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Abstract. Starting with a set of calibrated photographs taken of a
scene, voxel coloring algorithms reconstruct three-dimensional surface
models on a finite spatial domain. In this paper, we present a method
that warps the voxel space, so that the domain of the reconstruction ex-
tends to an infinite or semi-infinite volume. Doing so enables the recon-
struction of objects far away from the cameras, as well as reconstruction
of a background environment. New views synthesized using the warped
voxel space have improved photo-realism.

1 Introduction

Voxel coloring algorithms [7] [5] [2] reconstruct three-dimensional surfaces us-
ing a set of calibrated photographs taken of a scene. When working with such
algorithms, one typically defines a reconstruction volume, which is a bounding
volume containing the scene that is to be reconstructed. Once defined, the re-
construction volume is divided into voxels, forming the voxel space in which the
reconstruction will occur. Voxels that are consistent with the photographs are
assigned a color, and inconsistent voxels are removed (carved) from the voxel
space [7].

These algorithms have been particularly successful in reconstructing small-
scale scenes that are restricted to a finite domain. Applying them to large-scale
scenes can become challenging, since one must use a large reconstruction vol-
ume to contain the scene. Such a large reconstruction volume can consist of an
unwieldy number of voxels that becomes prohibitive to process. In addition, it is
unnecessary to model far away objects with high resolution voxels. Ideally, one
would like a spatially adaptive voxel size that increases away from the cameras.

Furthermore, voxel coloring algorithms are not well suited to capturing the
environment (sky, background objects, etc.) of a scene. Typical reconstructions
are photo-realistic in the foreground, which is modeled, but empty in the back-
ground, which is unmodeled. As a result, synthesized new views can have large
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“unknown” regions, as shown in black in Figure 1. For some scenes, such as an
outdoor scene, we might like to reconstruct the background as well, yielding a
more photo-realistic reconstruction.

(a) (b)

Fig. 1. Unknown regions due to reconstruction on a finite domain. A photograph of
our “bench” scene is shown in (a), with the reconstruction volume superimposed. Only
voxels within the reconstruction volume are considered in voxel coloring algorithms.
The scene contains many objects outside of the reconstruction volume that are not
reconstructed, resulting in unknown regions that appear as black in a projection of the
reconstruction, shown in (b). The ideas presented in this paper warp the voxel space,
so that the reconstruction volume can become infinite, and the background scene and
environment can be reconstructed.

To address these issues, we propose a warping of the voxel space so that
surfaces farther away from the cameras can be modeled without an excessive
number of voxels. In addition, our proposed warping of the voxel space can
extend to infinity along any dimension, so that infinite (all of R3), or semi-
infinite (such as a hemisphere with infinite radius) reconstruction volumes can
be defined. The latter might best model an outdoor scene. As will be shown in
subsequent sections of this paper, we develop a hybrid voxel space consisting of
an interior space in which voxels are not warped, and an exterior space in which
voxels are warped. The voxels are warped so that the following criteria are met:

1. No warped voxels overlap.
2. No gaps form between warped voxels.
3. The warped reconstruction volume is at least semi-infinite.

A voxel coloring algorithm is then executed using the warped reconstruction
volume.

The layout of this paper is as follows. First, we explore some related work.
Then, we introduce a function that warps the voxel space subject to the crite-
ria enumerated above. Next, we discuss some implementation details that arise
when performing a reconstruction in warped space. We then present results that
demonstrate the effectiveness of our approach.
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2 Related Work

The work presented in this paper is an extension to recent volumetric solutions to
the three-dimensional scene reconstruction problem. Seitz and Dyer’s [7] voxel
coloring technique exploits color correlation of surfaces to find a set of vox-
els that are consistent with the photographs taken of a scene. Kutulakos and
Seitz [5] develop a space carving method that extends voxel coloring to support
arbitrary camera placement via a multi-sweep algorithm. Culbertson, Malzben-
der, and Slabaugh [2] present two generalized voxel coloring (GVC) algorithms,
which, like [5] allow for arbitrary camera placement, and in addition use the
exact visibility of the scene when determining if a voxel is consistent with the
photographs. These three methods, referred to collectively as “voxel coloring al-
gorithms”, have been quite successful in reconstructing three-dimensional scenes
on a finite spatial domain. In this paper, we extend these three methods in order
to reconstruct scenes on an infinite or semi-infinite domain by warping the voxel
space used in the reconstruction. Doing so enables the reconstruction of nearby
objects, far-away objects, and everything in between.

Saito and Kanade [6], and later Kimura, Saito, and Kanade [4] specify a voxel
space using the epipolar geometry relating two [6] or three [4] basis views, for
volumetric reconstruction using weakly calibrated cameras. In their approach, a
voxel takes on an arbitrary hexahedral shape, a consequence of their projective
space. In our approach, we intentionally warp exterior voxels into arbitrarily
shaped hexahedra. In [6] and [4], a voxel’s size is solely based on its location
relative to the cameras that form the basis. In our approach, a voxel’s size is
instead based on its location in a user-defined voxel space. In [6] and [4], the
reconstruction volume is finite, and only foreground surfaces are reconstructed.
In contrast, our method warps the voxel space to infinity so that objects far from
the cameras can be reconstructed, in addition to foreground surfaces.

In the computer graphics domain, infinite scenes have been modeled and ren-
dered using environment mapping. This method projects the background onto
the interior of a sphere or cube that surrounds the foreground scene. Blinn and
Newell [1] use such a technique to synthesize reflections of the environment off
of shiny foreground surfaces, a procedure also known as reflection mapping.
Greene [3] additionally renders the environment map directly to generate views
of the background. This approach is quite effective at producing convincing syn-
thetic images. However, since the foreground and background are modeled dif-
ferently, separate mechanisms must be provided to create and render each. Fur-
thermore, the three-dimensionality of the environment is lost, as the background
is represented as a texture-map. Like environment mapping, the techniques de-
scribed in this paper seek an efficient mechanism to represent the background
scene. Our warped volumetric space provides this in a single framework that can
more easily accommodate surfaces that appear both in the foreground and back-
ground. In addition, we reconstruct the background scene three-dimensionally
using computer vision methods.
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3 Volumetric warping

The goal of a volumetric warping function is to represent an infinite or semi-
infinite volume with a finite number of voxels, while satisfying the requirement
that no voxels overlap and no gaps exist between voxels. There are many possible
ways to achieve this goal. In this section, we use the term pre-warped to refer to
the volume before the volumetric warping function is applied.

The volumetric warping method presented here separates the voxel space into
an interior space used to model foreground surfaces, and an exterior space used
to model background surfaces, as shown in Figure 2 (a). The volumetric warp
does not affect the voxels in the interior space, providing backward compatibility
with previous voxel coloring algorithms, and allowing reconstruction of objects
in the foreground at a fixed voxel resolution.

(a) (b)

Fig. 2. Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In (a),
the voxel space is divided into two regions; an interior space shown with dark gray
voxels, and an exterior space shown with light gray voxels. Both regions consist of
voxels of uniform size. The warped voxel space is shown in (b). The warping does not
affect the voxels in the interior space, while the voxels in the exterior space increase
in size further from the interior space. The outer shell of voxels in (b) are warped to
infinity, and are represented with arrows in the figure.

Voxels in the exterior space are warped according to a warping function that
changes the size of the voxel based on its distance from the interior space. The
further a voxel in the exterior space is located from the interior space, the larger
its size, as shown in Figure 2 (b). Voxels on the outer shell of the exterior space
have coordinates warped to infinity, and have infinite volume. Note that while
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the voxels in the warped space have a variable size, the voxel space still has a
regular 3D lattice topology.

To help further limit the class of possible warping functions, we introduce
the following desirable property of a warped voxel space:

Constant footprint property: For each image, voxels project to the same
number of pixels, independent of depth.

Figure 3 shows an example of a voxel space that satisfies the constant footprint
property for two cameras. Assuming perspective projection, a voxel space that
satisfies this property has a spatially adaptive voxel size that increases away from
the cameras, in a manner perfectly matched with the images. While a useful con-
ceptual construct, the constant footprint property cannot in general be satisfied
when more than n cameras are present in Rn space. Thus, for three-dimensional
scenes, a voxel space cannot be constructed that satisfies the property for general
camera placement when there are more than three cameras. Since reconstruction
using three or less cameras is limiting, we instead design our volumetric warping
function to approximate the constant footprint property for an arbitrary number
of images.

Fig. 3. Example of a 2D voxel space that satisfies the constant footprint property for
two images. Notice that the two filled in voxels project to the same number of pixels
in the right image, regardless of their respective distance from the camera. Note that
this figure is solely used to illustrate the constant footprint property; the warped voxel
space developed and used in this paper actually looks like that of Figure 2 (b).

3.1 Frustum Warp

In this subsection, we describe a frustum warp function that is used to warp
the exterior space. We develop the equations and figures in two dimensions for
simplicity; the idea easily extends to three dimensions.
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The frustum warp assumes that both the interior space and the pre-warped
exterior space have rectangular shaped outer boundaries, as shown in Figure 4.
The pre-warped exterior space is divided into four trapezoidal regions, bounded
by (1) lines l connecting the four corners of the interior space to their respective
corners of the exterior pre-warped space, (2) the boundary of the interior space,
and (3) the boundary of the pre-warped exterior space. We denote these trape-
zoidal regions as ±x, and ±y, based on the region’s relative position to center
of the interior space. These regions are also shown in Figure 4.

Let (x, y) be a pre-warped point in the exterior space, and let (xw, yw) be the
point after warping. To warp (x, y), we first apply a warping function based on
the region in which the point is located. This warping function is applied only
to one coordinate of (x, y). For example, suppose that the point is located in the
+x region, as depicted in Figure 5. Points in the +x and −x regions are warped
using the x-warping function,

xw = x
xe − xi

xe − |x| , (1)

where xe is the distance along the x-axis from the center of the interior space to
the outer boundary of the exterior space, and xi is the distance along the x-axis
from the center of the interior space to the outer boundary of the interior space,
shown in (a) of Figure 5. A quick inspection of this warping equation reveals its
behavior. For a point on the boundary of the interior space, x = xi, and thus
xw = xi, so the point does not move. However, points outside of the boundary
get warped according to their proximity to the boundary of the exterior space.
For a point on the boundary of the exterior space, x = xe, and so xw = ∞.

Fig. 4. Boundaries and regions. The outer boundaries of both the interior and exterior
space are shown in the figure. The four trapezoidal regions, ±x and ±y are also shown.

Continuing with the above example, once xw is computed, we find the other
coordinate yw by solving a line equation,

yw = y + m(xw − x), (2)

where m is the slope of the line connecting the point (x, y) with the point a,
shown in (b) of Figure 5. Point a is located at the intersection of the line parallel
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to the x-axis and running through the center of the interior space, with the
nearest line l, as shown in the figure. Note that in general, point a is not equal
to the center of the interior space.

(a)

(b)

Fig. 5. Finding the warped point. The x-warping function is applied to the x-coordinate
of the point (x, y), as the point is located in the +x region. This yields the coordinate
xw, shown in (a). In (b), the other coordinate yw is found by solving the line equation
using the coordinate xw found in (a).

As shown above, the exterior space is divided into four trapezoidal regions for
the two-dimensional case. In three dimensions, this generalizes to six frustum-
shaped regions, ±x, ±y, ±z; hence the term frustum warp. There are three
warping functions, namely the x-warping function as given above, and y- and
z-warping functions,

yw = y
ye − yi

ye − |y| (3)

zw = z
ze − zi

ze − |z| , (4)
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In general, the procedure to warp a point in the pre-warped exterior space is as
follows.

1. Determine in which frustum-shaped region the point is located.
2. Apply the appropriate warping function to one of the coordinates. If the

point is the in ±x region, apply the x-warping function, if the point is in the
±y region, apply the y-warping function, and if the point is the ±z region,
apply the z-warping function.

3. Find the other two coordinates by solving line equations using the warped
coordinate.

After reconstruction, we intend the model to be viewed from near or within
the interior space. For such viewpoints, voxels will project to approximately the
same footprint in each image.

3.2 Other Warping Functions

The frustum warp presented above is not the only possible warp. Any warp
that does not move the outer boundary of the interior space, and warps the
outer boundary of the pre-warped exterior space to infinity, while satisfying the
criteria that no gaps form between voxels, and that no voxels overlap, is valid.
Furthermore, it is desirable to choose a warping function that approximates the
constant footprint property for the cameras used in the reconstruction as well as
the camera placements during new view synthesis. An example of an alternative
warping function is one that warps radially with distance from the center of the
reconstruction volume.

4 Implementation Issues

Reconstructing a scene using a warped reconstruction volume poses some new
challenges, described in this section.

4.1 Cameras Inside Volume

Perhaps the most difficult challenge is that of having the cameras embedded
inside the reconstruction volume. Typically, when one uses a standard voxel
coloring algorithm, the cameras used to take the photographs of the scene are
placed outside of the reconstruction volume, so that at least two cameras have
visibility of each voxel. The photo-consistency measure used in voxel coloring
algorithms, qualitatively, determines if all the cameras that can see a voxel agree
on its color. This photo-consistency is poorly defined when a voxel is visible from
only one camera.

Since the warped reconstruction volume can occupy all space, cameras get
embedded inside the voxel space, as shown in (a) of Figure 6. Our reconstruction
algorithm initially assumes that all voxels are opaque. Therefore, camera views
are obscured, and the cameras cannot work together to carve the volume. This
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poses a problem, since to be properly defined, the photo-consistency measure
requires that at least two cameras have visibility of a voxel. Consequently, the
voxel coloring algorithm cannot proceed, and terminates without removing any
voxels from the volume.

To address this issue, we must remove (pre-carve) a section of the voxel
space so that initially, each surface voxel is observed by at least two cameras,
validating the photo-consistency measure, as shown in (b) of Figure 6. There are
a variety of possible methods to achieve this result. A generic method is to have
a user identify regions of the voxel space to pre-carve. Obviously, the pre-carved
regions must only consist of empty space, i.e. not contain any scene surfaces
to be reconstructed. While effective, this method precludes a fully automatic
reconstruction. Alternatively, one can pre-carve the volume using a heuristic. For
example, if appropriate, one could require that the cameras have visibility of the
boundary between the interior space and the exterior space. Other heuristics are
possible. Once the pre-carving is complete, we execute a standard voxel coloring
algorithm using the warped voxel space.

(a) (b)

Fig. 6. Pre-carving operation. Reconstruction in the warped space causes the cameras
to be embedded in the voxel space, as shown in (a). For many camera placements, it
would be impossible to carve any voxels, since no voxel is visible to more than one
camera. We execute a pre-carving step in (b) so that cameras can work together to
carve the volume.

4.2 Preventing Visible Holes in the Outer Shell

Due to errors in camera calibration, image noise, inaccurate color threshold etc.,
voxel coloring sometimes removes voxels that should remain in the volume. Thus,
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it is possible that voxels on the outer shell of the voxel space will be deemed
inconsistent. Removing such voxels can result in unknown black regions similar
to those in Figure 1 during new view synthesis, as no voxel would project onto the
camera for some pixels in the image plane. Since one cannot see beyond infinity,
we do not carve voxels on the outer shell of the voxel space, independent of the
photo-consistency measure.

5 Results

We have modified the GVC and GVC-LDI algorithms [2] to utilize the warped
voxel space. We created a synthetic data set, called “marbles”, consisting of
twelve 320 x 240 images of five small texture mapped spheres inside a much
larger sphere textured with a rainbow-like image. We reconstructed the scene
using a voxel space that consisted of 48 x 48 x 48 voxels, of which the inner 32
x 32 x 32 were in the interior space and unwarped. The voxel space was set up
so that the five small texture mapped spheres were reconstructed in the interior
space, while the larger sphere, making up the background, was reconstructed in
the exterior warped space. Sample images from the data set are shown in (a) and
(b) of Figure 7. A reconstruction was performed using the warped voxel space.
The reconstruction was projected to the viewpoints of (a) and (b), yielding (c)
and (d). Note that the background environment was reconstructed using our
warped voxel space.

Next, we took a series of ten panoramic (360 degree field of view) photographs
of a quadrangle at Stanford University, using a Panoscan1 digital camera. These
photographs had resolution of about 2502 x 884 pixels. One photograph from
the set is shown in Figure 8 (a). We have found that when reconstructing an
environment, it is preferable to use large field of view images, as objects far
from the cameras are visible in many photographs. This achieves a sufficient
sampling of the scene with fewer photographs. A voxel space of resolution 300
x 300 x 200 voxels, of which the inner 200 x 200 x 100 were interior voxels, was
pre-carved manually by removing part of the voxel space that containing the
cameras. Then, the GVC algorithm was used to reconstruct the scene. Figure 8
(b) shows the reconstructed model reprojected to the same viewpoint as in (a).
Note that objects far away from the cameras, such as many of the buildings and
trees, have been accurately reconstructed. New synthesized views are shown in
(c) and (d) of the figure.

Despite the successes of this reconstruction, it is not perfect. The sky is very
far away from the cameras (for practical purposes, at infinity), and should there-
fore be represented with voxels on the outer shell of the voxel space. However,
since the sky is nearly textureless, cusping [7] occurs, resulting in inaccurate
computed geometry, apparent in an animated sequence of new views of the re-
construction. Reconstruction of outdoor scenes is challenging, as surfaces often
do not satisfy the Lambertian assumption. To compensate, we used a higher con-
sistency threshold [7], also resulting in some inaccurate geometry. On the whole,
1 www.panoscan.com
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though, the reconstruction is reasonably accurate and produces convincing new
views2.

6 Conclusion

In this paper we have proposed extensions to voxel coloring that permit recon-
struction of a scene using a warped voxel space, in an effort to comprehensively
reconstruct objects both near and far away from the cameras used to photo-
graph the scene. We have presented a frustum warp function, which describes a
method to warp the voxel space to model infinite volumes while maintaining the
requirements that no voxels overlap and no gaps form between the warped vox-
els. We have presented results showing the ability of this approach to reconstruct
a background environment, in addition to a foreground scene.

(a) (b)

(c) (d)

Fig. 7. Original images of the marbles data set are shown in (a) and (b), and a re-
construction projected to the same viewpoints of (a) and (b) is shown in (c) and (d),
respectively.

2 An animation showing new synthesized views of our Stanford scene is available online
at www.ece.gatech.edu/users/slabaugh/projects/warp.
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(a)

(b)

(c)

(d)

Fig. 8. Results for the Stanford scene. One of the ten panoramic photographs is shown
in (a). The reconstructed model, projected to the same viewpoint as that of (a) is
shown in (b). New synthesized panoramic views are shown in (c) and (d).
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7 Future Work

Since voxels can warp to points infinitely far from the camera centers, using
z-values (such as in a z-buffer) to establish depth order can be problematic
due to a computer’s finite precision. We are interested in exploring alternate
methods, such as painter’s algorithms, to determine depth order of voxels during
reconstruction and rendering.
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