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Introduction

Often in computer vision, one must triangulate corresponding points between two images in
order to compute depth. Due to errors in quantization, camera calibration, and correpon-
dence, rays back-projected from the images into three-dimensional space rarely intersect. As
a result, one must find a point that is optimally close to the two rays. This report generalizes
this problem for the case of multiple images; i.e., how to compute the optimal position of
three-dimensional point given rays emanating from corresponding pixels in N images, where
N > 2. We develop a simple linear technique and provide an example to demonstrate the
method.

Notation

In this report, points in space are given capital letters, and the point coordinates are given
in parentheses, such as P = (x,y, z). Vectors are given a bold font. A normalized vector is
denoted with a hat. Vectors are expressed as a linear combination of the unit vectors X, ¥,
and z. For example, di = ai% + b1y + c1Z is a normalized vector. Rays are denoted with
the ~ symbol, such as .

Computing Depth Using Two Views

We begin by considering a common method [4] for stereo triangulation. Here, we assume
that the camera parameters are known, and that the projections, P; and P» of a 3D point
into two images, I; and I, are known, as shown in Figure 1. Points P; and P, are called a
correspondence, as they both correspond to the same point P in 3D space. Our task is to
compute the location of point P, given P;, P,, and the camera parameters.

Figure 1 shows that for each camera, we can back-project a ray from the camera center C;,
through the image pixel of the correspondence, forming a ray d; into 3D space. Ideally, these
rays would intersect exactly at the same 3D point. However, since the camera parameters
and correspondence locations in image space are known only approximately, the rays will
not actually intersect in 3D space. So instead, we seek to find a 3D point that has minimal
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Figure 1: A common method for stereo triangulation.

distance from both rays. This point will be located on a line segment that is orthogonal to
the rays, as shown in Figure 1. A standard approach then, first computes the endpoints of
this line segment. From these, one computes the midpoint P of the line segment. Point P
is the point in 3D space that is optimally close to the two non-intersecting rays.

This approach works well for stereo triangulation. However, what if one has a correspon-
dence visible in N views, for N > 27 One could triangulate the correspondence between M

Z; pairs, resulting in M estimates of the point P.
These estimates could then be combined to produce a single value for the point P. While
this would result in a reasonable solution, there are a few drawbacks to this approach. First,
the triangulation algorithm would be executed M times, once for each pair of views chosen.
If all pairs of views are chosen, this requires executing the triangulation algorithm O(N?)
times. For large N this can be computationally intensive. Perhaps even more significant is
that the combination of these pairwise results does not guarantee a solution that is optimal
in the sense of having minimum distance to all rays.

In the next section, we describe a simple technique that executes in O(NN) time and
additionally finds a point P that is optimally close to all IV rays.

different pairs of views, possibly all

Computing Depth Using N Views

The Distance Between a Point and a Ray

In this subsection we derive the equation for the distance between a point and a ray.

Consider Figure 2(a), which shows a point P = (x,y,2) and a ray 7 that starts at point
@ = (z1,y1,21) and has a normalized direction di = 1%+ b1y + 12. Our task in this
subsection is to derive an equation for the distance between the point P and the ray .
Intuitively, this distance is along a line that goes through P and is orthogonal to /. In
Figure 2(b), this distance is represented by the length of vector RP.
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Figure 2: Finding the shortest distance between a point and a ray.

The vector QR is the projection of QP onto the ray 7. From the figure, we note that
QP = (z —z1)x+ (Y —v)y + (2 — 21)3, (1)
and this vector has a length
1QP|| = V/(z —21)? + (y — y1)> + (2 — 21)2. (2)

Thus, QR, the projection of QP onto d; is

QR - (QP-di)d (3)
= far(z—21) +bi(y — 1) +ca(z — 21)] da (4)

Since d; has unit magnitude, the length of QR is then
IQR| = a1(z — 1) +b1(y — y1) + c1(z — 21). (5)

Our goal is find the length of the vector RP. Since the points PQR form a right triangle,
we can invoke the Pythagorean thereom,

IQP||* = ||QRI[* + | RP|*, (6)

or

IRP||* = ||QP||* — || QR||? (7)
Substituting in values gives
IRP[|> = (2 —21)? + (y —y1)* + (2 — 21)* — [ar(z — 21) + bi(y — y1) +e1(z — 21)]° (8)
Thus,

IRP| = \/(w a2+ (Y= y)? 4 (2 21)? = (e =) + by — 1) +ealz =20 (9)

Equation 9 is the distance between a point P = (z,vy, 2) and a ray 7 that starts at point
Q = (z1,v1, 71) and has a normalized direction dq = a1X 4+ b1 ¥ + ¢1Z.



Minimizing the Sum of Squared Distance

To compute the total distance, D(z,y, z) between a point and N rays, Equation 9 is evalu-
ated for each ray i and the results are summed. This yields an equation of the form

N
D(x,y,z) = Z \/(95 —2)2+ (Y —9:)? + (2 — 2:)% = [ai(x — 25) + bs(y — i) + ci(z — )]

(10)
One might try to analytically optimize D(z,y, z). However, due to the square root, the
solution is non-linear. So instead, we optimize the sum of squared distances,

N

E(z,y,2) = Z(m —2) + (Y —u)’ + (2 — 2)° — las(e —23) + bi(y — i) +ci(z — 2))7, (11)

which is a sum of terms similar to Equation 8, one for each ray. Thus, our goal is to find

a point that globally minimizes F(z,y,z). Such a point will be optimal in the sense of
minimizing the sum of squared distance.

Derivation of the Optimal Point

To find the optimal point, we differentiate E(x,y, z), set the partial derivatives to zero, and
evaluate the critical points.

N

% = Z{Q(ﬂf—xi)—QG,i[ai(J?—l‘i)+bi(y—yi)+ci(z_zi)]}:0 (12)
N

8E((:;;j/,z) = ;{Q(yfyi)*2bi[ai(337$¢)+bi(y7yi)+Ci(zfzi)]}:0 (13)
N

% = 2{2(2—21’)_2Ci[ai($—$i)"‘bi(y—yi)-i-ci(z—zi)]}:0 (14)

We seek the optimal point (x,y, z) that satisfies the above equations. Expanding the
terms and dividing by 2 yields
N
(2 — 2 — alz + alw; — abiy + aiby; — aiciz + aiciz] = 0 (15)
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[z — 21 — aiciw + aieim; — bicyy + bicy; — iz + iz = 0 (17)

[

i=1

Placing the terms involving (z;, y;, z;) on the right side of the equation gives

N N

Z [(1 — a?)x — a;b;y — aiciz] = Z [(1 - a?)xi — a;biy; — aicizi] (18)

i=1 i=1
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Figure 3: An example.

[—abiz + (1 — b))y — biciz] = [—aibz; + (1 — b7)y; — biciz] (19)
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[—aicix —biciy + (1 — cf)z]
1 i

[—aiciz; — biciyi + (1 — ¢)zi] (20)

M=
I
M=

7 1

Next, we write this in matrix form

21(1 — af) — Zz aibi — Zi a;C; xT Zz [(1 — af)mz — albzyl — al-cl-zi]
- Zi a;b; Zi(l - bzz) - Zi bici Yy | = Zz —abir; + (1 — b?)yz‘ —biciz;
—Siaici =Y. bici > (1—cF) z >oi [—aicivi — biciyi + (1 — ¢7)z
(21)
This expression is of the form Ax = b. For each ray i, the starting point of the ray (z;, y;, z;)
and the ray direction Ell = a;X + b;¥ + ¢;Z are known. Thus, all the terms in the matrix A
and the vector b are known. We compute these matrices, and solve for x,

x=A"'b. (22)
The point x then, is the point that is is closest to all of the rays in the sense of minimizing
the sum of squared distance.
Example
In this section, we consider a simple example that shows how this approach works for trian-

gulation. While this example computes the optimal point using two images, the approach
works for an arbitrary number of images.



Suppose we have two cameras as shown in Figure 3. Camera 1 is centered at the origin,
so (x1,y1,21) = (0,0,0). Camera 2 is centered at the point (z2,y2,22) = (3,2,5). A
correspondence is found in the two images, and in each image a ray is back-projected from
the camera center through the pixel in the image plane, as shown in the figure. The ray
from camera 1 has a direction (ay, b1,¢1) = (1,0,0), parallel to the z-axis, and the ray from
camera 2 has a direction (as, ba,c2) = (0,0, —1), parallel to the negative z-axis. Our goal
is to find the point in 3D space that is closest to both rays. By inspection, we expect the
solution to this problem to be (3,1, 0).

Using the matrix equation in the previous section, we get

1-— a% +1-— a% —a1by — aszbs —a1C1 — A2Cy T
—a1b; — agbs 1-— b% +1-— b% —bicy — baca Yy =
—a1c] — a2Cy —bicyp —bsea 1 -— c% +1-— c% z

(1 —a?)xy —arbiys — arcrz1 + (1 — a3)xe — asbays — ascazo
—ai1bizy + (1 — b%)yl — brcyz1 — asboxs + (1 — b%)yg — bocozo (23)
—a1C1T1 — b161y1 + (1 — C%)Zl —a1c1re — b161y2 + (1 — C%)Zz

Plugging in known values gives

100][= 3
020 y | =12 (24)
00 4 z 0

which yields the desired solution of
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Analysis

When Is a Unique Solution Not Possible?

Equation 22 shows that if the matrix A is invertible, then a unique solution exists. In
this subsection we determine under what circumstances A becomes singular, resulting in no
unique solution. To do this, we first compute the determinant of A.

S(l—=a?) =Y,ab; = aic
Al =| =Y abi >,(1=07) =7, bic (26)
—Xiwme = Xibe X(1-d))

Each element of A is a sum from ¢ = 1--- N. Evaluating and simplifying the terms in
this determinant for general N is rather challenging. Using the constraint a? + b7 + ¢? = 1,
with some work it is possible to show that this determinant can be rewritten as

N N
|4 = D> (bic; —bje)*(1—af) +
k=1
L
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Z (aic; — aje;)*(1 —b3) +
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3 > Z (aibj — a;0:)*(1 — ;) +
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N
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(aibjer, — agb; cj) (27)
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A unique solution to this problem cannot be found when Equation 27 equals zero. |A]
is the sum of non-negative expressions, as each ray direction is normalized. Thus, the only
way Equation 27 can equal zero is if each expression evaulates to zero. This fact leads to
the following theorem:

Theorem 1 A unique solution exists except when all the rays are either parallel or anti-
parallel. That s,
aX + by + cz
d; = or (28)
—aX — by — cz

Proof: To prove Theorem 1, we must show that each term in Equation 27 equals zero
only when all the rays are parallel or anti-parallel. The only way the expression (1 — a?)
can be zero is if each normalized ray direction is either (1,0,0) or (—1,0,0), i.e., all the rays
are parallel or anti-parallel. A similar result holds for the (1 —b?) and (1 — ¢7) expressions
in Equation 27. For the expressions (bic; — b;¢;), (aic; — ajc;), and (a;b; — a;b;) to be zero,
we must have

biCj = bj C; (29)
aiCj = a;C; (30)
a; bj = a bz (31)

Using the fact that a? + b? + ¢ = 1, we can rewrite Equation 31 as

aibj = (ljbi (32)
ain/1—a3 —c; = aj\/1—af —¢c} (33)
ai(l—aj—c}) = di(1-af-¢f) (34)

a? — a?c? = a? — a? ? (35)

: 2 _ 2.2
Since (a;c; — ajc;)? = 0, we know that ajc;

Equation 35, yielding

= 2a;acic; — ajc;. We substitute this into

2 22 _ 2 22

a; — 2a;a;cicj + aje; = aj —ajc; (36)
2 2.2 _ o

a; +2ajc; = aj + 2a;a5cic5 (37)



Figure 4: No unique solution exists when all rays are parallel or anti-parallel. In (a), any
point that is along the line that is equidistant from the parallel rays will be optimally close
to the two rays. However, if just one ray is not parallel, as in (b), a unique solution exists,
depicted with a gray dot.

Using Equation 30, we get

Similar results hold for b and ¢, resulting in

a; = :I:aj (39)
bi = ibj (40)
c; = :|:Cj (41)

In order for Equations 29 to 31 to be satisfied, the signs on the above three equations must
either all be positive or negative. Thus, the first three terms of Equation 27 are zero if and
only if all the rays are parallel or anti-parallel.

The fourth term of Equation 27 can be re-expressed to look one of the Equations 29
to 31. For example, using the fact that a;b; = a;b;,

(aibj)ck = agbic; (42)
(ajbi)ck = akbicj (43)
a;c, = apcj (44)

Thus, the fourth term of Equation 27 is zero when the other three terms of Equation 27 are
zero, namely when all the rays are parallel or anti-parallel. This concludes the proof. A
Theorem 1 is consistent with one’s intuition. When all the rays are parallel (or anti-
parallel), one would not expect that a unique solution exists, as shown in Figure 4 (a). In
this case, any point along a line that is equidistant from the parallel rays will be a valid
solution. This equidistant line is depicted with a dotted line. However, if at least one of the
rays is not parallel to the others, then a unique solution exists, as shown in in Figure 4 (b).



Discussion of Extremum

In the derivation above, we found an extremal point of the sum of squared distance E(z, y, 2).
By nature of the problem, one can assume that this extremal point is a minimum and not
a maximum. For the finicky reader, we prove in this subsection that the extremal point is
indeed a minimum.

Theorem 2 The extremal point found by this method minimizes the sum of squared dis-
tance.

Proof: To show that the extremal point is indeed a minimum, we must analyze the
matrix of second partial derivatives [1],

’E  9*E  O’E
82x2 812831 31;82 2 Zl(l — 022) -2 Zi a;b; —2 Zi a;C;
o 9 o
D= 8368]1; d%;];: 8y§z = —2 Z’L aib; 2 Z’L(l - bzz) —2 Zz bic; (45)
9?E  o°E  O°E —23". aic; =23 bici 23 ,(1—¢c2)
O0x0z Oyoz 022

and show that the determinants of the upper-left 1x1 submatrix, upper-left 2x2 submatrix,
and D are all strictly positive.
First, we compute the determinant of Dy, the upper-left 1x1 submatrix,

D=2} (1~ a?) (16)

Since a; is a component from a normalized vector, the value of each (1 — a?) term must be
non-negative. Thus, D; must be non-negative, since it is a sum of non-negative terms. The
only situation for which D; could be zero is if each a; = £1. In that case, all rays would be
parallel or anti-parallel, with directions (a;, b;,¢;) = (1,0,0) or (a;,b;,¢;) = (—1,0,0). As
shown earlier, we cannot expect a unique solution for this case, so we do not care about
the extremal point. Thus, D; is strictly positive except when the all rays are parallel or
anti-parallel.
Next, we compute the determinant of D5, the upper-left 2x2 submatrix,

_| 2, —af)  —230aibs
'DZ" 55 aihy 2zi<1—b%>‘ “7)

Using the fact that a? + b? + ¢? = 1, this determinant can be expressed as

N N N
[Dal = AN Y () 4230 D (aiby — aghi)? (45)

=1 j=1
J#L

Since D is a sum of non-negative terms, it must also be non-negative. The only way Do
can be zero is if all ¢; = 0, and each a;b; = a;b; for ¢ # j. This can only happen when all
the rays are parallel or anti-parallel, since

a; bj = a; bZ (49)



\/1—1)12—622[)]' = 1/1—[)?—0?191' (50)

Ji-b2 = J1—82 (51)
L—202 = (-0 (52)

2 2712 2 212
o= b (54)

Likewise, Dy can only be zero for a? = a?. This equation, along with Equations 49 and 54
are true only when the rays are parallel or anti-parallel. Thus, Ds is strictly positive except
when all rays are parallel or anti-parallel.

Finally, we must show that the determinant of D is non-negative. Comparing equa-
tions 26 and 45, we note that |D| = 8|A|. In the previous section, we showed that the
determinant of A was strictly positive except when all rays were parallel or anti-parallel.
Therefore, this result also applies to the determinant of D. This concludes the proof. A

Thus, the extremal point P found by our optimal ray intersection algorithm minimizes
the sum of squared distance to each ray.

Source Code

Source code that computes the optimal ray intersection in the sense of minimizing the sum
of squared distance is available on the web. Please visit
http://www.ece.gatech.edu/users/slabaugh/code/opray/ for source code in C and Matlab.

Conclusion

In this report we have developed a simple linear algorithm that finds a point P in 3D space
given a correspondence across N images, where N > 2. Point P minimizes the sum of
squared distance between itself and N rays back-projected from the images into 3D space.
Our algorithm runs in O(N) time.

Future Work

One future direction for this research is to incorporate a senstivity analysis. We are inter-
ested in exploring how errors in image space (due to quantization or correspondence) and
camera calibration affect the certainty of the 3D point computed by our algorithm. Further-
more, we are interested in investigating ways to incorporate weighting factors to downweight
viewpoints that have small baselines.
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