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Abstract

The detection of image features is an essential com-
ponent of medical image processing, and has wide-
ranging applications including adaptive filtering, seg-
mentation, and registration. In this paper, we present
an information-theoretic approach to feature detection
in ultrasound images. Ultrasound images are corrupted
by speckle noise, which is a disruptive random pattern
that obscures the features of interest. Using theoretical
probability density functions of the speckle intensity dis-
tributions, we derive analytic expressions that measure
the distance between distributions taken from different
regions in an ultrasound image and use these distances
to detect features. We compare the technique to classic
gradient-based feature detection methods.

1. INTRODUCTION

Ultrasound is one of the most commonly used med-
ical imaging modalities. Compared to other modalities
such as X-ray, MR, and PET, ultrasound scanning has
many advantages, as it is fast, portable, relatively low
cost, and presents virtually no risk to the patient.

However, the primary limitation of ultrasound is
image quality. Ultrasound images are corrupted by
speckle noise, an interference pattern resulting from the
coherent accumulation of random scattering in a reso-
lution cell of the ultrasound beam. While the texture
of the speckle does not correspond to any underlying
structure, the local brightness of the speckle pattern is
related to the local echogenicity of the underlying scat-
terers. The speckle has a detrimental effect on the image
quality and interpretability, and renders the detection of
features in an ultrasound image as a difficult problem.

This work focuses on detecting salient edges in ul-
trasound images. For edge detection, the most popu-
lar approaches, such as the Canny edge detector [3],
are based on gradient operators. The detector in this

paper is perhaps most closely related to more recent
information-theoretic methods such as [1]. However,
unlike this method, our detector is designed for specific
use with ultrasound images as it is based on speckle
noise models. It differs from other ultrasound fea-
ture detection methods like the “sticks” approach [2] as
our detector uses Rayleigh or Fisher-Tippett models, is
based on information theory, and has a very simple im-
plementation.

In this paper, we derive analytic expressions us-
ing the J-divergence to characterize the difference be-
tween ultrasound image regions that are modeled us-
ing Rayleigh or Fisher-Tippett distributions, which have
been derived in the literature for modeling image in-
tensities in speckled images. By comparing adjacent
speckled regions in various directions (such as horizon-
tally an vertically), we form a detector that identifies
salient features embedded in speckle. We demonstrate
the usefulness of our feature detector and compare its
performance to other well-known operators, including
the derivative of Gaussian, Canny edge detection, and
non-parametric edge detection.

2. STATISTICAL MODELING OF UL-
TRASOUND SPECKLE

Figure 1 gives an overview of the ultrasound im-
age formation process. After the RF data from the
transducer is demodulated, one obtains an complex in-
phase/quadrature image, Qj(x,y). In the case of fully
formed speckle, which is typically assumed when the
number of scatters per cell is greater than ten [4], it has
been shown that the speckle in Qy(x,y) has a complex
Gaussian distribution,
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where Qy(x,y) is complex. To produce a real image, en-
velope detection is performed by taking the magnitude
of Qr(x,y). It is can be shown that under this transfor-
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Figure 1. Block diagram of the ultrasound image formation process.

mation, the distribution in this magnitude image M (x,y)
becomes Rayleigh [5], i.e.,
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where M(x,y) is real. However, since M(x,y) has a
large dynamic range, it is customary to logarithmically
transform the image to produce an image I(x, y) suitable
for display. Under this transformation, the fully formed
speckle follows a Fisher-Tippett (FT) distribution,
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More discussion and derivations of these distributions
can be found in [4, 5, 6, 7].

2.1. Maximum Likelihood Rayleigh Estimator

Given a region Q in M(x,y), we would like to fit
the data to the Rayleigh distribution. To proceed, we
write the log likelihood of Equation 2 as ¢(M (x,y),0) =

In(fop(M(x,y))dxdy),
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Next, we can differentiate /(M(x,y), ) with respect to
o, and set this expression to zero to determine the max-
imum likelihood estimate of 62,
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Thus, given a region Q, we can compute the maximum
likelihood value of the parameter 62 from the image
intensities in the region assuming the Rayleigh distribu-
tion.

2.2, Maximum likelihood Fisher-Tippett esti-
mator

Similarly, by forming the log likelihood of Equa-
tion 3, we find an expression for o2 that is the maximum
likelihood estimator of the FT distribution,
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3. INFORMATION-THEORETIC
MATCHING OF REGIONS IN UL-
TRASOUND IMAGES

In this section we derive analytic expressions for
measuring the distance between two distributions, p and
g, taken from different windows of the image. Later, we
will use these expressions in our feature detector.

3.1. Kullback-Liebler
Divergence

Divergence and J-

The Kullback-Liebler divergence, or relative en-
tropy [8], is an information-theoretic measure between
two distributions. The relative entropy D(p||q) mea-
sures the inefficiency of assuming that a distribution is
g when the true distribution is p. The Kullback-Liebler
(KL) divergence is defined as

p(x)
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In this definition, we follow the convention of defining
0In3 =0 and plnZ = 0. It is well-known that the KL
divergence is asymmetric, that is, D(p||q) # D(q]||p).
However, one can symmetrize the KL divergence using
the J-divergence, J = w. It is useful to think
of the J-divergence as a measure of the distance between
two probability distributions, p and q.

)

3.2. Derivation of Rayleigh Case

For an image that can be modeled locally with
Rayleigh distributions, we form a distribution p in one
window of pixels, and another distribution ¢ in an-
other window of pixels, and model each window with
a Rayleigh distribution, i.e.,

p(M(x,y)) = M) br(xs)?/20F)
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where M(x,y) is the intensity at pixel (x,y) in the mag-
nitude IQ image and 612 and 622 are the parameter of
each respective distribution. Then, we would like to



compute the J-divergence between the two distributions
as a measure of how “different” the regions are. In the
derivation below, we replace M(x,y) in these expres-
sions with x for simplicity. Furthermore, we derive the
expression for D(p||g) from which we can determine
D(q||p) by symmetry to get J:
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Expanding the In term yields
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which, after some mathematics, gives
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Therefore, the J-divergence is then
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where 612 and 622 are determined from Equation 2.
3.3. Derivation of Fisher-Tippett Case

In the Fisher-Tippett case, we model regions p and
q as Fisher-Tippett distributed regions with different pa-
rameters, 0'12 and 0'22. We derive an analytic expression
for the Kullback-Liebler divergence of two regions de-
scribed by Fisher-Tippett distributions, as
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which, after some mathematics, gives
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The J-divergence is then
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where 612 and 622 are determined from Equation 3.
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4. FEATURE DETECTION

At this point, we have tools in place to optimally
estimate Rayleigh and Fisher-Tippett distributions in a
region of an image. Furthermore, given two regions, we
have an analytic expression for the distance between the
distributions based on the J-divergence. In this section,
we describe how these tools can be used for feature de-
tection in ultrasound images.

4.1. Gradient-like Operator

One of the most commonly used methods to detect
features in an image is the image gradient, computed
via convolution of the image with a bandpass kernel,
which is often modeled as the derivative of a Gaussian
function. For example, the derivative kernel K, (x,y) in
the x-dimension is
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where 62 and 03 are the variance in the x and y di-
mensions, respectively. Similarly, a kernel K, (x,y) =



K, (x,y)T can be found for the y dimension. The gra-
dient can then be determined from G, (x,y) = Ky(x,y) *
I(x,y), Gy(x,y) = Ky (x,y) xI(x,y), where I(x,y) is the
image. The feature map is then simply the gradient
\/G?+G2. In Figure 2 (b), we show

this gradient magnitude operator for a cardiac ultra-
sound image, for 0, = 0, = ¢ = 2.5. The gradient is
sensitive to the speckle, which causes significant clutter
in the feature map. While increasing the variance helps
“blur over” the speckle, the effect of the speckle is still
apparent in the feature map, and furthermore, larger val-
ues of o blur detected edges, resulting in poorer local-
ization.

In contrast, in our approach we use sliding win-
dows, which are placed on either side of a pixel, as
shown for two windows wy and w; in Figure 2 (a). We
apply our FT model to I(x,y), and our Rayleigh model
to M(x,y); here we describe the FT case. Given the set
of pixels in wy, we determine a FT parameter 612 using
Equation 3, and likewise, we estimate 622 in wy. Then,
we compute J-divergence between these two distribu-
tions using Equation 17 as a measure of how different
the regions are. When the windows are placed to the
left and to the right of the pixel, this gives a horizon-
tal distance map Jy(x,y) that is functionally similar to
the gradient operator in the x direction, except that the
values are non-negative. This can be repeated in the y
direction. Here, we define a feature map Fj(x,y) as

magnitude, F =
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Figure 2 (c) shows an example of a cardiac ultrasound
image and its feature map F;. Note that this feature
detector only picks up the most salient features and is
much less distracted by the speckle compared to the gra-
dient estimator.

The only real parameter to this feature detection
method is the window size. Increasing the window size
gives a better statistical modeling of the distribution’s
parameter in the window, and varies the scale of the
features detected. For example, in Figure 3 we show
the effect of changing the window size. We observe
that the size of the features detected is proportional to
the window size.

Another example is shown in Figure 4 for a le-
sion phantom. In (a), we show the original image. In
(b), we show the J-divergence feature map applied to
M(x,y) using the Rayleigh distribution, and in (c) we
show the J-divergence feature map applied to I(x,y) us-
ing the Fisher-Tippett distribution, both using a win-
dow size of 7 by 7. Note that the results in (b) and
(c) are nearly identical, which suggests our modeling
is correct. In (d), we show the derivative of Gaussian

feature detector, which was performed using ¢ = 2.5,
for which the detected features have approximately the
same size as those in (b) and (c). In (e), we show the
output of the Canny operator, which was optimized to
detect the salient edges while minimizing false detec-
tion of speckle edges. Finally, in (f) we show the out-

put of using the J-divergence non-parametrically, i.e.,

computing J = w for Parzen-windowed his-

tograms. This latter method results in false detections
due to speckle compared to the parametric methods.
Compared with these other methods, our parametric
feature detectors have a strong feature response while
at the same time mitigating false responses due to the
speckle.

5. CONCLUSION

In this paper, we presented an information theoretic
approach to detect features in ultrasound images. Our
feature detector is computed using the J-divergence of
two Rayleigh or Fisher-Tippett distributed variables es-
timated from windows in the image. We demonstrated
the ability of our method to detect features in ultrasound
images and compared to other common feature detec-
tors. For future work, we are interested in fully vali-
dating the method and using it in applications such as
filtering and segmentation.
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Figure 2. Gradient-like feature detection in a cardiac ultrasound image. Image (a), gradient (b),
and J-divergence feature map (c) computed on the log magnitude 1Q image using the Fisher-Tippett
method. Please see the digital version of the images for maximal quality.
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Figure 4. Different ultrasound feature detectors on a lesion phantom image. Original image (a),
Rayleigh (b), Fisher-Tippett (c), Derivative of Gaussian (d), Canny (e), Non-Parametric (f).



