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Abstract— Accurate assessment of the quality of concrete
bridge decks and identification of corrosion induced delami-
nation leads to economic management of bridge decks. It has
been demonstrated that ground penetrating radar (GPR) can
be successfully used for such purposes. The growing demand
on GPR has brought into the challenge of developing automatic
processes necessary to produce a final accurate interpretation.
However, there have been few publications targeting at auto-
matic detection of bridge deck delamination from GPR data.
This paper proposes a novel method using partial differential
equations (PDEs) to detect rebar (or steel-bar) mat signatures
of concrete bridges from GPR data so that the delamination
within the bridge deck can be effectively located. The proposed
algorithm was tested on both synthetic and real GPR data and
the experimental results have demonstrated its accuracy and
reliability, even for diminished contrast and low signal-to-noise
ratio.

Index Terms— Partial Differential Equations, Ground Pene-
trating Radar, Automatic Detection, Image Processing

I. INTRODUCTION

The I-35 highway bridge collapsed into the Mississippi
river during rush hour on August 1, 2007. Approximately 100
vehicles were involved and thirteen deaths were attributed
to the collapse. This tragedy signifies that the condition of
the bridges in the United States is deteriorating and requires
enormous financial and human resources for its maintenance
and mitigation. An important component of the inspection
and rehabilitation of concrete bridges is the assessment of
the bridge deck condition. The advent of nondestructive
evaluation techniques has significantly aided this task, and
several methods have been successfully utilized to detect
common defects in concrete bridge decks. Among these
methods, Ground Penetrating Radar (GPR) is one of the most
widely used techniques nowadays.

While it is capable of detecting deck delaminations at
various stages of deterioration, precise interpretation of the
measured parameters has yet to be fully automated. The post-
processing procedures leading to the final interpretation still
suffer from some drawbacks, such as excessive reliance on
experienced operators’ intervention and scan-by-scan pro-
cessing. Significant improvements to the automation of a
bridge condition evaluation process are expected to come
from imaging and image processing techniques.

On the GPR record, potential areas of deterioration appear
as zones of attenuation. Delamination is most likely to occur

Z. W. Wang is with the Department of Electrical and Computer En-
gineering, New Jersey Institute of Technology, Newark, NJ, 07102 USA
zw27@njit.edu

G. Slabaugh and T. Fang are with Intelligent Vision and Reason-
ing Department, Siemens Corporate Research,Princeton, NJ 08540,USA.
greg.slabaugh, tong.fang@siemens.com

around rebar mats within the concrete. Typically, corroded
rebar has a lower dielectric constant than good iron or
steel, producing a weaker reflection on the radar record.
Therefore, the amplitude of reflection and attenuation are
measured as an indication of delamination of the rebar mat
from the concrete and deterioration of the concrete. Our
work is targeting at the automatic detection of bridge deck
delamination.

A crucial component of automatic bridge condition evalu-
ation is the detection of corroded rebars, as delamination
always occurs around rebars. Due to the GPR imaging
principle, the reflected wave feature of the rebar mat is a
series of hyperbolas and the top of each hyperbola denotes
the corresponding rebar’s position. Despite its importance,
however, no literature can be found about hyperbolas series
specific fitting algorithm for GPR data from bridge deck.

Cylindrical objects such as buried pipes appear in the
GPR scans as hyperbolas. There have been several hyperbolic
signature detection methods in literature for the applications
such as detection of distinct landmine or buried pipe. Among
these methods, migration is a commonly used frequency
domain method and it collapses hyperbolas into short linear
regions [1]. Another trend is using neural network or fuzzy
logic to detect arc signatures in GPR scans [2]–[6]. However,
none of these methods is devised for the corroded rebar
mats in concrete bridges, which is much more difficult to
detect than the ordinary buried utilities. Most GPR-related
data processing work tends to rely on less sophisticated tech-
niques for hyperbolic signature detection, and thus suffers
from drawbacks caused by noise, such as the detector in [7],
being only able to detect good and good-minus signatures,
which is not suitable for delamination detection.

In this paper, we for the first time propose a novel method
based on partial differential equations (PDEs) to discriminate
rebar mat signatures for bridge deck delamination detection
in GPR scans. We first detect the apex of each rebar using
a template-based method with a similarity metric of sum of
squared difference (SSD) and then estimate the parameters
of each hyperbola in the GPR scans with a PDE method.

The rest of this paper is organized as follows. Sec-
tion II describes the characteristic shape of rebar signature.
Section III proposes a novel PDE-based detection method.
Section IV provides results that demonstrate the ability of the
proposed method to detect rebar signatures in GPR scans,
even for images of diminished contrast and low signal-to-
noise ratio.



II. HYPERBOLIC SIGNATURES

Locating rebar mat is usually done by noting hyperbolic
shapes in the GPR image, as indicated in Fig. 1 (Color
printout is needed for better readability for all figures). A
series of hyperbolas are shown in the GPR image, with some
of the hyperbolic signatures being blurred. The apex of each
hyperbola locates each rebar. These hyperbolas occur due
to the reason that the antenna transmits energy in a conical
pattern. Consequently, it receives reflections from the rebar
at decreasing two-way travel time as it approaches the rebar,
then increasing the travel time after passing over the rebar.
Areas of the rebar mat exhibiting weak reflection amplitude
are typically indicative of deterioration.

Fig. 1. Rebar Signature in a GPR image.

Let a point p in a south-opening hyperbola be expressed
as

p =
[

x
y

]
=
[

x
a
√

1+(x−h)2/b2 + k

]
(1)

where (x,y) is the coordinate, (h,k) is the center point,
a and b are the shape parameters. The asymptotes cross
at the center of the hyperbola and have slope ± a

b for the
south-opening hyperbola. The hyperbola profile is depicted
in Fig. 2.

Fig. 2. Hyperbola profile

It is worth noting that there are four degrees of freedom
for the hyperbola profile fitting according to Eq. (1) while
some researchers use the equation modelling the hyperbolic
signatures from GPR data in the form as follows [7][8],

y2

a2 −
(x−h)2

b2 = 1 (2)

Only three degrees of freedom are employed in the above
equation for the hyperbola fitting. Moreover, it is based on
the assumption that the modelled signatures result from point
reflectors, which cannot be guarantied in the case of rebar
mat.

III. SIGNATURE DISCRIMINATION BASED ON PDE

The proposed scheme consists of two major stages: first,
using a template based method, we detect the apex of the
hyperbolic signatures. Next, we fit the hyperbola curves to
the GPR image data using partial differential equations in
an iterative fashion, with the initial guess of the center point
modified from the apex obtained in the previous step.

A. SSD Based Hyperbola Center Point Detection

In this step, we use a template, as shown in the box in
Fig. 3, to match the rebar signature based on the similarity
metric of sum of squared difference (SSD), defined as
follows.

SSD = ∑
x

∑
y

(T (x,y)− Iw(x,y))2 (3)

where T (x,y) and Iw(x,y) denote the template image and the
region over a sliding window in the GPR image, respectively.
When these two images are geometrically aligned, the SSD
value reaches its minimum. SSD is chosen as it offers
sufficient accuracy and is simple to implement.

We first search the minimum SSD values along each
column in the whole GPR image and the one that contributes
to minimum SSD values is selected as a reference rebar
apex position. Since the interval between two adjacent rebars
is usually fixed, we then exploit the periodicity of the
hyperbolic signatures so as to detect all the rebars. To
determine the periodicity, Fast Fourier Transform (FFT) is
applied. Therefore, with the assistance of reference rebar
and periodicity of hyperbolic signatures, apex positions of
all the rebars are obtained. Afterwards, the knowledge is
incorporated to the PDEs as the initial guess of center point
of each hyperbola for the next step.

Fig. 3. A template in a GPR image.

B. Hyperbolic Signature Discrimination

Our goal is to fit the hyperbola curve l to the GPR image
data. To accomplish this, an energy function is designed as

E =
∫

l
I(p)dl (4)

where I(p) is the intensity of pixel p and the integral is
along the hyperbola from point p1 to p2. By maximizing
this energy function, the intensity of the image data along the
hyperbola achieves its maximum. Therefore, the hyperbola
curve is fit to the GPR scan.

Starting with an initial guess, we can iteratively update the
hyperbola parameters using PDEs to maximize the energy
function in Eq. (4). Note that, we use the position of the
hyperbola center point obtained from the previous step as
the initial guess of h and k.



Using a chain rule, differentiation of energy function E
with respect to parameter a gives

∂E
∂a

=
∫

l
∇I · ∂p

∂a
dl (5)

where ∇I is the gradient of the image, ∂p
∂a =

[
0
∂y
∂a

]
We solve ∂y

∂a according to Eq. (1) as

∂y
∂a

=
√

1+(x−h)2/b2 (6)

In a similar fashion, we can calculate the expressions for
∂p
∂b , ∂p

∂h and ∂p
∂k . Clearly, ∂x

∂b = ∂x
∂h = ∂x

∂k = 0. Next, we derive
∂y
∂b , ∂y

∂h and ∂y
∂k .

Differentiation of y with respect to b, h and k, can be
expressed respectively as

∂y
∂b

= a · 1
2
· 1√

1+(x−h)2/b2
· (−2) · (x−h)2 · 1

b3

= − a(x−h)2

b3
√

1+(x−h)2/b2
(7)
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= a · 1
2
· 1√

1+(x−h)2/b2
· (−1

b2 ) ·2(x−h)

= − a(x−h)

b2
√

1+(x−h)2/b2
(8)

∂y
∂k

= 1 (9)

In order to maximize the energy function, we use a
gradient ascent method, i.e.,

rn+1 = rn− γ ·∇E(rn) (10)

where rn =


an
bn
hn
kn

 and γ is the step-size parameter. Eq. (10)

is iterated until the maximum number of iteration step is
reached or the prescribed accuracy is met, i.e., ‖ rn+1−rn ‖≤
ε , where ε is a given small positive value.

IV. EXPERIMENTAL RESULTS

In the experiments, we begin with synthetically generated
data, designed to study the detection performance as the
contrast level is diminished, as depicted in Fig. 4. To quantify
the detection performance with respect to the diminishing
contrast, which occurs around corroded rebars, we calculate
the distance between the ground truth and the detected
hyperbolas as the detection error, defined as follows.

D =
1
n

√
n

∑
i

d2
i (11)

where n is the number of pixels along the rebar curves and di
is the Euclidean distance between the ith point in the original
hyperbola and the corresponding point in the detected curve.
From Fig. 5, we can observe that the detection performance
does not degrade when the contrast is diminished.

Fig. 5. Detection Error as a function of diminishing contrast.

To evaluate the algorithm performance with respect to
signal-to-noise ratio (SNR), we devise another set of ex-
periments, as depicted in Fig. 6. Similarly, we calculate
the distance between the ground truth and the detected
hyperbolas as the detection error, according to Eq. (11). From
Fig. 7, it is obvious to notice that the proposed method is
very robust to decreasing SNR or increasing noise level.

Fig. 7. Detection Error as a function of decreased SNR.

We also examine the effectiveness of the proposed scheme
for real GPR scans of bridges, as depicted in Fig. 8(a) and
Fig. 9(a). The pulse transmitted by GPR is usually displayed
in an image as a characteristic dark-light-dark series of
bands. The results are fairly clear. Our method detects the
bright rebar hyperbolic signatures accurately, even in the
attenuation zones where the rebar has less contrast.

V. CONCLUSIONS

The tragedy of I-35 bridge collapse still lingers in people’s
minds. Nobody is willing to see that history repeats itself.



Fig. 4. Rebar detection in synthetic GPR images. The left column shows the original synthetic GPR Images with contrast level being diminished. The
right column is the detection results.

Fig. 6. Rebar detection in synthetic GPR images. The left column is the original synthetic GPR Images with SNR being decreased. The right column is
the detection results.

(a) (b)

Fig. 9. Rebar detection in a GPR image. (a) Original GPR Image, and (b)
Rebar detection result.

Therefore, accurate bridge deck assessment is of significant
importance. This paper proposes a novel method using PDEs

to detect the rebar mat of bridge deck in GPR scans. Our
experiments have demonstrated the ability of this method to
accurately detect rebars in GPR scans, even for diminishing
contrast and low SNR. The results presented in the paper
indicate that the proposed method has much promise in
automatic delamination detection of bridge decks.



(a)

(b)

(c) (d)

Fig. 8. Rebar detection in a GPR image. (a) Original GPR image , (b) Rebar detection result , (c) Highlighted and enlarged region in the original GPR
image, and (d) Highlighted and enlarged region in detection result.
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