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Abstract using a set of easily obtained photographs taken with inex-
In this paper, we present methods for 3D volumetric penSive dlgltal cameras. We then pI’OjeCt this reconstducte
reconstruction of visual scenes photographed by multiple 3D model to virtual viewpoints in order to synthesize new
calibrated cameras placed at arbitrary viewpoints. Our Views of the scene, as shown in Figure 1.
goal is to generate a 3D model that can be rendered to syn-  T0 accomplish this task, we have developed methods
thesize new photo-realistic views of the scene. We improvethat improve upon the quality, usability, and applicabil-
upon existing voxel Coioring / space Carving approaches |ty of eXiSting volumetric scene reconstruction appro&che
by introducing new ways to Compute V|S|b|||ty and photo_ We present innovations in the Computation of V|S|b|||ty and
consistency, as well as model infinitely large scenes. In Photo-consistency, which are two crucial aspects of this
particular, we describe a visibility approach that uses all class of algorithms. One of our visibility approaches mini-
possible color information from the photographs during mizes photo-consistency evaluations, which results in effi
reconstruction, photo-consistency measures that are morecient computation, and our histogram intersection method
robust and/or require less manual intervention, and a volu- Of computing photo-consistency requires almost no user in-
metric warping method for application of these reconstruc- tervention. We also present a volumetric warping approach

tion methods to large-scale scenes. designed to reconstruct infinitely large scenes using afinit
number of voxels. These techniques are aimed at bringing
Keywords volumetric scene reconstruction out of the laboratory and

Scene reconstruction, voxel coloring, space carv- towards the reconstruction of complex, real-world scenes.
ing, photo-consistency, histogram intersection, voluicet 1.1 Related Work

warping The 3D scene reconstruction problem has received con-
siderable attention in the literature, and a multitude of so
lutions have been proposed. Many solutions have been de-
veloped for specific camera configurations (e.g., a small
In this paper, we consider the problem of reconstructing number of cameras [28], short baselines, parallel optical
a 3D model of a scene of unknown geometric structure us- axes [4], an ordinal visibility constraint [39], etc.); qves
ing a set of photographs (also called reference views) of the cific classes of scenes (e.g., scenes composed of geometric
scene taken from calibrated and arbitrarily placed cameras primitives such as planes [15, 21], lines, or curves, scenes
Our goal is to reconstruct geometrically complex scenes exhibiting or lacking texture [54], etc.). Some solutioas r

1 Introduction
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Figure 1: One of 24 reference views of our “Ceevah” data 9etr{d a new view synthesized after scene reconstruction (b).

quire user interaction [11, 41]. In this paper, we are inter- present in this paper, this level set method can employ ar-
ested in a more general case, for which a scene of unknownbitrary numbers of images, account for occlusion correctly
geometric structure is photographed from any number of and deduce arbitrary topologies.

arbitrarily placed cameras. We are most interested in tech-  Perhaps the simplest class of volumetric multi-view
nigues that require minimal interaction with the user. reconstruction methods are visual hull approaches [25,

In the literature, several methods to represent a visual 29, 49]. The visual hull, computed from silhouette im-
scene have been proposed, including layered depth im-2ges, is an outer-bound approximation to the scene ge-
ages [40], surface meshes, surfels [6, 34], light fields [18, Ometry. Algorithms that compute the visual hull are ap-
26], etc. In this paper, we focus on volumetric representa- Plicable to scenes with arbitrary BRDFs as long as fore-
tions, which provide a topologically flexible way to char- ground/background segmentation at each reference view is
acterize a 3D surface inferred from multiple images. If Possible, and are relatively simple to implement since vis-
desired, a voxel-based surface can be converted into any ofbility need not be modeled when reconstructing the scene
the above representations with relative ease. geome_try. _

Due to the large number of scene reconstruction ap- . While a visual hull can be re_ndered to produce_ hew
proaches, it would be impossible to provide a comprehen- views of the Scene, typ|ca||y the? visual hul geomgtry IS not
sive review here; see [12, 43] for a survey of volumetric very accurate. This can diminish the photo-realism when

approaches. Technigues such as multi-view stereo [17, 32]new views are synthesized. To increase the geometric ac-

and structure from motion [1, 20, 35] have been quite suc- CUracy, more information than silhouettes must be used
cessful at reconstructing 3D scenes. These methods comduring reconstruction. Color is an obvious source of such
’ dditional information. Many researchers have attempted

pute and then triangulate correspondences between view? truct 3D b Vzi | "
to yield a set of 3D points that are then fit to a surface. 0 reconstruc SCENES by analyzing colors across muiti-

The effectiveness of these reconstruction methodologiesple viewpoints. Specifically, they have sought a 3D model

relies upon accurate image-space correspondence m atCht_hat, when projected to the reference views, reproduces the

ing. Such matching typically falters as the baseline be- phc;\)tographs. . h del . h
tween views increases since the effects of occlusion and gconstruc;ungl;( Sl#: h da mode _;eqwr_es_ %Dp oto-
perspective are difficult to model in image space when the consistency check, which determines if a point in 3D space
scene geometry is unknown. Consequently, many of these!S C(_)n5|stent w_|th _the photographs taken of the scene. In
methods are not well suited to the arbitrary placement of particular, a point is photo-consistent [39, 24] if

cameras. e It does not project to background, if the background

A level set approach to the scene reconstruction prob- is known.
lem has been proposed by Faugeras and Keriven [16]. A
surface initially larger than the scene is evolved using par e When the point is visible, the light exiting the point
tial differential equations to a successively better appro (i.e., radiance) in the direction of the camera is equal
imation of true scene geometry. Like the approaches we to the observed color of the point’s projection in the



photograph. set all voxels uncarved
l oop {
Kutulakos and Seitz [24] state that surfaces that are not | for every uncarved voxel V {

H \4
transparent or mirror-like reflect light in a coherent man- f:‘ nd [ st ent
ner; that the color of light reflected from a single point ! Cf;rrve'\s, | nconsi stent)

along different directions is not arbitrary. The photo-
consistency check takes advantage of this fact to eliminate| 1f (no voxels carved on this iteration)
visible parts of space that do not contain scene surfaces. done
This reconstruction problem is ill-posed in that, given a
set of photographs and a photo-consistency check, there
are typically multiple 3D models that consist of photo- Figure 2: Generic pseudocode for reconstructing the photo
consistent points. In their insightful work, Kutulakos and hull.
Seitz [24] introduce the photo hull, which is the largest
shape that contains all reconstructions in the equivalence . ) )
class of photo-consistent 3D models. For a given mono-  The Voxel Coloring algorithm of Seitz and Dyer [39] re-
tonic photo-consistency chedkthe photo hull is unique, ~ constructs the photo hull for scenes photographed by cam-
and is itself a reconstruction of the scene. Since we model €ras that satisfy therdinal visibility constraint which re-
points with voxels, the photo hull is found by identify- .stric_ts the camera p_Iacgments so that the voxels can pe vis-
ing the spatially largest volume of voxels that are photo- ited inan order that is simultaneously near-to-far reeatey
consistent with all reference views. every camera. Typically, this condition is met by placing
When computing the photo hull, we have found that the gll the cameras on one side of the voxel space, and process-
quality of the result depends heavily on two factors. They Nd VOxels using a plane that sweeps through the volume in

are: a direction away from the cameras. Under this constraint,
visibility is simple to model using occlusion bitmaps [39].
1. Visibility: The method of determining of the pixels Voxel Coloring is elegant and efficient, but the ordi-
from which a voxelV is visible. We denote these nal visibility constraint is a significant limitation, siac
pixelstV. it means that cameras cannot surround the scene. Kutu-

) . ] lakos and Seitz [23] present what we call the Partial Vis-
2. Phoga-conmstencytest: Afu_nctlonthat decides, basedibility Space Carving (PVSC) algorithm, which repeat-
on7", whether a surface exists it edly sweeps a plane through the volume in all six axis-
In the algorithm presented in the next paragraph, we will aligned directions. For gach plane sweep, only the subset
IS : . of cameras that are behind the plane are used in the photo-
see that visibility and photo-consistency are inter-ezlat : . . .
consistency check. This approach permits arbitrary cam-

and, as a result, multiple passes must in general be made D S
. era placement, which is a significant advantage over Voxel
over the voxels to find the photo hull.

Volumetric methods for finding the photo hull adopt the C°'°T'”9' prever, yvhen evaluating a voxel's photo-
. : : : consistency, it uses pixels from only a subset of the total
following approach. First, a voxel space is defined that

. ) . cameras that have visibility of the voxel. To address this
contains, by a comfortable margin, the portion of the scene . . )
. . issue, Kutulakos and Seitz [24] subsequently include some
to be reconstructed. During reconstruction, the voxels are

. - additional per-voxel bookkeeping that accumulates the vis
either completely transparent or opaque; initially, they a

. ible pixels in the voxel's projection as the plane is swept
all opaque. \oxels that are visible to the cameras are . P proj P p

checked for photo-consistency, and the inconsistent goxel n all's'lx. gms-ahgned dlrgctlons. On the S'X.th SWeep, the
are carved, i.e., their opacity is set to transparent. @grvi full V's'b'“ty. of the voxel is known anpl cons_ldered n f[he
one voxel typically changes the visibility of other opaque pgﬁiﬁ;golznjis\t/?sr:gi);i tch;zcl;.cgNga?siI:]thééJgrg)on of their al-
voxels. Since the photo-consistency of a voxel is a func- g ) y _p g )

tion of its visibility, the consistency of an uncarved voxel ~ Such carving algorithms are quite powerful, and have
must be rechecked whenever its visibility changes. The captured the |.nterest of many resegrchers who haye pro-
algorithm continues until all visible, uncarved voxels are PoSed extensions to or reformulations of the basic ap-

photo-consistent. This set of voxels, when rendered to the Proach.  Briefly, Prock and Dyer [36] present a multi-

reference views, reproduces the photographs and is there_resolution approach as well as hardware implementations

fore a model that resembles the scene. Pseudocode is prof©r improved efficiency. Researchers have performed space
vided in Figure 2. carving using intrinsically calibrated [14] and weaklyieal
brated [22, 37] cameras. Space carving was recast in prob-

1we will discuss monotonicity in Section 2. abilistic frameworks by Broadhurst et al. [5] and Bhotika et




al. [2]. Researchers have developed carving algorithms for2 Generalized Voxel Coloring
scenes with shadows [38], opacity [10], mixed pixels [50], We present two closely related space carving algo-

and non-Lambertian surfaces [6, 7]. Vedula et al. [52] (ithms? that we collectively call Generalized Voxel Carv-

and Carceroni and Kutulakos [6] propose carving algo- jng (GVC). They differ from each other, and from earlier
rithms for reconstructing time-varying scenes. Slabaugh e space carving algorithms, primarily in the means they com-

al. [44] present an epipolar approach to constructing view- pyte visibility. The earlier methods require the voxelséo b

dependent photo hulls at interactive rates. scanned in plane sweeps, whereas GVC scans voxels in a
o more general order. GVC represents just visible surface
12 Contributions voxels in its main data structure, reducing both computa-

This paper presents contributions in three areas; visibil- tion and storage. GVC accounts for visibility in a way that
ity, photo-consistency, and the modeling of infinitely larg  very naturally accommodates arbitrary camera placement
scenes. We discuss each below. and allows full voxel visibility to be computed efficiently.

As stated above, visibility is a vital part of any algorithm  The first GVC algorithm, GVC-IB, uses less memory than
that reconstructs the photo hull. In Section 2 we present the other. It also uses incomplete visibility information
a scene reconstruction approach, Generalized Voxel Color-during much of the reconstruction yet, in the end, com-
ing (GVC), which introduces novel methods for computing Putes the photo hull using full visibility. The other GVC
visibility during reconstruction. These methods supporta  algorithm, GVC-LDI, uses full visibility at all times, whic
bitrary camera placement and place minimal requirements greatly reduces the number of photo-consistency checks re-
on the order in which voxels are processed, unlike plane quired to produce the photo hull. We show that the use
sweep methods [39, 24]. We show that one of our new of full visibility results in better reconstructions thamose
methods minimizes photo-consistency checks. We alsoProduced by earlier algorithms that only use partial visibi
demonstrate how full visibility can result in more accurate 'ty-
reconstructions for real-world scenes. As mentioned earlier, carving one voxel can change the

The photo-consistency test is the other crucial part of an Visibility of other voxels, so visibility must be calculate
algorithm that reconstructs the photo hull. In Section 3 we frequently while reconstructing a photo hull. Because of
introduce two novel photo-consistency tests for Lamber- Self-occlusion in the scene, visibility is complex and po-
tian scenes. The first is an adaptive technique that adjuststentially costly to compute. Thus, an efficient means of
the photo-consistency test so that surface edges and texcomputing visibility is a key element of any practical space
tured surfaces can be more accurately reconstructed. Theearving algorithm, including our GVC algorithms.
second is based on color histograms and treats multi-modal  As a space carving algorithm begins a reconstruction, it
color distributions in a more principled way than ear- carves voxels based on the visibility of a model that looks
lier approaches. In addition, our histogram-based photo- nothing like the final photo hull. One might therefore won-
consistency test requires little parameter tuning. der: could the algorithm carve a voxel that belongs in the

Reconstruction of large-scale scenes that contain ob-Photo hull? To answer this question, consider the follow-
jects both near to and far from the cameras is a challenginging two insights, based on Seitz and Dyer [39]. First, since
problem. Modeling such a scene with a fixed resolution Voxels change from opaque to transparent during recon-
voxel space is often inadequate. Using a high enough res-Struction, and never the reverse, the visibility of the rema
olution for the foreground may result in an unwieldy num- ing voxels can only increase. In particularsiis the set of
ber of voxels that becomes prohibitive to process. Using Pixels that have an unoccluded view of an uncarved voxel
a lower resolution more suitable to the background may at one point in time and it” is the set of such pixels at a
result in an insufficient resolution for the foreground. In later point in time, thert’ C 5’. Second, Seitz and Dyer
Section 4 we present a volumetric warping approach that make an unstated assumption that the consistency test is
represents infinitely large scenes with a finite number of Monotonic meaning for any two sets of pixels and 5’
voxels. This method simultaneously models foreground With S € ', if S is inconsistent, thei$” is also incon-
objects, background objects, and everything in between, Sistent. These two facts imply that carvingnservative
using a voxel space with variable resolution. Using such NO voxel will ever be carved if it would be photo-consistent
a voxel space in conjunction with our GVC approach, we in the final model. (Although carving with non-monotonic
reconstruct and synthesize new views of a large outdoor Consistency tests is not in general conservative, we show
scene. :

; Throughout this paper, we will use the term “space carvirgp-al

We note that some of the content of this paper has ap- rithms” to rgefer to the Elapss of volumetric scene reconztuumilgoritr#r?ls

peared in previous workshop and conference papers [9, 42 ¢zt yse photo-consistency to carve a voxel space. Voxelidgl, PVSC,
47]. FVSC, and GVC are all members of this class.
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Figure 3: The data structures used to compute visibility.itdm buffer (a) is used by GVC-IB and records the ID of the
surface voxel visible from each pixel in an image. A layeregtti image (LDI) (b) is used by GVC-LDI and records all
surface voxels that project onto each pixel.

in Section 3 that such tests can nevertheless yield good fig-ni ti al i ze SVL
constructions.) loop { .
N for all images

Both GVC-IB and GVC-LDI maintain a surface voxel conpute item buffer .
list (SVL), a list of the surface voxels in the current mode| accunul ate color statistics into SVL voxels
that are visible from the cameras. For box-shaped voxel for every voxel V in SVL {

h . fth icallv ini if (V is inconsistent)
;pgcest at contz?un none o .t e cameras, we typically ini carve V (rempve V from SWVL)
tialize the SVL with the outside layer of voxels. We have add uncarved nei ghbors of V to SVL
used ad hoc methods to initialize the SVL when we used }
more co.mplicated voxel spaces, as in Section 4. When /¢ (no voxel s carved)
a voxel is carved, we remove it from the SVL. We alsq done
add to the SVL any voxels that are adjacent to the carved
voxel and that have not been previously carved; this pre-
vents holes from being introduced into the surface repre- ) _
sented by the SVL. As described below, we give each voxel Figure 4: GVC-IB pseudocode.
a unique ID number. We use a hash table to find the voxel
with a given ID in the SVL. The SVL can also be scanned

sequentially. color is accumulated into the voxel’s color statistics.

. When the pixel scanning is complete, the SVL is
2.1 TheGVC-IB Algorithm scanned and eilch voxel is tgsted for C?)nsistency, based on
The GVC-IB algorithm maintains visibility using an the collected color statistics. If a voxel is found to be in-
item buffer [53] for each reference image. An item buffer consistent, it is carved and removed from the SVL. After a

is defined as follows: for each pixét in a reference im-  voxel is carved, the visibility of the remaining SVL voxels
age, an item buffer, shown in Figure 3a, stores the voxel potentially changes, so all the color statistics must be con
ID of the closest voxel that projects 8 (if any). An item sidered out-of-date. At this point, it might seem natural to
buffer is computed by rendering the voxels into the ref- recompute the item buffers and start the process all over.
erence image using-buffering, but storing voxel IDs in-  However, because the item buffers are time-consuming to
stead of colors. As with earlier space carving algorithms, compute, we delay updating them. Although the visibility
it is assumed that at most one voxel is visible from any found using out-of-date item buffers is no longer valid for
pixel. Therefore, we make no attempt to model blended the current model, it is still valid for a superset of the cur-
colors that arise from transparency [10] or depth disconti- rent model. Because carving is conservative, no consistent
nuities [50]. voxels will be carved using the out-of-date color statsstic
Pseudocode for GVC-IB appears in Figure 4. Once though some voxels that should be carved might not be.
valid item buffers have been computed for the images, their When the entire SVL has been scanned and all voxels with
pixels are then scanned. During the scan, if a valid voxel inconsistent color statistics have been carved, then we re-
ID is found in a pixel's item buffer value, then the pixel's compute the item buffers and begin again. These iterations




continue until, during some iteration, no carving occurs. regard to visibility). For each pixeP in Vs projection, if
At this point, the SVL is entirely consistent, based on up- the voxel ID at the head aP’s LDI equalsV’s ID, then
to-date visibility, so the SVL is in fact the photo hull. P is added tar¥. Oncer" is computed)’s consistency
Profiling GVC-IB revealed that nearly all the runtime is  can be determined by testing’.
spent rendering item buffers. This suggested two ways to  The uncarved voxels whose visibility changes when an-
accelerate the algorithm. Since each item buffer is inde- gther voxel is carved come from two sources:
pendent of the others, they can be rendered in parallel on a
multi-CPU computer. Using two CPUs and several image
sets, we measured runtime reductions between 46% and
48% compared to a uniprocessor. Next, in other experi-
ments using a one CPU, we rendered the item buffers using
a hardware graphics accelerator. This resulted in runtime ]
reductions between 56% and 63%. GVC-IB (and GVC-  ® They are already surface voer§ (hence they are in the
LDI) can also be executed in a coarse-to-fine manner, as ~ SVL and LDIs) and are often distant from the carved
described in [36]. We have seen runtime reductions of ap- voxel. See Figure 5b.
proximately 50% using such multi-resolution voxel spaces.
These efficiencies can be combined for faster reconstruc-Voxels in the first category are trivial to identify since yhe
tions. are next to the carved voxel. Voxels in the second cat-
, egory are impossible to identify efficiently in the GVC-
2.2 TheGVC-LDI Algorithm IB method; hence, that method must repeatedly evaluate
the entire SVL for color consistency. In GVC-LDI, vox-
GVC-IB computes visibility in a relatively simple man-  els in the second category can be found easily with the
ner that also makes efficient use of memory. However, the ajid of the LDIs; they will be the second voxel on the
visibility information is time consuming to update. Hence, DI list for some pixel in the projection of the carved
GVC-IB updates it infrequently and it is out-of-date much voxel. GVC-LDI keeps a list of the SVL voxels whose
of the time. Using a monotonic photo-consistency mea- visibility has changed, called the changed visibility SVL
sure, this does not lead to incorrect results but it does re-(CVSVL). These are the only voxels whose consistency

sult in inefficiency because a voxel that would be evaluated must be checked. Carving is finished, and the photo hull is
as inconsistent using all the visibility information might found, when the CVSVL is empty.

be evaluated as consistent using a subset of the informa-  \ynen a voxel is carved. the LDIs (and hence the vis-
tion. U_It|mately, all the mforr_natlon is collected but, ine ibility information) can be updated immediately and effi-
meantime, voxels can remain uncarved longer than necesiently The carved voxel can be easily deleted from the
sary and can therefore require more than an ideal number b jist for every pixel in the voxel’s projection. The same
of consistency evaluations. Furthermore, GVC-IB reevalu- process automatically updates the visibility information

e They are inner voxels adjacent to the carved voxel
and become surface voxels when the carved voxel be-
comes transparent. See Figure 5a.

ates the consistency of voxels on the SVL even when their e second category of uncarved voxels whose visibility
visibility (and hence their consistency) has not changed a5 changed: these voxels move to the head of LDI lists
since thelr.last evaluation. By using Iaye.re.d depth IMages from which the carved voxel has been removed and they
instead of item buffers, GVC-LDI can efficiently and im- 516 5150 added to the CVSVL. Inner voxels adjacent to the
mediately update the V|S|b_|l|ty mformat_lon when avoxelis  -5rved voxel are pushed onto the LDl lists for pixels they
carved and also can precisely determine the voxels Whoseproject onto. As a byproduct of this process, the algorithm

visibility has changed. learns if the voxel is visible; if it is, it is put on the CVSVL.
Unlike the item buffers used by the GVC-IB method, pgeydocode for GVC-LDI is given in Figure 6.

which record at each pixeP just the closest voxel that
rojects ontaP, the LDIs store at each pixel a list of all the .

Fs)ur{‘ace voxels that project ont®. SeepFigure 3b. These 2.3 GVC Reconstruction Results

lists are sorted according to the distance from the voxel to  We now present experimental results to demonstrate our

the image’s camera. The head of an LDI list stores the GVC algorithms, and provide, for side-by-side compari-

voxel closest taP, which is the same voxel an item buffer son, results obtained with Space Carving. As discussed in

would store. The LDIs are initialized by rendering the SVL Section 1.1, there are two versions of the Space Carving al-

voxels into them. gorithm: Partial Visibility Space Carving (PVSC) and Full

Using the LDIs, the set of pixels” from which a voxel Visibility Space Carving (FVSC). As will be shown, PVSC
V is visible can be found as followd/ is scan converted  produces less accurate results than GVC and FVSC. There-
into each reference image to find its projection (without fore, we will focus more on comparing GVC to FVSC.
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Figure 5: When a voxel is carved, there are two categorieshafratoxels whose visibility changes: (a) inner voxels that
are adjacent to the carved voxel and (b) voxels that aredhirea the SVL and are often distant from the carved voxel.

initialize SVL

for all inages
conpute LDI
pl ace all voxels in SVL onto CVSVL

while (CVSVL not empty) {
choose a voxel V from CVSVL
renove V from CVSVL
scan convert V to find ¥

if (7¥ is not consistent)
carve V (renove from SVL, LDIs)
for all inner neighbors U of V
add U to SVL, CVSVL, LDIs
for voxels U that nove to head of LDI's
add U to CVSVL

Figure 6: GVC-LDI pseudocode.

2.3.1 Comparison with Partial Visibility Space Carv-
ing

Figure 7 shows two of fifteen reference views of our
“bench” data set. Calibration of the 765 x 509 pixel images
had accuracy of a maximum 1.2 pixels of reprojection er-
ror for the points used in the calibration. We reconstructed
the scene using a 75 x 71 x 33 voxel volume. New views
synthesized from the GVC-IB and PVSC reconstructions
are shown in Figure 7.

The PVSC image is considerably noisier and more dis-
torted than the GVC image, a trend we observed with all

photo-consistency, PVSC does not use the full visibility of
the scene, unlike GVC. During a plane sweep, the cameras
that are ahead of the plane are not considered by the PVSC
algorithm even though those cameras might have visibility
of voxels on the plane. Since photo-consistency is deter-
mined using a subset of the available color information,
the photo-consistency test sometimes fails to produce the
proper result had the full visibility been considered. For
some data sets, we found the PVSC runs faster, while for
others, GVC runs faster. However, PVSC always requires
less memory than GVC-IB or GVC-LDI.

Additional comparisons between GVC and PVSC ap-
pearin [9].

2.3.2 Comparison with Full Visibility Space Carving

Next, we present results of running GVC-IB, GVC-LDI,
and Full Visibility Space Carving (FVSC) on two data
sets we call “toycar” and “ghirardelli”. In particular, we
present runtime statistics and provide images synthesized
with FVSC and our algorithms. The experiments were run
on a computer with a 1.5 GHz Pentium 4 processor and
768 MB of RAM.

The toycar and ghirardelli data sets are quite different
in terms of how difficult they are to reconstruct. The toy-
car scene is ideal for reconstruction. The seventeen 800 X
600 pixel images are computer-rendered and perfectly cal-
ibrated. The colors and textures make the various surfaces
in the scene easy to distinguish from each other. Two of

data sets we tested. In general, PVSC produces less aceur toycar reference views are shown in Figure 8. In con-
curate reconstructions than GVC, since, when computing trast, the seventeen 1152 x 872 ghirardelli images are im-



perfectly calibrated photographs of an object that has sig-| Data Set| Algorithm | Checks| Time (m:s)| Memory

nificant areas with relatively little texture and color \ari Toycar FVSC 25.8M 32:31 156 MB
tion. Two of our ghirardelli reference views are shown in | Toycar | GVC-IB | 3.1 M 36:16 74 MB
Figure 9. Toycar | GVC-LDI | 2.2M 29:16 399 MB

We reconstructed the toycar scene in a 167 x 121 x 101 Ghir. FVSC | 154M | 2:35:43 | 337/ MB

voxel volume. The reconstruction of the ghirardelli data | Ghir. GVC-B | 121M | 2:01:27 | 154 MB
set occurred in a 168 x 104 x 256 voxel volume; note this | Ghir. | GVC-LDI | 45M 0:47:10 | 275 MB
resolution is significantly higher than that used to recon-
struct the toycar scene. New views synthesized from re-
constructions obtained using the GVC-IB, GVC-LDI, and
FVSC algorithms are shown in Figures 8 and 9 for the toy-
car and ghirardelli data sets, respectively. The three re-
constructions in each figure are not identical because weis less refined, than GVC-IB. Furthermore, after carving
used a photo-consistency test (the adaptive standard-deviaa voxel, GVC-LDI only reevaluates the few other voxels
tion test that will be discussed in Section 3.2.1) that is not whose visibility has changed. Consequently, GVC-LDI is
monotonic. Therefore, the order in which the voxels were faster than GVC-IB by a large margin. For FVSC, the large
processed affected the final result. However, for each datanumber of photo-consistency checks results in a slower
set, the three reconstructions are comparable in terms ofruntime.

quality. The last column of Table 1 shows the memory usage

There were significant differences between the algo- Of the algorithms. All three approaches keep copies of the
rithms in terms of runtime statistics, as shown in Table 1. input images in memory. As described in [24], for Lam-
The “Checks” column in the table indicates the number of bertian scenes, FVSC additionally stores color statistics
photo-consistency checks that were required to completefor each voxel in the voxel space. This grows@sV?),
the reconstruction. For both data sets, FVSC required anwhereXN is the number of voxels along one dimension of
order of magnitude more consistency checks than the GvCthe voxel space. Additionally, we store the one of six parti-
algorithms, for two reasons. First, on each sweep through tions [24] of space that each camera lies in for each voxel.
the volume, FVSC processes inner voxels, i.e., voxels that This storage is als®(N?). We note that the partitions
are inside the surface and not visible to any of the cam- could be computed on the fly (i.e., requiring no storage) at
eras. GVC, in contrast, does not process the inner voxels,the expense of runtime. However, in our experiments, we
instead 0n|y processing surface voxels. GVC-LDI is par- Opted for a faster runtime. Unlike FVSC, the voxel res-
ticularly efficient, since it only processes the surface-vox olution has little bearing on the memory requirements for
els that change visibility, resulting in a minimal number of GVC-IB and GVC-LDI. GVC-IB requires equal amount
photo-consistency checks. Second, some voxels can onlyof memory for the images and the item buffers. The LDls
be carved using a large amount (possibly all) of the their to- dominate the memory usage in GVC-LDI and consume
tal visibility. In FVSC, the amount of visibility grows from  &n amount of memory roughly proportional to the number
nothing at the beginning of the first sweep through the vol- of image pixels times the depth complexity of the scene.
ume, to full visibility at the end of the sixth sweep. During The SVL and CVSVL data structures used by GVC-IB
some of these earlier sweeps, there may not be enough vis@nd GVC-LDI requireO(N?) storage, and are relatively
ibility for the voxel to be carved. In contrast, GVC uses insignificant. Thus, of the three approaches, GVC-IB re-
more visibility. In particular, GVC-LDI always uses full ~ duired the least amount of memory. For the toycar data
visibility each time a voxel's photo-consistency is chatke ~ Set modeled with a lower resolution voxel space, GVC-

The “Time” column in Table 1 indicates the amount LDI required more memory than FVSC. However, for the

of time required to complete the reconstruction. For the ghirardelli data set modeled with a higher resolution voxel

toycar data set, the GVC algorithms were slightly faster space, GVC-LDI required less memory than FVSC.

than FVSC. Although GVC processes fewer voxels, the 24 Summary

additional overhead required to maintain the visibilityala In this section we presented our Generalized Voxel
structures does not result in a significantly faster runtime Coloring algorithms, GVC-IB and GVC-LDI. These ap-
However, for the Ghirardelli data set, the efficiency of proaches support arbitrary camera placement and recon-
GVC-LDI'’s relatively complex data structures more than struct the scene using full visibility. We demonstrated tha
compensates for the time needed to maintain them. Be-methods like GVC that use full visibility result in more
cause GVC-LDI finds all the pixels from which a voxel is accurate reconstructions than those that use partiailvisib
visible, it can carve many voxels sooner, when the model ity. The GVC-IB algorithm is memory efficient, while our

Table 1: Runtime statistics for the toycar and ghirardelli
data sets.



Figure 7: Bench scene. The top row shows two of the fifteentimpages. The bottom row shows a new view synthe-
sized from the Partial Visibility Space Carving reconstiart (c) and the GVC-IB reconstruction (d). The PVSC image is
considerably noisier and more distorted than the GVC-IBgea

Figure 8: Toycar scene. The top row shows two of the severteages input images. The bottow row shows new views
generated by rendering the FVSC (d) GVC-IB (e), and GVC-Lfpidconstructions.



GVC-LDI algorithm reconstructs the scene using a mini- belong in the model; this can lead to voxels that appear to
mal number of photo-consistency checks, which, for many float over a reconstructed scene. A single consistency test
scenes, results in a faster reconstruction. can simultaneously be both too strict and too lenient, cre-
. ating holes in one part of a scene and floating voxels else-
3 Photo-Consistency Tests where. The reconstructions in Figure 10 all demonstrate
When reconstructing a scene using a space carving al-this to varying degrees.
gorithm, there are two key factors that affect the quality  |n most space carving implementations there has been
of the reconstructed model. The first is the V|S|b|||ty that an |mp||c|t assumption that the pixe' reso|uti0n iS greater
is computed for the voxels. In the previous section We than the voxel resolution—that is, a voxel projects to a
demonstrated that using full visibility produces bettealgu  number of pixels in at least some of the images. We be-
ity reconstructions than using only partial visibility. &h jieve this is reasonable and expect the trend to continue be-
second factor is the test that is used to judge the photo-cayse: 1) runtime grows faster with increasing voxel res-
consistency of voxels. olution than it does with increasing pixel resolution, and
The section begins by describing the likelihood ratio ) the resolution of economical and readily available cam-
test, the first consistency test that was proposed for spacesras keeps growing. We make use of this assumption in
carving. We then describe several of the most straight- the adaptive standard deviation and histogram consistency
forward, and perhaps obvious, candidate tests. Next, wetests. Steinbach et al. [46] have reported that they otdaine
present two tests that we have developed, the adaptive stanpetter reconstructions when they precisely computed the
dard deviation test and the hiStOgram test. These two test%rojections of voxels into imageS, rather than using approx
have ConSiStently yleldEd the best results in our new view imations, like 5p|a‘[s_ We have observed the same effect
synthesis application, and one of the tests has the addechnd therefore use scan conversion to determine voxel pro-
advantage of requiring little or no parameter adjustment. jections. We make the assumption in this section that the
Finally, we present results that show some color spaces arescenes being reconstructed are approximately Lambertian,
better t:an othersdf(;r space car]\c/ing. - and we use the RGB color space, except where noted.
We have provided Figure 10 for comparison of the con- . .
sistency tesE[)s and colo? spaces. It shgws reconstructionsg'l Monotonic Consstency Tests ) ,
Kutulakos and Seitz assume monotonic consistency

performed with identical programs, aside from the tests or ilb d with ing. Wh h q
color spaces being compared. All the reconstructions in tests will be used with space carving. When such tests an
the figure use the same “shoes” data set, consisting of 30fuII visibility are employed, space carving is guaranteed

1536 x 1024 images, but the results are consistent with to yi(_eld the photo hull, the unique photo-.consistent model
other data sets we have tried. The reconstructions havethat ISa superset of all other photo—con3|§tent models.
been rendered to an identical viewpoint that is different S?'tz and I;)ygr[39] det.ermme the consistency of a voxel
from any of the input images used in the reconstructions. V' using the likelihood ratio test (LRT):
Parameters used in the tests were tuned to minimize holes (n—1)s2, <7 (1)
in the calibration target that serves as the floor of the scene
oguz Oziin [33] has also compared consistency tests and Wherer" is the set of pixels from whicl' is visible, s v
had similar success with the two tests we developed. is the standard deviation of the colors of the pixelsii
Kutulakos and Seitz [24] have stated that the photo hull, ™ is the cardinality ofr"’, andr is a threshold that is deter-
the set of all photo consistent voxels, provides “the tighte Mined experimentally. LRT has the virtue of being mono-
possible bound on the shape of the true scene that can bdonic. However, because of tiie — 1) term in Equation 1,
inferred fromN photographs"_ However, different photo LRT has the disadvantage that voxels that are visible from
consistency tests lead to different photo hulls, many of more pixels are more likely to be carved. Nevertheless, as
which do not resemble the scene. If there is a voxel that Shown in Figure 10b, LRT can produce a reasonable re-
belongs in a reconstruction but is judged by the test to be construction when photographs are available that sample
inconsistent, then space carving carves the voxel from thethe scene fairly uniformly.
model. Worse, because the voxel is then considered trans- The next two consistency tests we describe are mono-
parent, the algorithm can draw incorrect conclusions about tonic and lack LRT’s sensitivity to the number of pixels
which images see the remaining uncarved voxels, leadingthat view voxels. First, perhaps the most obvious choice
to more incorrect carving. Figure 12b shows an example for @ monotonic consistency test is:
of this problem. The consistency test just described can be
thought of as being too strict for declaring voxels that be-
long in the model to be inconsistent. Tests can also be toowheredist is theL; or L, norm in color space. The disad-
lenient, declaring voxels to be consistent when they do not vantages of this test are its computational complexity and

mazx{dist(color(p1), color(pz)) | p1,p2 € 7V} < 7 (2)



(d)

Figure 9: Ghirardelli scene. The top row shows two of the s&en reference views. The bottom row shows new views
generated by rendering the FVSC(d), GVC-IB (e), and GVC-[flpteconstructions.

Figure 10: Reconstructions of the shoes data set usingdiffeonsistency tests. (a) is a photograph of the scenavdsat
not used during reconstruction. (b) was reconstructedyusia likelihood ratio test, (c) using the bounding box téd},
using standard deviation, (e) using standard deviatiortlea€IELab color space, (f) using the adaptive standarcatieni
test, and (g) using the histogram test.



its sensitivity to pixel noise. Second, the bounding bok tes @ ﬁ %
is a simple, related test with low computational complex- - %
ity. In this test, a voxel/ is checked for consistency by

f
\
J‘J
. \

comparing a threshold to the length of the great diagonal S e o A
of the axis-aligned bounding box, in RGB space, of the T ’ i _l
colors of the pixels intV. Disadvantages of the bounding

box test are that it is a somewhat crude measure of color

consistency and it is sensitive to pixel noise. A reconstruc (a) (b)

tion performed with this test, shown in Figure 10c, pro- ﬁ % @ %

duced more floating voxels than LRT but also recovered
some detail that LRT missed.

3.2 Non-monotonic Consistency Tests Z
We can easily think of plausible consistency tests, for _/
example tests that threshold common statistics like stan-
dard deviation: (c) (d)
Spv < T 3)

Unfortunately, many such tests are not monotonic, includ- Figure 11: Handling texture and edges. In (a), a voxel
ing thresholded standard deviation. When space CarVing represents a homogeneous region, for which thhand
is used with non-monotonic consistency tests, it can carves are small. In (b) and (c), a voxel represents a textured
a voxel that mlght be consistent in the final model. The region and an edge, respective|y’ for which bﬂ,th ands

algorithm can also converge to different models depend- are large. In (d), a voxel representing free space has a large
ing upon the order in which the voxels are processed, sos_, and smalk.

there is no unique photo hull corresponding to such tests.

However, this is not necessarily a disadvantage if the ebjec ] ] o

tive is to produce models that closely resemble the scene.the average of v for allimagesi from whichV is visible.

In fact, among the tests we have tried, the two that have N (&), (b) and (c) in the figure, where the voxel is on the
consistently produced the best looking models, the adalo_surface, note that,v ands are both smultaneously either
tive standard deviation test and the histogram test, areSmall orlarge. In (d), where the voxelis not on the surface,
not monotonic. The reconstruction shown in Figure 10d, IS Small andsv is large. . .
produced using thresholded standard deviation, demon- e constructed an adaptive consistency test, which we
strates that non-monotonic tests can yield reasonable mod@ll the adaptive standard deviation test (ASDT), as fol-
els. The test produced fewer floating voxels than LRT and [0WS:

the bounding box test, and recovered some detail that LRT Sqv <71+ TS (4)

missed. where; and 5 are thresholds whose values are deter-
mined experimentally. ASDT is the same as the thresh-

3.2.1 An Adaptive Consistency Test olded standard deviation test of Equation 3 except for the
9§ term.

Because we consider voxels to have nonzero spatial extent, - rigyre 12 shows a data set for which thresholded stan-
they can represent portions of surfaces that include abruptgarg deviation, regardless of threshold, failed to recon-
color changes and significant texture. Using any of the con- sty ct the scene, yet ASDT produced a reasonable model.
sistency tests already described, a high threshold is deede Figyre 10f shows an ASDT reconstruction that is superior
to reconstruct such surfaces. The same scenes can also iny, reconstructions produced by any of the other consistency
clude surfaces with little or no color variation. Such re- tasts we have described so far. Note that the ASDT model
gions require a low threshold to minimize cusping [39] and has fewer floating voxels as well as fewer holes than the
floating voxels. Fortunately, we can measure the amount of iher models. A disadvantage of ASDT is the experimen-

color variation on a surface by measuring the amount color tation that is required to find the values af and 7, that
variation the surface projects to in single images. produce the best reconstruction.

This suggests that it would be beneficial to use an adap-
tive threshold that is proportional to the color variatiees
from single images. This is illustrated in Figure 11. ét
be the set of pixels in imagefrom which voxelV is vis- Since a voxel often represents a part of a surface that
ible, lets, v be the standard deviation of” and lets be crosses color boundaries or includes significant textare, i

3.22 A Histogram-Based Test



and memory requirements related to our consistency test.
Notice that the histogram intersection only needs to test
which histogram bins are occupied. Hence, only one bit
is required per bin, 0512 bits per histogram. Histogram
intersection can be tested with AND operations on com-
puter words. Using2-bit words, only16 AND instruc-
tions are needed to intersect two histograms. The number
of histogram comparisons needed to test the consistency of
a voxel is equal to the square of the number of images that

Figure 12: Figure (a) is a reference image from our EI €an see the voxel. Fortunately, in our data sets the average

data set, (b) shows the best reconstruction obtained usingUMper of images that could see a voxel fell between two
thresholded standard deviation, and (c) shows a recorstruc @"d three, so the number of histogram comparisons was
tion obtained using the adaptive standard deviation test. Manageable.
Histogram-based methods can suffer from quantization:
o ) a set of colors that falls in the middle of a histogram bin can
can be visible from pixels whose colors have a complex, pe treated very differently from a set that is similar but is

multi-modal distribution. A few parameters of a distribu- a4y 3 bin boundary. We avoided this problem by using
tion, such as the variance and standard deviation used byoverlapping bins, which, in effect, blur the bin boundaries

the previous tests, can only account for second order statis Specifically, we enlarged the bins to overlap adjacent bins
tics of the distribution. Furthermore, such parametersanak by about20 percent. A pixel with a color falling into mul-

assumptions about the distributions, for example standardtime overlapping bins is counted in each such bin. This
deviation accurately characterizes only Gaussian distrib  5kes the consistency test insensitive to bin boundaries
tions. The multi-modal color distributions that we would 5,4 small inaccuracies in color measurement.
like to characterize are unlikely to conform to any such as- We found histogram intersections to be a somewhat un-
sumptions. In contrast, histograms are nonparametric reF)_reliable indicator of color consistency when a voxel was
resentations that can accurately describe any distributio . : ) :
S . ._visible from only a small number of pixels in some im-
This inspired us to develop a consistency test that uses his- ges. Hence, if this number fell below a fixed value (we

tograms. The test produces excellent reconstructions and ™ . : : ;
o L typically used 15 pixels), we did not use the image in the
has the additional advantage of requiring little or no pa- )
consistency test.

rameter adjustment. . )
Our histogram test computes a color histogram for each ~_Figure 17 shows a number of reconstructions produced
image from which a voxel is visible and then compares the with _the histogram consistency test. The right co_lumn of
histograms. There are many ways to compare histograms;the flgure_ shows a referenqe view (that was used in the re-
we use histogram intersection because it produces good re£onstruction), and the left image shows the reconstructed
constructions and is simple and efficient to implement. We Model projected to the same viewpoint as the reference
say two histograms intersect if there is at least one pair of VieWw. Another histogram reconstruction, shown in Fig-
corresponding bins (one bin from each histogram) in which Ure 10g, is similarto ASDT recon;tructlon but significantly
both bins have nonzero count. For a given vaxXednd im- better than the other reconstructions.
agei, we build a histogrant/ist(r)") of the colors of all A significant advantage of our histogram consistency
the pixels int}”. We definel’ to be consistent if, for every  test is that it requires little or no parameter tuning. The
pair of images and; for which 7}’ andw}/ are not empty, test does have parameters, for example the number of his-
Hist(m)) andHist(w]V) intersect. In other words, togram bins and the bin overlap, but the test is significantly
less sensitive to its parameter settings than any of the othe
Vi’jHist(ﬁiV) ﬂHz‘st(ny) £0 i#j (5) tests we have described. For example, using the thresh-
olded standard deviation test and a typical data set, the
Therefore, a single pair of views can cause a voxel to be threshold value that gave the best reconstruction was just
declared inconsistent if the colors they see at the voxel do5% higher than a value that caused the reconstruction to
not overlap. We use a 3D histogram over the complete fail catastrophically. With another data set but the same
color space. Furthermore, we have found that eight bins consistency test, the best reconstruction was obtaindd wit
per channel are adequate for acceptable reconstructionsa threshold 53% higher than the best value for the first data
this yields512 bins @ x 8 x 8) for each image of each  set. Finding ideal settings for sensitive parameters ig ver
voxel. time consuming. In contrast, five of the six histogram re-
We made several optimizations to minimize the runtime constructions shown in Figure 17 were performed with our

(@ ()



togram test yielded models that simultaneously have dra-
matically fewer floating voxels and holes. The histogram
test avoids time-consuming experimentation because it is
relatively insensitive to its parameter settings. We have
also shown that the choice of color space can affect the
quality of reconstructions, especially in unusually btigh
or dark regions of a scene.

4 Volumetric Warping
Figure 13: (a) is a phot(_)graph from the dinosaur data set, \we now present a volumetric warping technique for
(b) was reconstructed in the RGB color space, and (C) the reconstruction of scenes defined on an infinite domain.
shows a more robust reconstruction of a bright region 0b- 1hs approach enables the reconstruction of all surfaces,
tained in the CIELab color space. Data set courtesy of haqr 1o far away, as well as a background environment,

Steve Seitz. using a voxel space composed of a finite number of vox-
els. By modeling such distant surfaces, in addition to fore-

when rendered, produces synthesized views that have im-
3.3 Color Spaces proved photorealism.

The RGB color space, which we have used for most of = oy volumetric warping approach is related to 2D en-
our reconstructions, is not perceptually uniform. Specifi- yironment mapping [3, 19] techniques that model infinite
cally, in the RGB color cube, two dark colors that can be scenes for view synthesis. However, our approach is fully
easily distinguished might be quite close together, wierea tjree-dimensional and accommodates surfaces that appear
two bright colors that are relatively far apart might be hard poth in foreground and background. While methods that
to distinguish. It follows that, for a given threshold, a gefine the voxel space using the epipolar geometry between
consistency test might be too lenient in dark areas, in- yyq or three basis views [37, 22] form a voxel space with
troducing floating voxels, while simultaneously being t00 y4riaple resolution, our approach does not give preference
strict in bright areas, introducing holes. There are many g any particular reference views, and additionally, it ex-

color spaces that would avoid this problem; we experi- tends the domain of the voxel space to infinity in all spatial
mented with CIELab, which is perceptually uniform. Fig-  gimensions.

ures 13b and 13c show two reconstructions that are sim- . . .
ilar in most respects except a bright region in (c) was re- 41 Volumetric Warping Functions
constructed more robustly in CIELab space than the corre-  The goal of a volumetric warping function is to repre-
sponding region in (b), reconstructed in RGB. Figure 10e, sent an |nf|n|t(_a volume W|th a finite nurr_1ber of voxels._ The
also obtained using CIELab color space, is quite similar to Warping function must satisfy the requirements that in the
the RGB reconstruction in Figure 10d, probably because Warped space, no voxels overlap and no gaps exist between
the scene has relatively little brightness variation. Tewe r  VOXelS. These requirements are easily accomplished for a
constructions in Figures 10e and 13 were produced usingVariety of warping functions. We use the tepre-warped
thresholded standard deviation, although CIELab should t© refer to the volume before the warping function is ap-
be equally effective with other consistency tests. plied.

Because lighting can change while a scene is pho-
tographed, several people have suggested that we migh#.1.1 Frustum Warp
obtain better results by weighting luminance less than
chrominance when testing color consistency. CIELab has
a luminance channel, allowing us to test this idea. How-
ever, in several experiments, we found de-emphasizing lu-
minance to be of minimal benefit.

We now describe a frustum warp function that is used to
warp the exterior space. We develop the equations and fig-
ures in two dimensions for simplicity; the idea easily ex-
tends to three dimensions.

The frustum warp function presented here separates the
3.4 Summary voxel space into an interior space used to model foreground

Along with visibility, consistency tests have a large im- surfaces at fixed resolution, and an exterior space used
pact on the quality of reconstructions produced by spaceto model background surfaces at variable resolution, as
carving algorithms. We have described a number of con- shown in Figure 14. The warping function does not af-
sistency tests, including two we developed. Figure 10 al- fect the voxels in the interior space, while voxels in the
lows the various consistency tests to be compared side-exterior space are warped so that their size increases lin-
by-side. The adaptive standard deviation test and the his-early, in each dimension, with distance from the interior
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Figure 14: Pre-warped (a) and warped (b) voxel spaces shotwoidimensions. In (a), the voxel space is divided into two
regions; an interior space shown with dark gray voxels, andxaerior space shown with light gray voxels. Both regions
consist of voxels of uniform size. The warped voxel spacé@ws in (b). The warping does not affect the voxels in the
interior space, while the voxels in the exterior space iasedn size further from the interior space. The outer slietheels

in (b) are warped to infinity. These voxels are representdid arrows in the figure.

outer interior boundary and let(x.,, y., ) be the point after warping. To wa(p, y),

+y Y we first apply a warping function based on the region in
outer exterior boundary 2 y which the pointis located. This warping function is applied
X +x L only to one coordinate dfr, y). For example, suppose that
*  the point is located in the-z region. Points in the-z and

. —x regions are warped using thewarping function,

Te — T4

Ty =T—7,

Te — ||

Figure 15: Boundaries and regions. The outer boundarieswherez. is the distance along the-axis from the center

of both the interior and exterior space are shown in the of the interior space to the outer boundary of the exterior

figure. The four trapezoidal regionsx and+y are also  space, and; is the distance along theaxis from the cen-

shown. ter of the interior space to the outer boundary of the interio
space, shown in (a) of Figure 16. A quick inspection of this
warping equation reveals its behavior. For a point on the

space. Under this construction, voxels in the exteriorspac boundary of the interior space,= z;, and thusc,, = z;,

will project to roughly the same number of pixels for view- so the point does not move. However, points outside of the

points in or near the interior space. Voxels on the outer boundary get warped according to their proximity to the

shell of the exterior space have coordinates warped to in- boundary of the exterior space. For a point on the bound-

finity, and have infinite volume. While the voxels in the ary of the exterior space, = z., and sar,, = cc.

warped space have a variable size, the voxel space still has Continuing with the above example, ongg is com-

a regular 3D lattice topology. puted, we find the other coordinatg, by solving a line
The frustum warp assumes that both the interior space equation,
and the pre-warped exterior space have rectangular shaped Yo =Yy + m(zy — ),

outer bOUndarieS, as shown in Figure 15. These bOUnd'Wherem is the S|Ope of the line Connecting the p(ﬂmt y)

aries are used to define four trapezoidal regians, and with the pointa, shown in (b) of Figure 16. Point is

+y, based on the region’s relative position to center of the |ocated at the intersection of the line parallel to the

interior space. These regions are also shown in Figure 15. axis and running through the center of the interior space,
Let (z,y) be a pre-warped point in the exterior space, with the nearest linéthat connects a corner of the interior
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Figure 16: Finding the warped point. Thewarping func-
tion is applied to the x-coordinate of the polat y), as the
point is located in thetz region. This yields the coordi-
natex,,, shown in (a). In (b), the other coordinagg is
found by solving the line equation using the coordinate
found in (a).

is located.

o Apply the appropriate warping function to one of the
coordinates. If the point is the ihx region, apply the
x-warping function, if the point is in the-y region,
apply they-warping function, and if the point is the
+2z region, apply the-warping function.

¢ Find the other two coordinates by solving line equa-
tions using the warped coordinate.

4.1.2 Resolution in the Exterior Space

The pre-warped exterior space is warped to infinity in all
directions by the warping function, regardless of how many
voxels are in the exterior space, assuming that the exterior
space consists of a shell of voxels at least one voxel thick
in each direction. However, the number of voxels in the ex-
terior space determines the resolution of the exteriorespac
Adding more voxels allows finer details of distant objects
to be more finely modeled.

4.2 Implementation | ssues

Reconstruction and new view synthesis of a scene using
a warped voxel space poses some challenges, which we
now describe.

First, the warped voxel space extends to infinity in each
dimension, and therefore cameras get embedded inside the
voxel space. Since the photo-consistency measure is effec-
tive only when each surface voxel is visible to two or more
reference views, we must remove (pre-carve) a portion of
the voxel space to produce a suitable initial surface for re-

rior space, as shown in the figure. Note that in general,

point ¢ is not equal to the center of the interior space. By

for pre-carving.
Second, as discussed in Section 3, space carving algo-

using such a construction, a point in a pre-warped region of rithms sometimes carve voxels that should remain in the

space (e.g+x) will stay in the that region after warping.
As shown above, the exterior space is divided into four

volume. Thus, it is possible that a voxel on the outer
shell of the voxel space would be identified as inconsis-

trapezoidal regions for the two-dimensional case. In three tent. Since one cannot see beyond infinity, we never carve

dimensions, this generalizes to six frustum-shaped region
+x, +y, +2z; hence the terrfrustum warp There are three
warping functions, namely thewarping function as given
above, and;- andz-warping functions,

Ye — Yi
Y = Y

Ye — ‘yl

Ze T %4
Zw = .

Ze — |2]

In general, the procedure to warp a point in the pre-
warped exterior space is as follows.

e Determine in which frustum-shaped region the point

voxels on the outer shell.

Finally, the geometry of objects in the exterior space
is rather coarse since it is modeled with lower resolution
voxels. After reconstruction, if a new view is synthesized
near such low resolution geometry, the resulting image will
appear distorted, as large individual voxels will be idinti
able in the synthesized image. However, in our method, we
intend for the reconstructed model to be viewed from in or
near the interior space. For such viewpoints, objects in the
exterior space will project to roughly a constant resolutio
that is matched to the outer shell of voxels in the interior
space. This yields synthetic new views that do not suffer
from such distortions.



4.3 Volumetric Warping Results time-varying scenes, and more computationally efficient
We have modified the GVC algorithm of Section 2 to methods for real-time reconstruction.

utilize the warped voxel space. We performed a recon- Acknowledgments
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