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Abstract— Assessment of blood flow velocity in Doppler
images is of great importance in clinical studies and research.
From the Doppler waveform envelope, numerous indices can
be obtained, such as the pulsatility index, resistance index,
and systolic/diastolic ratio, as well as acceleration of the blood
through valves. The evaluation for the Doppler images is usually
conducted off-line and manually by the physicians. Fully-
automatic detection of the envelope has the advantages of being
convenient, time and labor saving. The main objective of this
paper is to propose an automated technique based on image
processing and computer vision algorithms for real-time tracing
of the waveform envelope in a sequence of pulsed Doppler
images. To this end, first we establish an information-theoretic
image model and a statistical shape-driven dynamical model,
which are used to address the large degree of noise and poor
contrast common in this application. Relying upon these two
models, we construct a discrete Kalman filter for the recursive
estimation of the blood velocity envelope, while taking into
account the measurement noise from these two sources. The
models and Kalman filter form an adaptive weighting, closed-
loop envelope tracing framework. We present the theory and
implementation of our methodology, and demonstrate its ability
to accurately trace the blood flow velocity in pulse wave Doppler
images as well as its robustness to noise and computational
efficiency.

I. INTRODUCTION

In recent decades, the feasibility of measuring blood
flow in the heart and vessels using the Doppler effect in
ultrasonic waves has become well known [3]. Since pulse
wave Doppler, also known as pulsed Doppler, allows users to
obtain the flow information at any depth on the sound beam
axis simultaneously with B-mode and M-mode images, it is
widely used at present.

The velocity of blood in intact blood vessels can be
tracked non-invasively by identifying the Doppler shifts from
a backscattered ultrasound signal. And the envelope of pulsed
Doppler signal has been the important feature that character-
izes blood flow. From the envelope, various clinical indices
can be computed, such as the pulsatility index, resistance
index, and systolic/diastolic ratio, as well as acceleration of
the blood through valves. Currently, only manual methods are
used clinically in order to extract these indices. Well-trained
physicians trace the flow images by hand. Therefore, the

Z. Wang is with the Department of Electrical and Computer Engi-
neering, New Jersey Institute of Technology, Newark, NJ, 07102 USA
zw27@njit.edu

G. Slabaugh and T. Fang are with Intelligent Vision and Reason-
ing Department, Siemens Corporate Research,Princeton, NJ 08540,USA.
greg.slabaugh, tong.fangl@siemens.com

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 07102 USA and also with
School of Electro-Mechanical Engineering, Xidian University Xi’an, Shanxi
710071, China. zhou@njit.edu

manual extraction method is both time and labor consuming.
Moreover, it has limited reproducibility and is subject to
observer variability. An automated method to analyze the
Doppler signal can improve its accuracy and can result in
a powerful tool for clinical noninvasive evaluation of the
blood flow. The real-time tracing of blood flow velocity
for pulsed Doppler image sequences, especially the slope of
envelope, considered as the acceleration of the blood through
valves, is of great importance to physicians for diagnostic
use. There have been many tracing algorithms proposed
recently. However, few of them are designed specifically for
ultrasound pulsed Doppler image sequences.

Moreover, the envelope of the signal may be smeared due
to low SNR of the acquisition apparatus or a small percentage
of fast moving blood. Under such conditions, without a prior
model to assist the tracing, most classical image processing
algorithms may fail to produce a valid result.

This work is inspired by a number of model-based image
segmentation algorithms in the literature. Having some ex-
pectation of the shape can greatly assist in the tracing from
image sequences. A statistical model provides a means of
automatically deriving more complex information directly
from a training set, once the important relationships have
been identified. Leventon et al. [2] proposed a shape-based
segmenter. They incorporated shape information as a prior
model to restrict the flow of an active contour. Staib and
Duncan [4] used an elliptic Fourier decomposition of the
boundary and placed a Gaussian prior to incorporate shape
information into the segmentation. Tsai et al. [5] calculated
the parameters of an implicit representation of the curve to
minimize the energy functions for image segmentation.

This paper proposes a model-based approach for ultrasonic
pulsed wave Doppler tracing. Using a noise model, our
method applies an information-theoretic edge detector to
robustly identify changes in intensity distributions that appear
at the envelope. The edge detector results form the image
model. Our method also applies a statistical shape model
to help guide the tracing when the edge detector results are
ambiguous. We incorporate these components into an overall
system using a Kalman filter for Bayesian tracking. The use
of a Kalman filter algorithm is advantageous for the dynamic
measurement of the envelope of blood velocity in Doppler
image sequences for the following reasons. First, Kalman
filter is a recursive procedure, it requires minimum amount
of storage for the past samples. Second, it provides an
efficient mechanism for modelling slowly time-varying noisy
systems. Third, the accuracy of estimation can be assessed
by monitoring the error covariance. The Kalman filter is well



known for its capability of supporting estimations of past,
present, and even future states, and it can do so even when
the precise nature of the modeled system is unknown [1]. Our
resulting approach is robust to noise and computationally
efficient, allowing tracing to occur in real-time as data is
input to the system.

The rest of this paper is organized as follows. Section II
describes our shape models, first the information-theoretic
image model, and then the PCA (Principal Component
Analysis)-based shape-driven dynamic model. Section III
introduces the system framework in detail and Section IV
provides experimental results that demonstrate the ability
of our proposed algorithm to trace the envelope in pulsed
Doppler image sequences, even for low signal to noise ratio
images.

II. MULTI-MODAL SHAPE MODELS

This work proposes a model-based, closed-loop algorith-
mic framework for Pulsed Doppler tracing. The system
diagram is depicted in Fig. 1. In our algorithm, both a
information-theoretic image model and a statistical shape-
driven dynamical model are developed for assisting the
tracing process. In order to constrain or direct the model
advancing and evolving, the Kalman filter is employed.
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Fig. 1.

System Diagram

A. Information-theoretic Image Model

Due to speckle and electronic noise, Pulsed Doppler
images typically have a noisy appearance that makes edge
detection rather difficult. This issue is compounded by the
fact that the blood moving through the region of interest has
varying speed, and much of the blood can be moving with the
velocity slower than the peak velocity that we are interested
in tracing. For these reasons, standard edge localization
operations (gradient, Sobel, Canny edge detectors) applied
to the Pulsed Doppler data failed to produce useful outputs
for our image model, particularly when the signal to noise
ratio was low.

Therefore, we developed a new edge detection technique
that compares, using information theory, the intensities of
a known noise region to that of the image. The objective
is to find regions in the image that differ, statistically,
from the background noise. Let a region of the the known
background be denoted as B(x,y). Using non-parametric
density estimation, we form a probability distribution py(I)
from the histogram of B(x,y). This probability distribution
describes the probability of a pixel of intensity / occurring

in B(x,y) and serves as an intensity model of the image
background. Similarly, we select a sub-window of the image
I(x,y) around pixel (x,y) and form a probability distribution
pi(I), to form a model of the intensities around the pixel.
Using information theoretic concepts, we then compute the
symmetric Kullback-Liebler divergence (also known as the J-
divergence) as
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Intuitively, J provides a measure that describes how “dif-
ferent” the intensity distributions are. Regions of the image
that match the background model will have a small J, while
regions that differ significantly from the background model
will have a large J. Since the computation of J includes the
background noise model, this method works effectively even
when the noise in the image is strong. Eq. (1) is evaluated
at each pixel in the image, forming a statistical comparison
map M(x,y). Next, we apply a standard edge localization
algorithm to M(x,y), such as the difference of Gaussian
(DOG) filter, to produce a feature map F(x,y), which is then
used in our image model.

B. Statistical Shape Model

The Pulsed Doppler data may contain an incomplete and
ambiguous envelope of blood velocity. In particular, the
problem of determining what is and what is not an edge
is confounded by the fact that edges are often partially
hidden or distorted by various effects such as electronic
noise, ultrasound speckle noise and so on. Due to the above
reasons, an envelope tracing approach that uses solely edge
detector outputs will not be robust. Therefore, we introduce
PCA-based statistical shape model [6] into our algorithmic
framework. The justification of this choice is that the shapes
of pulse waves in the specific dataset share some common
shape pattern as observed in Fig. 2. The statistical shape
model is learned in an offline process using manually traced
envelopes for different applications.

Since the size or structure of the shape model in the
training dataset may be quite different, we separate them
into several categories based on the valve being studied.
Within each application, n separate shapes in the database
are aligned to one coherent coordinate frame.

In particular, the position in y axis of each of the n aligned
shapes is formed as n separate d dimension vectors {s; , 57,

., Sn }. We compute (1, the mean shape of the shape database
as follows,
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The mean value is then subtracted from each vector to
create n centroid-aligned shape models,{s],57,...,5,}. These
mean-offset shapes are then formed into the training matrix
to capture the variabilities of the training shapes. Specifically,
we define the training matrix M as
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Singular Value Decomposition is employed to the matrix
Qs

1
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where A is a diagonal matrix of eigenvalues and columns
of U are the corresponding eigenvectors, representing the n
orthogonal modes of variation in the shape.

Since the dimension of Q can be extremely large in
most cases, to obtain the eigenvalues and eigenvectors of
is computationally expensive. Instead, the eigenvalues and
eigenvectors of Q can be easily computed from those of a
much smaller matrix, ¥, as defined by

1
Y=-MM (6)
n

Let 17 be an eigenvector of ¥ with non-zero correspond-
ing eigenvalue A. It is straightforward to show M7 is an
eigenvector of Q with eigenvalue A.

The eigenvectors represent the principal axes of varia-
tions in the training set, with the corresponding eigenvalues
indicating the amount of influence its eigenvector has in
determining the shape.

The matrix U, consisting of eigenvectors, can be used to
project an input signal into the eigenspace. Let k < n be
the number of modes to consider, or the dimension of the
reduced-rank eigenspace. Since there is no universal k that
can be set, we chose k empirically for our experiments. Using
these k principal modes, we calculate the weight for the input
signal z on each eigenshape.

w=v!-z (7

where i =1,2,--- ,k, and v; = Mn;, representing the eigen-
shape.
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We now obtain a PCA-based shape model as well as image
model for the tracing process.

Fig. 2.

Examples of the envelope shape.

III. SHAPE MODELS INTO ENVELOPE TRACING

Given a frame of pulsed Doppler video, the prior shape
information can be embedded into the tracing process. In this
section, we describe the framework for envelope tracing.

A. Kalman Filtering

The problem at hand is to track the envelope of blood flow
velocity from a sequence of Doppler images. We choose the
vertical position of the envelope as an appropriate tracing
parameter. A variety of tracking methods can be used to
solve it. Among these, the Kalman filtering method has
many advantages. First, it is a computationally efficient
recursive procedure requiring minimum amount of storage
for the past samples. The results of the previous step is
used to predict the current states. Furthermore, the accuracy
of the estimation can be assessed by monitoring the error
covariance. Finally, a priori knowledge about the system can
be readily incorporated into the Kalman filter.

The Doppler tracing problem using the Kalman filter can

be formulated as follows. Let the state vector be x; = [ ;;,k R
k

where k is the current step, y; denotes the vertical position
of blood flow velocity envelope, and yy is the derivative of

Yk-
The system equation can be modeled as

X = AXg | + Wi 9

where w; is assumed to be Gaussian white noise with zero

. 1
mean, i.e., Wy ~N(0,0) and A = [

1
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transition matrix.
With the observation z; = [

denotes the state
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W ], the observation equa-
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where z;; and z, ; are from the image model and PCA-based

model, respectively, H = ] is the observation matrix

1
1 0
and vy is assumed to be Gaussian noise, i.e., vy ~ N(0O,R)

ri 0
and R = 0 r

The Kalman ﬁfter enables one to realize a motion model
taking into account system noise and observation noise. The
information from the image model and PCA-based model
are incorporated into the system via observation vector and
observation noise covariance. The usual task of the Kalman
filter is the estimation of the state vector x; given only the
observation z;. The filter operation consists of two parts, time
update (prediction) and measurement update (correction).

A new value of the state vector Xx; is estimated during the
prediction step based on a posteriori state estimate at step
k—1 given measurement z;_. Further on, the estimate error
covariance matrix P is arranged according to Eq. (12).

(1)

P~ =AP_ AT +Q (12)

where X, ~ (note the superscript minus) is our a priori state
estimate at step k given knowledge of the process prior to
step k and Xy is a posteriori state estimation at step k given
measurement z;. P, is the a priori estimate error covariance



matrix at step k and P,_; is the a posteriori estimate error
covariance matrix at step k— 1.

Every time a new observation z; is available, this value is
used to update the estimation X;. In addition, the covariance
matrix P and the Kalman gain matrix K are recalculated as
follows.

Ke=P H'(HP, H +R)™! (13)
K =%, +Ki(Z — HKX,) (14)
P, = (I—KkH)Pk7 (15)

B. Feedback Information and Adaptive Weighting

Observation z; comes from the image model, referring to
the top point of the detected edge for each time point. The
other observation z,, denotes the reconstructed signal from
the decomposed input signal in the eigenspace. The input
signal is actually the output of the Kalman filter so that the
prediction information from the Kalman filter can be fed back
to help direct the PCA-based shape model. However, since
the dimension of the input signal into eigenspace can not
be too small, the Kalman filter needs to accumulate enough
output for PCA model. During this period, the image model
takes over the responsibility of providing inputs for the PCA
model.

Since the impact of these two models on the tracing
process can be varying with time, we use the observation
ri 0
0
for each step such that the system can weight the two
models adaptively. The “trust index” is determined by the
performance of edge detection. Specifically, the value of J-
divergence, as shown in Eq. (1), at the detected edge are used
to define the “trust index” for both image and PCA models.
In (16) and (17), @ and B are constant and chosen at the
beginning of the process empirically. If J; is large enough,
it will be considered as a sign that the image model is more
reliable at the current step and thus should be trusted more
than PCA model, and vice versa.

noise matrix R = to indicate our “trust index”

rp = o X |Ji/max(J) x 10| /10 (16)

ri=p—-r, 17

IV. EXPERIMENTAL RESULTS

The experiments for the proposed algorithm are performed
on a real, Doppler images of heart valves, depicted in Fig. 3
and 4. In particular, we tested our envelope detection algo-
rithm on images from an aortic insufficiency (Al) dataset.
The training data for building a pulse shape space consists
of 10 pulses that have the envelopes drawn manually.

The tracing occurs causally as the data becomes available;
therefore in the figures we show the tracing output as a
function of time as data comes into the system. The result in
Fig. 3 shows a successful tracing using the automatic tracing

approach. Even in locations where the maximal blood flow
velocity is not well defined, our method produces a good
result due to the use of our statistical shape model. Fig. 4
shows a more challenging example where the background
noise is strong, and the resulting signal to noise ratio is
low. Despite these challenges, our algorithm produces a good
result that is suitable for automatic computation of indices
and diagnostic measurements.

V. CONCLUSION

The problem of envelope tracing in Pulsed Doppler images
has been addressed in this paper. This is of great importance
to physicians for diagnostic use. We propose a novel model-
based, feedback and adaptive weighting tracing algorithm
using the Kalman filter. It incorporates a non-parametric
statistical comparison of image intensities in order to es-
timate edges in noisy Pulsed Doppler data, as well as a
statistical shape model learned from manual tracings for
different applications. The experimental results demonstrate
that the proposed approach can be successfully applied to
blood flow velocity envelope tracing for Doppler images as
it is robust to noise and computationally efficient, suitable
for real-time applications as the algorithm can be executed
fast enough to meet real-time requirements.
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Fig. 4. Tllustration of tracing blood flow velocity in Doppler images. (a)
Original complete display (b)-(e) 30%, 60%, 75%, 100% tracing completed
Fig. 3. Tllustration of tracing blood flow velocity in Doppler images. (a)
Original complete display (b)-(e) 30%, 60%, 75%, 100% tracing completed



