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Abstract

This paper presents a fast and efficient method to de-
termine intervertebral disk orientation in a magnetic reso-
nance (MR) image of the spine. The algorithm originates
from active contour theory and enforces a shape constraint
to avoid leaks through weak or non-existent boundaries.
The method represents a vertebra as a rectangle, modeled
as a semi-affine transformation applied to the unit square.
A regional flow integrated along the rectangle’s perimeter
updates the rectangle’s transformation to achieve the seg-
mentation. Further constraints are added so that adjacent
rectangles have similar orientation and scale. The orienta-
tion of a disk is then inferred from its adjacent vertebrae.
Experiments show that the method is fast and effective in
detecting the correct intervertebral disk orientation, which
is used for transverse image planning.

1 Introduction

MR spine imaging has been widely used for noninva-
sive detection of different abnormalities and diseases in the
spinal column, vertebrae, and intervertebral disks. This pa-
per focuses on setting up transverse image acquisition for
diagnosis of intervertebral disk pathologies. In typical MR
spine imaging cases, a patient is initially scanned to obtain a
set of T2-weighted sagittal images or coronal localizer im-
ages. If an abnormality of an intervertebral disk is found,
a transverse scan is then performed. The orientation of the
transverse images is planned parallel to the major axis of
the disk and the center of the transverse images is located
on where the disk joins the spinal cord. A saturation band is
placed to suppress strong MR signals from abdominal ves-
sels and should not overlap with the spinal column (see Fig-
ure 1). Currently transverse imaging planning is done man-
ually. The process, however, is time-consuming and sub-
ject to intra- or inter-operator variation. Therefore there is a
salient need for automation in transverse imaging planning.

Figure 1. Sagittal view of the vertebral col-
umn. The orientation of the intervertebral
disk is used to set up the slice stack.

This requires accurate and consistent detection of interver-
tebral disk orientation and an approximate segmentation of
vertebrae. This paper presents a semi-automatic computer-
based technique to detect intervertebral disk orientation ac-
curately and to approximate vertebrae by rectangles.

Ideally, the first step in detecting the orientation of an
intervertebral disk is to detect the boundaries, or segmen-
tation, of the disk itself. However, this is difficult if there
is an abnormality or there are weak or missing boundaries.
However, the boundary of the intervertebral disk is closely
aligned with the boundaries of the rigid vertebrae it sepa-
rates. Therefore, we can infer the intervertebral disk ori-
entation by finding the bounding edges of its adjacent ver-
tebrae. Since each vertebrae can be geometrically approx-
imated by a rectangle, we incorporate this a priori shape
constraint into our approach to increase the robustness of
the solution.

1.1 Related work

Perhaps the most related class of methods are those
that perform vertebrae segmentation. A popular imaging
modality for vertebrae segmentation and analysis is low-
dose X-ray; for example, dual energy X-ray absoptiometry
(DXA) [6] and digital videofluoroscopic (DVF) [8] images
have been considered. Magnetic resonance images can ac-



quire relatively clear images of the spine without the radia-
tion risk, and is the modality of choice for studying interver-
tebral disk pathologies. Several authors [1, 2] present seg-
mentation approaches with experiments using this modality.

Given the difficulty of vertebrae segmentation problem,
it is desirable to further constrain the solution space. Rather
than represent each vertebra as an arbitrary contour, re-
searchers have employed shape templates [3, 5], Fourier de-
scriptors [8], as well as active shape models for individual
vertebrae [1] or the entire spinal column [6] built from train-
ing data. In this paper, we approximate each vertebra as a
rectangle, computed as a semi-affine transformation applied
to the unit square. Indeed, for the estimation of interver-
tebral disk orientation, exact vertebrae segmentation is not
necessary since we are interested in the direction of the ver-
tebral edges that are aligned with the disk. Unlike standard
active contour methods, the speed function of the contour is
integrated along the perimeter of the rectangle, resulting in
a rectangle evolution that is more robust to local variations
in the speed function and initial placement. This enhances
consistency in the results, an important feature for clinical
use.

1.2 Our contribution

The method presented in this paper is motivated by the
work of Yezzi et al. in [7], which performs simultaneous
registration and segmentation of the same object in multiple
images that may be acquired by different imaging modali-
ties. However, in this work, we impose the shape constraint
of a rectangle by mapping the unit square into the image
using a semi-affine transformation. Rectangles are used to
segment adjacent vertebrae on the same image rather than
using arbitrary contours to segment the same object in dif-
ferent images. In addition, we present interaction forces
designed to penalize larger variations in scale and rotation,
under the assumption that adjacent vertebrae have a similar
size and orientation. Finally, unlike standard level set im-
plementations, our resulting mathematical model is based
on ordinary differential equations (ODEs) instead of partial
differential equations (PDEs). This allows us to take larger
time steps in our numerical implementation.

2 Method

2.1 Active rectangle representation

Let I : Ω ⊂ R2 → R denote the image of the
unit square, formed as a closed polyline with an outward-
oriented normal N, as depicted on the left of Figure 2, and
let Î : Ω̂ ⊂ R2 → R be the target MR image. The unit
square C is mapped from I to Î as Ĉ using a transformation
g : R2 → R2, i.e., Ĉ = g(C). The mapping g consists

Figure 2. Our atlas shape in image I is the
unit square (left), transformed as a rectangle
into the image Î (right) by a semi-affine trans-
formation g(x).

of registration parameters, g1 · · · gn, which in this paper are
a set of n = 5 parameters from a finite-dimensional group
represented by a rotation angle θ, non-uniform scale param-
eters Mx, My , and displacement parameters Dx, and Dy .
These are used in a semi-affine transformation given as

x̂ = g(x) = RMx + D, (1)

with rotation matrix R =
[

cos θ sin θ
− sin θ cos θ

]
, scaling ma-

trix M =
[

Mx 0
0 My

]
, and translation vector D =

[Dx, Dy]T , and x is a point on the unit square. Figure 2
depicts the transformation of the unit square into the MR
image.

2.2 Energy function and curve evolution

Segmentation can be achieved by following a gradient
descent procedure to minimize a region-based energy func-
tional of the form:

E(g) =
∫
Ĉin

f̂in(x̂)dx̂ +
∫
Ĉout

f̂out(x̂)dx̂ (2)

where f̂ is a function that best represents a certain char-
acteristic of the image such as the mean or variance. We
chose the piecewise constant segmentation model of Chan
and Vese [4], for which f̂in = (Î−û)2 and f̂out = (Î− v̂)2,
where û and v̂ are the mean values inside and outside the
segmenting curve respectively. We re-express this func-
tional on the domain Ω as

E(g) =
∫
Cin

(|g′| f̂in ◦ g)(x)dx+
∫
Cout

(|g′| f̂out ◦ g)(x)dx

(3)
where |g′| is the determinant of the Jacobian of g and ◦ de-
notes functional composition.



Taking the derivative of Equation 3 with respect to the
registration parameter gi gives the following gradient de-
scent minimization,

dgi

dt
=

∂E

∂gi
=

∫
C

f̂(g(x))
〈

∂g(x)
∂gi

,mRM−1N
〉

ds, (4)

where gi indicates one element of g, m = MxMy , f̂ =
(f̂in − f̂out), and 〈〉 indicates an inner product. Details of
this flow can be found in [7]. Intuitively, equation (4) is an
ODE whose solution requires us to traverse the contour of
the unit square, shown in Figure 2, find its new transformed
pose in the image, then update the pose function g until con-
vergence. That is, the segmentation occurs by updating the
registration parameters gi · · · gn. Unlike [7], there is no con-
tour update ∂C

∂t since our contour in domain Ω is fixed as the
unit square.

To avoid misalignment due to salient features away from
the disk, we apply a weighting (empirically set to 4.0) to
the edges of the transformed square that are closest to the
intervertebral disk. These edges have a similar orientation
as the disk itself. For initialization, the algorithm sets the
translation to the starting point x̂ in the MR image, the ro-
tation angle to 0 and the scale parameters to 1. An example
evolution for a single rectangle appears in Figure 3.

Figure 3. Evolution of a single rectangle.
From left to right: 0, 25, and 100 iterations,
using time step ∆t = 0.5.

2.3 Interaction forces

While it is possible to independently evolve rectangles in
each vertebra adjacent to an intervertebral disk, we can take
advantage of the similarity of adjacent vertebrae to further
constrain the problem. Under the assumption that adjacent
vertebrae have a similar size and orientation, we propose an
interaction energy between adjacent rectangles. This energy
penalizes large orientation and scale differences, and takes
the form E(g) = f(∇gi), where f(z) is a differentiable
function that penalizes the variation of the registration pa-
rameters of different active rectangles. Differentiation of
E(g) with respect to gi yields the interaction force

dgi

dt
=

∂E

∂gi
=

∂f

∂z

∂z

∂gi
(5)

We have investigated several forms of the penalty function;
however, due to space constraints we only present one func-
tion here, namely f(z) = 1

2z2, which provides sufficient
regularization on the registration parameters. We evolve in
the negative gradient direction, yielding the update

dgi

dt
= −α∆gi, (6)

where ∆ is the Laplacian operator and α is a constant used
to weight the influence of the interaction force. In all our
experiments, we set α = 0.25, which has provided suffi-
cient coupling for our data between adjacent active rectan-
gles to jointly perform the segmentation. However, using a
lower value of α would decrease the coupling, which could
be desirable if the adjacent vertebrae had larger differences
in size/orientation.

An example comparing independent vs. coupled seg-
mentation is presented in Figure 4. For the left and mid-
dle of the figure, we performed independent evolutions of
the two rectangles starting from different initial conditions
(seed points), resulting in the active rectangles being at-
tracted to undesirable local minima. On the right we show
the coupled segmentation (both sets of initial conditions
produced the same result), which achieves a more robust
segmentation.

Figure 4. Effect of the interaction force. Left
and middle: uncoupled segmentation. Right:
coupled segmentation.

3 Results

In this section, we report disk orientation detection re-
sults from different parts of the spine. In each case, the user
will click on the disk of interest. There is some automatic
preprocessing done to get two seed points, one inside each
of the upper and lower vertebrae. This is the initialization
of the algorithm. Figure 5 shows the initialization and the
final detection of a disk in the lumbar region of the spine. In
the middle, copies of the unit square are placed at each seed
point. Then the segmentation is performed to get the result
on the right. Notice how the rectangles align to the edges
that are adjacent to the disk. From these results, we compute
the orientation of the disk, also shown in the figure. The ori-
entation is found by determining the line equally bisecting



the bounding box connecting the detected vertebrae (clini-
cally, manual determination of the orientation is done in a
similar fashion). The upper part of Figure 6 shows the result
for a sagittal C-Spine image, and the lower part of the figure
shows an example for a coronal image. Computing the disk
orientation in both the sagittal and coronal views defines a
plane that is used for setting up the transverse slice stack.
All segmentations complete within a few seconds.

Figure 5. Segmentation approach. Origi-
nal image (a), seeds overlaid (b), and final
segmentation result (c) with disk orientation
drawn as a line between vertebrae.

(a) (b) (c)

(d) (e) (f)

Figure 6. More examples. Saggital C-spine re-
sult (a) - (c), and coronal result (d) - (f).

For validation of the proposed method, we used it to de-
termine the orientation of 51 intervertebral disks, coming
from 9 different patients. Since ground truth is not avail-
able, we compared these orientation results to those esti-
mated by hand, achieved by a user drawing a line over the
disk indicating its orientation. The results of these exper-
iments were that on average, the algorithm computed the
disk orientation to less than 2.25 degrees of that detected by
a human operator.

4 Conclusion and future work

In this paper we presented a simple and efficient method
to detect the orientation of intervertebral disks. The method
fits a rectangle to each adjacent vertebrae by minimizing an
energy functional based on a shape constraint, image data,
and coupling between adjacent rectangles. While more
comprehensive validation of the algorithm is required, from
our experimental results we conclude that the shape con-
straint combined with the coupled segmentation results in
good vertebrae segmentation from which the intervertebral
disk orientation can be computed.

Since our method uses gradient descent to minimize an
energy functional, it achieves a local minimum of the en-
ergy, and can produce different results for different initial-
izations, which is typical for this class of methods. When
the vertebrae are imaged so that they have a consistent in-
tensity and their borders have sufficient contrast, our seg-
mentation method typically converges to a reasonable solu-
tion. However, for robustness it is certainly possible to in-
clude other image statistics (beyond the Chan-Vese model
we employ) in our framework. This is left for future work.

The framework presented in this paper is quite gen-
eral in that any shape representable by a closed polyline
is supported. For future work, we are interested consid-
ering other segmentation problems with different problem-
specific shape constraints, as well as extending the method
to polyhedra in 3D space.
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