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Abstract. 3D shape modeling is a crucial component of rapid prototyping systems
that customize shapes of implants and prosthetic devices to a patient’s anatomy. In
this paper, we present a solution to the problem of customized 3D shape modeling
using a statistical shape analysis framework. We design a novel method to learn the
relationship between two classes of shapes, which are related by certain operations
or transformation. The two associated shape classes are represented in a lower di-
mensional manifold, and the reduced set of parameters obtained in this subspace is
utilized in an estimation, which is exemplified by a multivariate regression in this
paper. We demonstrate our method with a felicitous application to estimation of cus-
tomized hearing aid devices.

1 Introduction

3D shape modeling and estimation is a crucial task in custom design of anatomical shapes.
A sample shape estimation problem in systems for rapid prototyping of hearing aid devices
is depicted in Figure 1. For a comfortable fit, it is important that the shape of the hearing
aid match the patient’s ear geometry. The two classes of shapes, here patients’ 3D raw
ear impressions and the output hearing aid shapes, are normally related by certain opera-
tions or a transformationR. Current practice involves mainly a manual design (even in an
electronic environment), and the goal is to automate this process for increasing efficiency,
patient comfort, repeatability, and throughput in audiologist offices.

Our work is similar in spirit to the image analogy problem [1], where a new painting
D is produced by the input photograph C, by copying matching patches from a prior paint-
ing/photo pair A/B. The explicit relation between the pairs is not learned however, which
is our aim in this work. The celebrated active shape models work [2] developed a compact
description of the variation of shapes in a class using statistical methods. In [3], a statistical
shape model is built for the human ear canal (as point clouds), where the correspondences
are obtained by warping a template onto shapes, which are annotated with 18 landmarks
by a specialist. In [4] a smoother dense mesh is obtained by a Markov field regularization
of the correspondence field. In these works, the ear canal model is used for analysis of gen-
der differences in its shape, and for its deformation by mandibular movement [5]. Manual
marking of landmarks is not suitable for rapid prototyping systems, moreover, finding sta-
ble feature points in all shapes is difficult due to individual variations. The correspondence
problem was alleviated in an Eulerian shape representation framework in [6], which used
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Fig. 1. Shape Estimation Problem.

PCA to build a shape prior to guide the segmentation of objects in images. Variations on
PCA such as kernel PCA [7] and principal factor analysis [8] were employed for statistical
shape analysis, although PCA is preferred here for its optimality in dimensionality reduc-
tion. In a recent work [9], regression techniques are utilized to investigate degrees of cor-
relation and dependence variation between shapes of different structures within the brain.
Our method is different in mathematical details and includes deformation of predicted
shapes via predicted difference masks and fitted planes, with a focus on shape generation
for prosthetic devices. [10] took a machine learning approach for image segmentation, and
[11] used Frèchet expectation to generalize univariate regression to manifold-valued data
to study the effect of aging on brain shape in patient populations.

Our main contribution is the development of an automatic shape transformation method
to be used in various applications like customized design of anatomical parts. Our system
learns the relationship between two classes of shapes and generates a shape from one class
when given as an example a shape from another class. We design an asymmetric registra-
tion for shapes that significantly differ in geometry in Sec 2.1. We then propose a novel
shape generation technique based on multivariate regression in Sec 2.2 and 2.3.

2 Method

There are various styles of hearing aids such as canal, and in-the-ear [12], and the de-
sign process starts with a rough mold of the patient’s ear, so called undetailed shell (or
shape), that is then detailed by a specialist. The detailing process includes cutting un-
used parts based on the desired shell style and the geometry of the patient’s mold (Fig 2),
rounding edges and other operations needed to fit the electronics in the shell. This is a
time-consuming process that is based on the skills and experience of the specialist. Alter-
natively, the specialist now can carry out the detailing on digitized ear shells using CAD
software systems, which are still not-fully automatic. Our work aims at removing this
bottleneck in rapid prototyping systems for hearing aid devices.

We obtained 90 digitized undetailed molds and their corresponding detailed molds
from a specialist. We define a “Ground truth” (GT) shape as the shape, which is detailed
by the audiologist, and is later digitized. Ear shells were digitized by a 3D laser scanner,
a 3D point cloud is obtained and triangulated to build a polygonal mesh surface, which
is then converted to a voxel and signed distance function (SDF) representation [6]. The
dataset consisted of 41 molds of Half-Shell type (Figure 2-a), and 49 molds of Canal Shell
type (2-b). The undetailed shell is made of two main parts: the long and thin structure on
the top is the ear canal and the round bowl-like structure is the concha which funnels sound



Fig. 2. Ear impressions;(a) Half shell, (b) Canal shell; undetailed shapes (left); detailed shapes with
(middle) and without cutting planes (right).

(a) (b) (c)

Fig. 3. Registration of detailed ear impressions to undetailed: (a) shapes before registration; (b) shape
(red) after symmetric registration; (c) shape (red) after registration by Eq.(1).

to the ear canal [13]. We see that the detailed half shells occupy most of the ear canal and
a large part of the concha, and the detailed canal shells occupy mostly the ear canal.

2.1 Asymmetric Shape Registration
The reference (undetailed) shapes must be registered with their corresponding target (de-
tailed) shapes in the training set. In a variational registration setting, we propose an asym-
metric distance restricted to a band around both the detailed shape Φd and undetailed
shape Φu, but constrained mainly by the smaller of the two shapes. This provides a new
asymmetric rigid registration differential equation, which is derived from sum of squared
distances energy functional between Φu and Φd:

∂gi

∂t =
∫
Ω
Xβ
(
Φu(X), Φd(g(X))

) [
Φu(X)− Φd(g(X ))

] 〈
∇Φd(gX), ∂g(X)

∂gi

〉
dX (1)

where g is a rigid transformation g(X ) = RX + T ,X ∈ R3, with parameters gi of 3D
rotation matrix R, and 3D translation T . Φu and Φd are the undetailed and detailed shell
SDFs defined over the domain Ω. The new characteristic function takes the form

Xβ(Φu, Φd) = {0,max(|Φu|, |Φd|) > β
1,max(|Φu|, |Φd|) < β

(2)

Figure 3 depicts an application to ear shell registration, where the symmetric one [14] in
(b) fails because the detailed shape Φd is significantly smaller than the undetailed shape
Φu and parts of the undetailed shape that do not exist in the detailed shell still influence
the registration. In the asymmetric version, the alignment was successful as shown in (c).

Note that in addition, all undetailed shapes in the training are aligned with the sym-
metric registration so that the variation in the data is due to the geometry and not the pose.
2.2 Shape Estimation
After alignment of the shapes, we will represent them in a lower dimensional manifold and
relate the undetailed shapes with the detailed shapes on this manifold as explained next.

We conduct a standard statistical analysis on a training set of N undetailed shapes to
obtain a shape variability matrix Su = [Φ̃u

1 Φ̃u
2 · · · Φ̃u

N ] on which a PCA is carried



Fig. 4. The first 3 modes for both the undetailed (dark) and detailed (light) shapes. The weights are
varied from −3σ2 ≤ wi ≤ 3σ2. Left: Canal shell, Right: Half shell.
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u Su T = Uu Σu Uu T . Here the columns eu
i of the matrix Uu represent

the orthogonal modes of variation in the undetailed shapes, called eigenshapes, and the
diagonal matrix Σu contains the corresponding eigenvalues, σu

i . A similar analysis is
carried out for the detailed shapes. Each shape Φu

i and Φd
i in the undetailed and detailed

classes then can be represented by a vector of weights as:

wu
i = Uu T (Φu

i −mu ), and wd
i = Ud T (Φd

i −md ), (3)

where m∗’s are the mean shapes. A small number of principal modes, k, which is se-
lected as the same for both the undetailed and detailed shape classes, explains a significant
portion of the variability in the ear impression shape space (see Sec 3).

Figure 4 depicts the first 3 modes of variations for both the undetailed and detailed
shape datasets. In the Canal Shell dataset, we see similar variations as observed in [3]. The
mode 1 deformation corresponds to a bending of the canal and a flattening of the concha
for the undetailed shape, and a widening at the base of the canal and a height shift for the
detailed shape. Mode 2 corresponds to a thickening of the concha and a bending of the
canal for the undetailed shape and a general size change for the detailed shape. Mode 3
corresponds to a flattening of the ear canal for both shapes. For the Half Shell variations,
we see that mode 1 corresponds to a general size change of the concha for both detailed
and undetailed shapes. Mode 2 corresponds to an overall size change with a flattening of
the tip of the ear canal and the concha. Mode 3 corresponds to narrowing/widening of the
concha and the ear canal.

For the undetailed set, we form the Nxk weight matrixWu where row i is the vector
wu

i representing the ith undetailed shape. Similarly,W d represents the weight matrix for
the detailed shapes. We would like to find a model that best describes the relation between
the two shape classes in this highly reduced dimensional space, i.e., a mappingR between
the two shape representations as:

R ◦Wu = W d . (4)

We discuss the nature of this mapping we would like to find next. Figure 5 shows the
first mode of variation plotted for each detailed (y-axis) and undetailed (x-axis) pair of
shapes in the Half Shell Data. It can be observed that there exists a correlation that is close
to linear between both sets of weights. As expected, the y-intercept is close to 0 since an
undetailed weight of 0 on the major axis of variation means that the undetailed shape is
very close to the mean and therefore the detailed shape should also be expected to be close
to the mean. Similarly a linear relationship is observed for the second mode as shown



(a) (b)

Fig. 5. The weights of undetailed vs. detailed shapes associated to 1st (a), 2nd mode (b).

in Fig. 5(b). We also examined other mode combinations such as first mode vs. second
mode and third mode, and found close to linear correlations. Intuition gained from these
experiments lead us to assume a linear relationship between the two classes of shapes.
In order to find a general multivariate regression between all the weights, we construct a
linear least squares optimization problem:

Wu Xd = W d (5)

where Xd is a transformation matrix that encodes the detailing process: it transforms
the undetailed shape class into the detailed shape class. To find Xd , Wu , which is
of size Nxk, where N > k (hence overdetermined problem), is inverted by an SVD
decomposition [15]:

Wu = Uw Dw V w T , (6)

then the least squares solutionXd is given by:

Xd = V w (Dw )−1Uw TW d (7)

where (Dw )−1 is the simple inverse of a diagonal matrix with singular values.
We build a statistical model for a class of auxiliary shapes, called mask shapes, to help

deform the estimated model towards the patient ear canal anatomy for an exact fit. 3D mask
shapesMi are formed from the difference of shapes in the two training sets, i.e.Φu

i −Φd
i .

This mask will be used to indicate regions in the estimated detailed shape that are allowed
to propagate towards the undetailed shell, except at the parts that we detected as “cuts” by
our algorithm during the final deformation phase. Hence along with the estimated matrix
for the detailed shapesXd , a second regression matrixXm is estimated and stored during
the training phase.

2.3 Automatic Shape Generation
After the training phase, a new undetailed shape is given as input to the system, and the
expected output is a corresponding detailed shell similar to one that would have been
produced by a specialist. We note that since different types of detailed shells exist, the
training phase must be done on the type that is expected as an output of the estimation.

Flowchart in Figure 6 summarizes our automatic shape generation method: The new
undetailed shape is registered to the mean shape from the training data as explained in



Fig. 6. Flowchart describing the proposed automatic shape generation method.

Section 2.1. The weight vector for the new undetailed shape is computed and the weight
vector for the detailed shape is estimated through the stored regression matrix (7) (Fig 7-
a). Next, difference mask weights are estimated via the regression matrixXm to form the
maskM, which is binarized with a threshold of 1. The regions ofM that are 0 correspond
to “cuts” that would have been made by the technician. Those cuts usually produce flat
surfaces. Since the estimated detailed shapes do not always have flat surfaces where the
mask is 0, first we cluster points on the mask surface by using the k-means algorithm,
then we fit planes to these regions as shown in Figure 7-b. Finally, we morph the initially
estimated detailed shape towards the undetailed shape where the evolution mask field is
nonzero. It is allowed to evolve until it reaches the plane and flattens out as depicted in
Figure 7-c. As for the surface deformation step, we utilized a simple morphing PDE as in
[16] modified with our estimated mask and the planes.

3 Results
For both datasets (half-shell and canal shell), we randomly split the data so that 90% of
the data was used for training and 10% used for testing. This operation is repeated three
times for more robust validation. The number of modes needed to explain 95%, 97% and
99% variability in the data, were 12, 15, and 22, respectively. For a 95% variation, only 12
modes are retained, which is a significant decrease from 22 modes needed to explain 99%
of the variability in the data. This also shows the huge dimensionality reduction given that
the shapes in our training dataset were represented on a voxel grid of 803.



Fig. 7. (a) Detailed shape found through regression is depicted (in red/dark) on (a1) the undetailed
shape; (a2) the GT detailed shape (in grey/light). (b) (b1) estimated mask; (b2) the resulting cluster-
ing with 2 clusters; (b3) the fitted planes. (c) Morph of an initial detailed surface (c1) towards the
undetailed surface constrained by planes, final result in (c2).

Fig. 8. (Each Quadrant)Left: GT detailed shape; Middle: Estimated detailed shape before evolution;
Right: Estimated Detailed Shape after evolution (all are superimposed on the GT shape).

The sum of squared difference (SSD) in millimeters between the estimated shape Φ̃d
and the ground truth shape Φd is used as a validation measure. Table 1 shows the average
SSD values obtained for both datasets. The overall SSD value between the estimated shape
and the ground truth was smaller than 1.5mm in all cases.

SSD (HS) 95% variation 97% variation 99% variation
test 1 1.16 1.19 1.17
test 2 1.07 1.17 0.97
test 3 1.37 1.35 1.32

SSD (C) 95% variation 97% variation 99% variation
test 1 1.51 1.47 1.40
test 2 1.41 1.40 1.35
test 3 1.32 1.32 1.31

Table 1. Average SSD (in mm) between the estimated shapes and the ground truth shapes in the
Half-Shell (HS) and Canal (C) dataset for all three test sets and three variation values.

We show qualitative results for the Half-Shell dataset in Figure 8, where the estimated
shapes are observed to be in good agreement with the GT shapes, particularly in the canal
region. The errors as expected are distributed around the cut points since the shape evo-
lution is restricted to the cutting planes which are estimated through our shape learning
process on a mask field. Our preliminary but extensive experiments have shown that our
algorithm is robust to different shell types, and a low SSD value is obtained for all tests.
As part of our future studies, further validation will be performed on our system.

4 Conclusions and Discussions
We presented a general framework to automatically generate a target shape from a refer-
ence shape via learning the relation of these two shape classes on a much lower dimen-
sional manifold than the original shape space. As a specific application, our system learns



how to detail a hearing aid shape by estimating a mapping from a patient’s digitized ear
mold to the detailed shell. Further refinement of the shape is achieved by deforming the
estimated shell towards the undetailed shell in regions where the shapes should fit using an
estimated auxiliary shape class. We learned the relation between two shape classes through
a linear multivariate regression due to the underlying assumption that the two shape classes
have a linear relation, which is demonstrated to be a reasonable assumption by our results.

Our proposed framework is quite general in that a mapping between the two classes of
shapes can be estimated in a proper setting. This framework contains several known com-
ponents such as variational registration, PCA in the distance transform space for shape
analysis, and linear regression used in an interesting and novel system for automatic shape
transformation. Some of these components can be replaced with other ones: for instance,
using non-linear regression instead of linear regression (to account for more complex re-
lations between associated classes of shapes), kernel PCA or manifold learning instead of
PCA, Eulerian vs. Lagrangian shape representation, and others. While such changes may
improve the results, they would not change the overall concept. However, we plan to apply
our technique with different components to other applications in custom design of various
anatomical parts such as dental implants and prosthetic hips.
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