC
algorithms, for two reasons. First, on each sweep through
the volume, FVSC processes inner voxels, i.e., voxels that
are inside the surface and not visible to any of the cam-
eras. GVC, in contrast, does not process the inner voxels,
instead only processing surface voxels. GVC-LDI is par-
ticularly efficient, since it only processes the surface vox-
els that change visibility, resulting in a minimal number of
photo-consistency checks. Second, some voxels can only
be carved using a large amount (possibly all) of the their to-
tal visibility. In FVSC, the amount of visibility grows from
nothing at the beginning of the first sweep through the vol-
ume, to full visibility at the end of the sixth sweep. During
some of these earlier sweeps, there may not be enough vis-
ibility for the voxel to be carved. In contrast, GVC uses
more visibility. In particular, GVC-LDI always uses full
visibility each time a voxel’s photo-consistency is checked.

The “Time” column in Table 1 indicates the amount
of time required to complete the reconstruction. For the
toycar data set, the GVC algorithms were slightly faster
than FVSC. Although GVC processes fewer voxels, the
additional overhead required to maintain the visibility data
structures does not result in a significantly faster runtime.
However, for the Ghirardelli data set, the efficiency of
GVC-LDI’s relatively complex data structures more than
compensates for the time needed to maintain them. Be-
cause GVC-LDI finds all the pixels from which a voxel is
visible, it can carve many voxels sooner, when the model

Data Set Algorithm Checks Time (m:s) Memory
Toycar FVSC 25.8 M 32:31 156 MB
Toycar GVC-IB 3.1 M 36:16 74 MB
Toycar GVC-LDI 2.2 M 29:16 399 MB
Ghir. FVSC 154 M 2:35:43 337 MB
Ghir. GVC-IB 12.1 M 2:01:27 154 MB
Ghir. GVC-LDI 4.5 M 0:47:10 275 MB

Table 1: Runtime statistics for the toycar and ghirardelli
data sets.

is less refined, than GVC-IB. Furthermore, after carving
a voxel, GVC-LDI only reevaluates the few other voxels
whose visibility has changed. Consequently, GVC-LDI is
faster than GVC-IB by a large margin. For FVSC, the large
number of photo-consistency checks results in a slower
runtime.

The last column of Table 1 shows the memory usage
of the algorithms. All three approaches keep copies of the
input images in memory. As described in [24], for Lam-
bertian scenes, FVSC additionally stores color statistics
for each voxel in the voxel space. This grows asO(N3),
whereN is the number of voxels along one dimension of
the voxel space. Additionally, we store the one of six parti-
tions [24] of space that each camera lies in for each voxel.
This storage is alsoO(N3). We note that the partitions
could be computed on the fly (i.e., requiring no storage) at
the expense of runtime. However, in our experiments, we
opted for a faster runtime. Unlike FVSC, the voxel res-
olution has little bearing on the memory requirements for
GVC-IB and GVC-LDI. GVC-IB requires equal amount
of memory for the images and the item buffers. The LDIs
dominate the memory usage in GVC-LDI and consume
an amount of memory roughly proportional to the number
of image pixels times the depth complexity of the scene.
The SVL and CVSVL data structures used by GVC-IB
and GVC-LDI requireO(N2) storage, and are relatively
insignificant. Thus, of the three approaches, GVC-IB re-
quired the least amount of memory. For the toycar data
set modeled with a lower resolution voxel space, GVC-
LDI required more memory than FVSC. However, for the
ghirardelli data set modeled with a higher resolution voxel
space, GVC-LDI required less memory than FVSC.

2.4 Summary
In this section we presented our Generalized Voxel

Coloring algorithms, GVC-IB and GVC-LDI. These ap-
proaches support arbitrary camera placement and recon-
struct the scene using full visibility. We demonstrated that
methods like GVC that use full visibility result in more
accurate reconstructions than those that use partial visibil-
ity. The GVC-IB algorithm is memory efficient, while our
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Figure 7: Bench scene. The top row shows two of the fifteen input images. The bottom row shows a new view synthe-
sized from the Partial Visibility Space Carving reconstruction (c) and the GVC-IB reconstruction (d). The PVSC image is
considerably noisier and more distorted than the GVC-IB image.

(a) (b)

(d) (e) (f)

Figure 8: Toycar scene. The top row shows two of the seventeenimages input images. The bottow row shows new views
generated by rendering the FVSC (d) GVC-IB (e), and GVC-LDI (f) reconstructions.



GVC-LDI algorithm reconstructs the scene using a mini-
mal number of photo-consistency checks, which, for many
scenes, results in a faster reconstruction.

3 Photo-Consistency Tests
When reconstructing a scene using a space carving al-

gorithm, there are two key factors that affect the quality
of the reconstructed model. The first is the visibility that
is computed for the voxels. In the previous section we
demonstrated that using full visibility produces better qual-
ity reconstructions than using only partial visibility. The
second factor is the test that is used to judge the photo-
consistency of voxels.

The section begins by describing the likelihood ratio
test, the first consistency test that was proposed for space
carving. We then describe several of the most straight-
forward, and perhaps obvious, candidate tests. Next, we
present two tests that we have developed, the adaptive stan-
dard deviation test and the histogram test. These two tests
have consistently yielded the best results in our new view
synthesis application, and one of the tests has the added
advantage of requiring little or no parameter adjustment.
Finally, we present results that show some color spaces are
better than others for space carving.

We have provided Figure 10 for comparison of the con-
sistency tests and color spaces. It shows reconstructions
performed with identical programs, aside from the tests or
color spaces being compared. All the reconstructions in
the figure use the same “shoes” data set, consisting of 30
1536 × 1024 images, but the results are consistent with
other data sets we have tried. The reconstructions have
been rendered to an identical viewpoint that is different
from any of the input images used in the reconstructions.
Parameters used in the tests were tuned to minimize holes
in the calibration target that serves as the floor of the scene.
Og̈uz Özün [33] has also compared consistency tests and
had similar success with the two tests we developed.

Kutulakos and Seitz [24] have stated that the photo hull,
the set of all photo consistent voxels, provides “the tightest
possible bound on the shape of the true scene that can be
inferred fromN photographs”. However, different photo
consistency tests lead to different photo hulls, many of
which do not resemble the scene. If there is a voxel that
belongs in a reconstruction but is judged by the test to be
inconsistent, then space carving carves the voxel from the
model. Worse, because the voxel is then considered trans-
parent, the algorithm can draw incorrect conclusions about
which images see the remaining uncarved voxels, leading
to more incorrect carving. Figure 12b shows an example
of this problem. The consistency test just described can be
thought of as being too strict for declaring voxels that be-
long in the model to be inconsistent. Tests can also be too
lenient, declaring voxels to be consistent when they do not

belong in the model; this can lead to voxels that appear to
float over a reconstructed scene. A single consistency test
can simultaneously be both too strict and too lenient, cre-
ating holes in one part of a scene and floating voxels else-
where. The reconstructions in Figure 10 all demonstrate
this to varying degrees.

In most space carving implementations there has been
an implicit assumption that the pixel resolution is greater
than the voxel resolution—that is, a voxel projects to a
number of pixels in at least some of the images. We be-
lieve this is reasonable and expect the trend to continue be-
cause: 1) runtime grows faster with increasing voxel res-
olution than it does with increasing pixel resolution, and
2) the resolution of economical and readily available cam-
eras keeps growing. We make use of this assumption in
the adaptive standard deviation and histogram consistency
tests. Steinbach et al. [46] have reported that they obtained
better reconstructions when they precisely computed the
projections of voxels into images, rather than using approx-
imations, like splats. We have observed the same effect
and therefore use scan conversion to determine voxel pro-
jections. We make the assumption in this section that the
scenes being reconstructed are approximately Lambertian,
and we use the RGB color space, except where noted.

3.1 Monotonic Consistency Tests
Kutulakos and Seitz assume monotonic consistency

tests will be used with space carving. When such tests and
full visibility are employed, space carving is guaranteed
to yield the photo hull, the unique photo-consistent model
that is a superset of all other photo-consistent models.

Seitz and Dyer [39] determine the consistency of a voxel
V using the likelihood ratio test (LRT):

(n − 1)s2

πV < τ (1)

whereπV is the set of pixels from whichV is visible,sπV

is the standard deviation of the colors of the pixels inπV ,
n is the cardinality ofπV , andτ is a threshold that is deter-
mined experimentally. LRT has the virtue of being mono-
tonic. However, because of the(n− 1) term in Equation 1,
LRT has the disadvantage that voxels that are visible from
more pixels are more likely to be carved. Nevertheless, as
shown in Figure 10b, LRT can produce a reasonable re-
construction when photographs are available that sample
the scene fairly uniformly.

The next two consistency tests we describe are mono-
tonic and lack LRT’s sensitivity to the number of pixels
that view voxels. First, perhaps the most obvious choice
for a monotonic consistency test is:

max{dist(color(p1), color(p2)) | p1, p2 ∈ πV } < τ (2)

wheredist is theL1 or L2 norm in color space. The disad-
vantages of this test are its computational complexity and
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(d) (e) (f)

Figure 9: Ghirardelli scene. The top row shows two of the seventeen reference views. The bottom row shows new views
generated by rendering the FVSC(d), GVC-IB (e), and GVC-LDI(f) reconstructions.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10: Reconstructions of the shoes data set using different consistency tests. (a) is a photograph of the scene thatwas
not used during reconstruction. (b) was reconstructed using the likelihood ratio test, (c) using the bounding box test,(d)
using standard deviation, (e) using standard deviation andthe CIELab color space, (f) using the adaptive standard deviation
test, and (g) using the histogram test.



its sensitivity to pixel noise. Second, the bounding box test
is a simple, related test with low computational complex-
ity. In this test, a voxelV is checked for consistency by
comparing a threshold to the length of the great diagonal
of the axis-aligned bounding box, in RGB space, of the
colors of the pixels inπV . Disadvantages of the bounding
box test are that it is a somewhat crude measure of color
consistency and it is sensitive to pixel noise. A reconstruc-
tion performed with this test, shown in Figure 10c, pro-
duced more floating voxels than LRT but also recovered
some detail that LRT missed.

3.2 Non-monotonic Consistency Tests
We can easily think of plausible consistency tests, for

example tests that threshold common statistics like stan-
dard deviation:

sπV < τ (3)

Unfortunately, many such tests are not monotonic, includ-
ing thresholded standard deviation. When space carving
is used with non-monotonic consistency tests, it can carve
a voxel that might be consistent in the final model. The
algorithm can also converge to different models depend-
ing upon the order in which the voxels are processed, so
there is no unique photo hull corresponding to such tests.
However, this is not necessarily a disadvantage if the objec-
tive is to produce models that closely resemble the scene.
In fact, among the tests we have tried, the two that have
consistently produced the best looking models, the adap-
tive standard deviation test and the histogram test, are
not monotonic. The reconstruction shown in Figure 10d,
produced using thresholded standard deviation, demon-
strates that non-monotonic tests can yield reasonable mod-
els. The test produced fewer floating voxels than LRT and
the bounding box test, and recovered some detail that LRT
missed.

3.2.1 An Adaptive Consistency Test

Because we consider voxels to have nonzero spatial extent,
they can represent portions of surfaces that include abrupt
color changes and significant texture. Using any of the con-
sistency tests already described, a high threshold is needed
to reconstruct such surfaces. The same scenes can also in-
clude surfaces with little or no color variation. Such re-
gions require a low threshold to minimize cusping [39] and
floating voxels. Fortunately, we can measure the amount of
color variation on a surface by measuring the amount color
variation the surface projects to in single images.

This suggests that it would be beneficial to use an adap-
tive threshold that is proportional to the color variation seen
from single images. This is illustrated in Figure 11. LetπV

i

be the set of pixels in imagei from which voxelV is vis-
ible, let sπV

i

be the standard deviation ofπV
i and lets be

(a) (b)

(c) (d)

Figure 11: Handling texture and edges. In (a), a voxel
represents a homogeneous region, for which bothsπV and
s are small. In (b) and (c), a voxel represents a textured
region and an edge, respectively, for which bothsπV ands

are large. In (d), a voxel representing free space has a large
sπV and smalls.

the average ofsπV

i

for all imagesi from whichV is visible.
In (a), (b) and (c) in the figure, where the voxel is on the
surface, note thatsπV ands are both simultaneously either
small or large. In (d), where the voxel is not on the surface,
s is small andsπV is large.

We constructed an adaptive consistency test, which we
call the adaptive standard deviation test (ASDT), as fol-
lows:

sπV < τ1 + τ2s (4)

where τ1 and τ2 are thresholds whose values are deter-
mined experimentally. ASDT is the same as the thresh-
olded standard deviation test of Equation 3 except for the
τ2s term.

Figure 12 shows a data set for which thresholded stan-
dard deviation, regardless of threshold, failed to recon-
struct the scene, yet ASDT produced a reasonable model.
Figure 10f shows an ASDT reconstruction that is superior
to reconstructions produced by any of the other consistency
tests we have described so far. Note that the ASDT model
has fewer floating voxels as well as fewer holes than the
other models. A disadvantage of ASDT is the experimen-
tation that is required to find the values ofτ1 andτ2 that
produce the best reconstruction.

3.2.2 A Histogram-Based Test

Since a voxel often represents a part of a surface that
crosses color boundaries or includes significant texture, it
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Figure 12: Figure (a) is a reference image from our El
data set, (b) shows the best reconstruction obtained using
thresholded standard deviation, and (c) shows a reconstruc-
tion obtained using the adaptive standard deviation test.

can be visible from pixels whose colors have a complex,
multi-modal distribution. A few parameters of a distribu-
tion, such as the variance and standard deviation used by
the previous tests, can only account for second order statis-
tics of the distribution. Furthermore, such parameters make
assumptions about the distributions, for example standard
deviation accurately characterizes only Gaussian distribu-
tions. The multi-modal color distributions that we would
like to characterize are unlikely to conform to any such as-
sumptions. In contrast, histograms are nonparametric rep-
resentations that can accurately describe any distribution.
This inspired us to develop a consistency test that uses his-
tograms. The test produces excellent reconstructions and
has the additional advantage of requiring little or no pa-
rameter adjustment.

Our histogram test computes a color histogram for each
image from which a voxel is visible and then compares the
histograms. There are many ways to compare histograms;
we use histogram intersection because it produces good re-
constructions and is simple and efficient to implement. We
say two histograms intersect if there is at least one pair of
corresponding bins (one bin from each histogram) in which
both bins have nonzero count. For a given voxelV and im-
agei, we build a histogramHist(πV

i ) of the colors of all
the pixels inπV

i . We defineV to be consistent if, for every
pair of imagesi andj for whichπV

i andπV
j are not empty,

Hist(πV
i ) andHist(πV

j ) intersect. In other words,

∀i,jHist(πV
i )

⋂
Hist(πV

j ) 6= ∅ i 6= j (5)

Therefore, a single pair of views can cause a voxel to be
declared inconsistent if the colors they see at the voxel do
not overlap. We use a 3D histogram over the complete
color space. Furthermore, we have found that eight bins
per channel are adequate for acceptable reconstructions;
this yields512 bins (8 × 8 × 8) for each image of each
voxel.

We made several optimizations to minimize the runtime

and memory requirements related to our consistency test.
Notice that the histogram intersection only needs to test
which histogram bins are occupied. Hence, only one bit
is required per bin, or512 bits per histogram. Histogram
intersection can be tested with AND operations on com-
puter words. Using32-bit words, only16 AND instruc-
tions are needed to intersect two histograms. The number
of histogram comparisons needed to test the consistency of
a voxel is equal to the square of the number of images that
can see the voxel. Fortunately, in our data sets the average
number of images that could see a voxel fell between two
and three, so the number of histogram comparisons was
manageable.

Histogram-based methods can suffer from quantization:
a set of colors that falls in the middle of a histogram bin can
be treated very differently from a set that is similar but is
near a bin boundary. We avoided this problem by using
overlapping bins, which, in effect, blur the bin boundaries.
Specifically, we enlarged the bins to overlap adjacent bins
by about20 percent. A pixel with a color falling into mul-
tiple overlapping bins is counted in each such bin. This
makes the consistency test insensitive to bin boundaries
and small inaccuracies in color measurement.

We found histogram intersections to be a somewhat un-
reliable indicator of color consistency when a voxel was
visible from only a small number of pixels in some im-
ages. Hence, if this number fell below a fixed value (we
typically used 15 pixels), we did not use the image in the
consistency test.

Figure 17 shows a number of reconstructions produced
with the histogram consistency test. The right column of
the figure shows a reference view (that was used in the re-
construction), and the left image shows the reconstructed
model projected to the same viewpoint as the reference
view. Another histogram reconstruction, shown in Fig-
ure 10g, is similar to ASDT reconstruction but significantly
better than the other reconstructions.

A significant advantage of our histogram consistency
test is that it requires little or no parameter tuning. The
test does have parameters, for example the number of his-
togram bins and the bin overlap, but the test is significantly
less sensitive to its parameter settings than any of the other
tests we have described. For example, using the thresh-
olded standard deviation test and a typical data set, the
threshold value that gave the best reconstruction was just
5% higher than a value that caused the reconstruction to
fail catastrophically. With another data set but the same
consistency test, the best reconstruction was obtained with
a threshold 53% higher than the best value for the first data
set. Finding ideal settings for sensitive parameters is very
time consuming. In contrast, five of the six histogram re-
constructions shown in Figure 17 were performed with our
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Figure 13: (a) is a photograph from the dinosaur data set,
(b) was reconstructed in the RGB color space, and (c)
shows a more robust reconstruction of a bright region ob-
tained in the CIELab color space. Data set courtesy of
Steve Seitz.

default parameters and no tuning was needed.

3.3 Color Spaces
The RGB color space, which we have used for most of

our reconstructions, is not perceptually uniform. Specifi-
cally, in the RGB color cube, two dark colors that can be
easily distinguished might be quite close together, whereas
two bright colors that are relatively far apart might be hard
to distinguish. It follows that, for a given threshold, a
consistency test might be too lenient in dark areas, in-
troducing floating voxels, while simultaneously being too
strict in bright areas, introducing holes. There are many
color spaces that would avoid this problem; we experi-
mented with CIELab, which is perceptually uniform. Fig-
ures 13b and 13c show two reconstructions that are sim-
ilar in most respects except a bright region in (c) was re-
constructed more robustly in CIELab space than the corre-
sponding region in (b), reconstructed in RGB. Figure 10e,
also obtained using CIELab color space, is quite similar to
the RGB reconstruction in Figure 10d, probably because
the scene has relatively little brightness variation. The re-
constructions in Figures 10e and 13 were produced using
thresholded standard deviation, although CIELab should
be equally effective with other consistency tests.

Because lighting can change while a scene is pho-
tographed, several people have suggested that we might
obtain better results by weighting luminance less than
chrominance when testing color consistency. CIELab has
a luminance channel, allowing us to test this idea. How-
ever, in several experiments, we found de-emphasizing lu-
minance to be of minimal benefit.

3.4 Summary
Along with visibility, consistency tests have a large im-

pact on the quality of reconstructions produced by space
carving algorithms. We have described a number of con-
sistency tests, including two we developed. Figure 10 al-
lows the various consistency tests to be compared side-
by-side. The adaptive standard deviation test and the his-

togram test yielded models that simultaneously have dra-
matically fewer floating voxels and holes. The histogram
test avoids time-consuming experimentation because it is
relatively insensitive to its parameter settings. We have
also shown that the choice of color space can affect the
quality of reconstructions, especially in unusually bright
or dark regions of a scene.

4 Volumetric Warping
We now present a volumetric warping technique for

the reconstruction of scenes defined on an infinite domain.
This approach enables the reconstruction of all surfaces,
near to far away, as well as a background environment,
using a voxel space composed of a finite number of vox-
els. By modeling such distant surfaces, in addition to fore-
ground surfaces, this method yields a reconstruction that,
when rendered, produces synthesized views that have im-
proved photorealism.

Our volumetric warping approach is related to 2D en-
vironment mapping [3, 19] techniques that model infinite
scenes for view synthesis. However, our approach is fully
three-dimensional and accommodates surfaces that appear
both in foreground and background. While methods that
define the voxel space using the epipolar geometry between
two or three basis views [37, 22] form a voxel space with
variable resolution, our approach does not give preference
to any particular reference views, and additionally, it ex-
tends the domain of the voxel space to infinity in all spatial
dimensions.

4.1 Volumetric Warping Functions
The goal of a volumetric warping function is to repre-

sent an infinite volume with a finite number of voxels. The
warping function must satisfy the requirements that in the
warped space, no voxels overlap and no gaps exist between
voxels. These requirements are easily accomplished for a
variety of warping functions. We use the termpre-warped
to refer to the volume before the warping function is ap-
plied.

4.1.1 Frustum Warp

We now describe a frustum warp function that is used to
warp the exterior space. We develop the equations and fig-
ures in two dimensions for simplicity; the idea easily ex-
tends to three dimensions.

The frustum warp function presented here separates the
voxel space into an interior space used to model foreground
surfaces at fixed resolution, and an exterior space used
to model background surfaces at variable resolution, as
shown in Figure 14. The warping function does not af-
fect the voxels in the interior space, while voxels in the
exterior space are warped so that their size increases lin-
early, in each dimension, with distance from the interior
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Figure 14: Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In (a), the voxel space is divided into two
regions; an interior space shown with dark gray voxels, and an exterior space shown with light gray voxels. Both regions
consist of voxels of uniform size. The warped voxel space is shown in (b). The warping does not affect the voxels in the
interior space, while the voxels in the exterior space increase in size further from the interior space. The outer shell of voxels
in (b) are warped to infinity. These voxels are represented with arrows in the figure.

Figure 15: Boundaries and regions. The outer boundaries
of both the interior and exterior space are shown in the
figure. The four trapezoidal regions,±x and±y are also
shown.

space. Under this construction, voxels in the exterior space
will project to roughly the same number of pixels for view-
points in or near the interior space. Voxels on the outer
shell of the exterior space have coordinates warped to in-
finity, and have infinite volume. While the voxels in the
warped space have a variable size, the voxel space still has
a regular 3D lattice topology.

The frustum warp assumes that both the interior space
and the pre-warped exterior space have rectangular shaped
outer boundaries, as shown in Figure 15. These bound-
aries are used to define four trapezoidal regions,±x, and
±y, based on the region’s relative position to center of the
interior space. These regions are also shown in Figure 15.

Let (x, y) be a pre-warped point in the exterior space,

and let(xw, yw) be the point after warping. To warp(x, y),
we first apply a warping function based on the region in
which the point is located. This warping function is applied
only to one coordinate of(x, y). For example, suppose that
the point is located in the+x region. Points in the+x and
−x regions are warped using thex-warping function,

xw = x
xe − xi

xe − |x|
,

wherexe is the distance along thex-axis from the center
of the interior space to the outer boundary of the exterior
space, andxi is the distance along thex-axis from the cen-
ter of the interior space to the outer boundary of the interior
space, shown in (a) of Figure 16. A quick inspection of this
warping equation reveals its behavior. For a point on the
boundary of the interior space,x = xi, and thusxw = xi,
so the point does not move. However, points outside of the
boundary get warped according to their proximity to the
boundary of the exterior space. For a point on the bound-
ary of the exterior space,x = xe, and soxw = ∞.

Continuing with the above example, oncexw is com-
puted, we find the other coordinateyw by solving a line
equation,

yw = y + m(xw − x),

wherem is the slope of the line connecting the point(x, y)
with the pointa, shown in (b) of Figure 16. Pointa is
located at the intersection of the line parallel to thex-
axis and running through the center of the interior space,
with the nearest linel that connects a corner of the interior
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Figure 16: Finding the warped point. Thex-warping func-
tion is applied to the x-coordinate of the point(x, y), as the
point is located in the+x region. This yields the coordi-
natexw, shown in (a). In (b), the other coordinateyw is
found by solving the line equation using the coordinatexw

found in (a).

space with its corresponding matching corner of the exte-
rior space, as shown in the figure. Note that in general,
point a is not equal to the center of the interior space. By
using such a construction, a point in a pre-warped region of
space (e.g.+x) will stay in the that region after warping.

As shown above, the exterior space is divided into four
trapezoidal regions for the two-dimensional case. In three
dimensions, this generalizes to six frustum-shaped regions,
±x, ±y, ±z; hence the termfrustum warp. There are three
warping functions, namely thex-warping function as given
above, andy- andz-warping functions,

yw = y
ye − yi

ye − |y|

zw = z
ze − zi

ze − |z|
.

In general, the procedure to warp a point in the pre-
warped exterior space is as follows.

• Determine in which frustum-shaped region the point

is located.

• Apply the appropriate warping function to one of the
coordinates. If the point is the in±x region, apply the
x-warping function, if the point is in the±y region,
apply they-warping function, and if the point is the
±z region, apply thez-warping function.

• Find the other two coordinates by solving line equa-
tions using the warped coordinate.

4.1.2 Resolution in the Exterior Space

The pre-warped exterior space is warped to infinity in all
directions by the warping function, regardless of how many
voxels are in the exterior space, assuming that the exterior
space consists of a shell of voxels at least one voxel thick
in each direction. However, the number of voxels in the ex-
terior space determines the resolution of the exterior space.
Adding more voxels allows finer details of distant objects
to be more finely modeled.

4.2 Implementation Issues
Reconstruction and new view synthesis of a scene using

a warped voxel space poses some challenges, which we
now describe.

First, the warped voxel space extends to infinity in each
dimension, and therefore cameras get embedded inside the
voxel space. Since the photo-consistency measure is effec-
tive only when each surface voxel is visible to two or more
reference views, we must remove (pre-carve) a portion of
the voxel space to produce a suitable initial surface for re-
construction. User guided or heuristic methods can be used
for pre-carving.

Second, as discussed in Section 3, space carving algo-
rithms sometimes carve voxels that should remain in the
volume. Thus, it is possible that a voxel on the outer
shell of the voxel space would be identified as inconsis-
tent. Since one cannot see beyond infinity, we never carve
voxels on the outer shell.

Finally, the geometry of objects in the exterior space
is rather coarse since it is modeled with lower resolution
voxels. After reconstruction, if a new view is synthesized
near such low resolution geometry, the resulting image will
appear distorted, as large individual voxels will be identifi-
able in the synthesized image. However, in our method, we
intend for the reconstructed model to be viewed from in or
near the interior space. For such viewpoints, objects in the
exterior space will project to roughly a constant resolution
that is matched to the outer shell of voxels in the interior
space. This yields synthetic new views that do not suffer
from such distortions.



4.3 Volumetric Warping Results
We have modified the GVC algorithm of Section 2 to

utilize the warped voxel space. We performed a recon-
struction using ten cylindrical panoramic photographs of
a quadrangle at Stanford University. References [27, 41]
discuss the calibration of such images. One of the 2500 x
884 photographs from the set is shown in Figure 18 (a). A
voxel space of resolution 300 x 300 x 200 voxels, of which
the inner 200 x 200 x 100 were interior voxels, was pre-
carved manually by removing part of the voxel space con-
taining the cameras. Then, the GVC algorithm was used
to reconstruct the scene. A new synthesized view of the
scene is shown in (b). Note that objects far away from
the cameras, such as many of the buildings and trees, have
been reconstructed with reasonable accuracy for new view
synthesis.

Despite the successes of this reconstruction, it is not per-
fect. The sky is very far away from the cameras (for prac-
tical purposes, at infinity), and should therefore be repre-
sented with voxels on the outer shell of the voxel space.
However, since the sky is nearly textureless, cusping oc-
curs, resulting in protrusions in the sky. Reconstruction
of outdoor scenes is challenging, as surfaces often do not
satisfy the Lambertian assumption made by our photo-
consistency measure. On the whole, though, the recon-
struction is accurate enought to produce convincing new
views.

5 Conclusion
In this paper we have presented a collection of meth-

ods for the volumetric reconstruction of visual scenes.
These methods have been developed to increase the qual-
ity, applicability, and usability of volumetric scene recon-
struction. Visibility and photo-consistency are two es-
sential aspects to any carving algorithm that reconstructs
the photo hull. Accordingly, we introduced GVC, a
full visibility reconstruction approach that supports arbi-
trary camera placement and does not process inner vox-
els. Our GVC-IB algorithm is memory efficient and eas-
ily hardware accelerated, while our GVC-LDI algorithm
minimizes photo-consistency checks. We also presented
new photo-consistency measures for use with Lambertian
scenes. Our adaptive threshold method better reconstructs
surface edges and texture, while our histogram intersec-
tion method requires nearly no parameter tuning. Finally,
we showed how the voxel space can be warped so that
infinitely large scenes can be reconstructed using a finite
number of voxels.

Volumetric scene reconstruction has made significant
progress over the last few decades, and many techniques
have been proposed and refined. Future work in this
field may include more sophisticated handling of non-
Lambertian scenes, new methods for reconstruction of

time-varying scenes, and more computationally efficient
methods for real-time reconstruction.
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