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Abstract

Seginentation of ultrasound images is a challenging problem due to speckle, which corrupts
the image and can result in weak or missing image boundaries, poor signal to noise ratio, and
diminished contrast resolution. Speckle is a random interference pattern that is characterized by
an asyminetric distribution as well as significant spatial correlation. These attributes of speckle
are challenging to model in a segmentation approach, so many previous ultrasound seginen-
tation methods simplify the problem by assmmning that the speckle is white and/or Gaussian
distributed. Unlike these methods, in this paper we present an ultrasonnd-specific segmenta-
tion approach that addresses hoth the spatial correlation of the data as well as its intensity
distribution. We first decorrelate the image and then apply a region-based active contonr whose
motion is derived from an appropriate parametric distribution for maximun likelihood image
segmentation. We consider zero-mean complex Gaussian, Rayvleigh. and IMisher-Tippett Hows,
which are designed to model fully formed speckle in the in-phase/quadrature (IQ), euvelope
detected, and display (log compressed) images, respectively. We present experimental results
demonstrating the effectiveness of our method. and compare the results to other parametric

and non-parainetric active coutours.

Key words: Ultrasound image scginentation. speckle decorrelation, zero-mcan complex
Gaussian flow, IMisher-Tippett distribution, Fisher-Tippett distribution, variational and level

sct mcethods



Introduction and Literature

Segmentation is a fundamental problem in ultrasound image processing and has numerous
important clinical applications, including anatomic modcling. changce quantification, and
image-guided interventions/therapy. While ultrasound systems are continually improving
by increasing their spatial and temporal resolution. a [undamental limitation to image
quality is speckle, an interference pattern resulting from the coherent accuimulation of
random scattering in a resolution cell of the ultrasound beam. While the texture of the
speckle does not, correspond to any underlying structure, the brightness of the speckle
pattern is related to the local cchogenicity of the underlying scatterers. The speckle
appears as a spatially corrclated noisc pattern and has a detrimental cffect on the image
quality and interpretability. T'or example. Bamber and Dalt (1986) have shown that due
to speckle, the detectability of lesions in ultrasound is significantly lower compared to

X-ray and Magnetic Resonance (MR).

Since the speckle obfuscates the structures of interest. it also poses a difficult challenge
{o segmentation algorithms. Numerous ultrasound segmentation papers have appeared in
the literature; a recent survey by Noble and Boukerroui (2006) reviews methods up to the
vear 2005. In this body of literature, many papers assuine the intensities in an ultrasound
image arc spatially uncorrelated and/or the follow a Gaussian distribution. While these
assumptions render the problem more tractable, as Michailovich and Tannenbaum (2006)

arguce, thev arc oversimplifications that arc unnatural to ultrasound imagine.

We concur with Noble and Boukerroui (2006), who argue that by modeling the immaging
physics of ultrasound, it is possible to derive ultrasound-specific segmentation techniques
that are more successtul than generic methods. In this class of ultrasound-specific meth-
ods, some aithors have presented techniques designed for non-Gaussian image statistics,
starting with the exponential distribution pioneered by Chesnaud et al (1999). as well as

Rayleigh, Sarti et al (2005). Ganuna, Tao and 'Tagarve (2005). and Beta, Martin-l'ernandez



and Alberola-T.opez (2005) distributions. Other related statistical image segmentation
methods include Ayed et al (2005). who use Gamma distributions for SAR image seg-
mentation. Ayed et al (2006), who cousider the Weibull distribution, and nonparametric
image segmentation sechniques such as Kim ct al (2005); Unal ct al (2005). Llowever, such
methods assmne that the image pixels are spatially uncorrclated, which is generally not
a valid assumption for ultrasound images. and this has an impact on both the derivation

ol the technique as well as the cllectiveness ol the scgmentation method.

Comnercial ultrasound scanncers tyvpically cinploy log compression to the cuvelope-detected
image in order produce a display image with a suitable dvnamic range for presentation
on a monitor. This log compression operation signilicantly changes the intensity distri-
bution ol the speckle; translorming [ully formed speckle [rom a Rayleigh distribution to
a Lisher-Tippett distribution. as described by Michailovich and Adam (2003); Dutt and
Greenleaf (1996). Previous segmentation work based on image statistics does not address

this issue, and is instead designed to work only with the envelope-detected iinage.

Our Contribution

In this paper we present an ultrasound-specific segmentation approach that addresses
hoth the spatial correlation of the speckle data as well as its intensity distribution. The
approach rclics on two steps. First, we decorrelate the ultrasound imagce by applying a
whitening [ilter. This liltering operation is designed {o remove the spatial correlation ol
the data, while maintaining its diagnostic information. l'o our knowledge, this is the first
paper to address the segmentation of decorrelated images. On the decorrelated image,
where the assumption of spatial independence of the pixels is more appropriate. we present
a unificd analysis of statistical region-based scgmentation algorithms for the complex
Gaussian, Rayleigh. and Fisher-Tippett distriburions, which correspond to fully formed
speckle in the TQ), envelope detected image, and display images, respectively. Another

original contribution is the derivation and use of an active contour to segment inages



modeled by complex Gaussian and Fisher-Tippett distributions. We model the curve using
a level set approach, which provides sub-pixel resolution and easily handles topological
changes, while our flows (active contour motion equations) drive the contour to relevant
structures in the image. Experimentally, we compare our ultrasound-specific segmentation
approaches to other parametric and non-parametric region-basced scgmentation methods.
Our hypothesis is that by modcling the speckle, both in terms of its spatial corrclation
and intcnsity distribution. betier scgmentations will be produced. This claim is justilicd
by our experimental resulls, which show the improvement ol our parametric flows to other

region-based segimentation methods.

We note that a preliminary version of this work appearcd in Slabaugh ct al (2006). In
this paper we expand on that work. providing more details, and presenting segmentation
mcthods for the imaging chain after demodulation. Specifically, we consider scementation
ol the complex TQ) image, cnvelope detected image, and display image. A ncw [caturc ol
this paper is the complex Gaussian (low [or the complex T(QQ image. and we show how it
is similar to the Rayleigh flow for the envelope detected nnage. Additionally. we provide
more experimental results of our methods, including comparisons with non-paramectric

image scgmentation.

Materials and Methods

We begin with a brief review of the standard ultrasound nmmage formation model in order
to lay the foundation of our segmentation methods, which are based on the statistics of
speckle. Due to space limitations this review is very brief; further details can be found
in Michailovich and Adam (2003): Dutt and Greenleaf (1996); Wagner et al (1983); Good-

man (2005).

As shown in T'igure 1, an in-phase/quadrature (IQ) image is obtained by applying de-

modulation to standard radio-frequency (1) data from the transducer. This B-mode 1Q



image is complex and is the inpul to our system.

Intensily Disiribulion

Speckle is an interlerence pattern resulting from the coherent accumulalion ol random
scattering in a resolution cell of the ultrasound beam. In the case of fully formed speckle,
which is typically assumced when the munber of scatterers per cell is greater than ten Dutt
and Greenleaf (1996), it is assumed that cach scatterer contributes an independent ran-
dom complex component, resulring in a random walk in the complex planc. If onc applics
the central limil theorem to the random walk, one observes that the distribution is a

zero-mean Gaussian probability density [unction (PDI") in the complex plane, i.e.,

pz(g):2ﬂ_o_2€ |2]°/(207) (])

where z is complex. This PDF modecls the data in the TQ image. To produce a real image
[or display. envelope detection is performed by taking the magnitude ol the IQ image. Tt
is fairly straightforward to shiow that under this transformation, the distribution i the

maguitude image is Rayleigh Goodman (2005), i.e.,
U 2/(902
px(@) = e T, 2)

where x is real. T'ypically. the magnitude iinage has a large dynamic range, and therelore
the standard is to log-compress the image to produce an image suitable for display. Taking
the natural log, i.c., Y = In(X), one can derive the distribution in the display image,

-1

) (3)

dy

py(y) = vx(x) I

using dy/dx = 1 /2 = ¢7¥, and normalizing, to get
py(y) = 2ex7 exp ([2y — In(207)] — exp([2y — In(207)]) (n

which is a doubly exponential distribution that has the [orm ol a IMisher-Tippett distri-

bution. This distribution therefore is the theoretical model for the iinage intensities for



[ully formed speckle in the log-compressed magnitude 1Q image. Note thal in this paper,
we use the terms magnilude image and envelope-delecled image interchangeably, and in

addition, we use the terms log magnitude and display image interchangeably.

To verify these theoretical models, we analyzed a real ultrasound image taken of a lesion
phantom (ATS Laboratorics Inc, Modcl 539). The image. shown in Figurc 2. was acquired
using a Siemens Sequoia 512 system using a 6C2 transducer and [requency of 5.5 V[Hz.
I'rom different depths. we selected three image regious (each indicated by a white box)
correspouding to the soft tissuce, where the primary variation in the image intensity is due
the speckle. In these regions, we formed a histogram. shown in right-most column. of the
pixcl intensitics. Naturally, for the IQQ image, this is a two-dimensional histogram formed
over the rcal and imaginary componcents ol the signal. Next, we cstimate the standard de-
viation ol the complex Gaussian distribution of Equation 1 using the maximum-likelihood
estiiiator that will be described in the next section, and overlay the estimnated distribu-
tion, scaled to match the histogram. The complex distribution provides an excellent fit

to the histograms as demonstrated in the figure.

T'he envelope-detected image is shown in the lelt-most column ol Tigure 3: notice the
dark appearance resulting from the large dynamic rauge of the intensities. We show the
histogram of the selected region in the middle-left coluinn, and fit the histogram to a
Rayleigh distribution (using the maximum-likelihood estimator Sarti ot al (2005)) and
overlay the fit curve on top of the histogram. The Rayleigh distribution does an excellent

of modcling the statistics in these examples as demonstrated in the figure.

Finally, the display image, which is a typical presentation of an ultrasound image, is shown
in the right-middle column of Figure 3. For the same sclected regions, we fit (using the
maximum-likelihood estimator to be deseribed in the the next section) a Fisher-Tippett
distribution. which very accurately models the intensity distribution. Similar results were
[ound lor other solt tissue regions in the image. We repeat these experiments lor dillerent

regions of a real ultrasound image of a carotid artery, shown in I'igure 4. All the images



ol carotid arteries in the paper were acquired using a Siemens Sequoia 512 system with

a 81.9 transducer and a [requency ol 8.0 MHx.

I'ron this analysis we conclude that the complex Gaussian is indeed a good choice for
modeling the intensities of similar regions in the 1Q image, the Rayvleigh model is preferred
for the cnvelope-detected image, and the Fisher-Tippett distribution is preferred for the
display image. We also note that application of the Rayleigh distribution to the display
image is not ideal. as the Rayleigh and Fisher-Tippett distributions arc notably different.
Among other dillerences. the long tail ol the Rayleigh distribution is located to the right
ol the peak (positive skew), while in the I'isher-Tippett distribution. the long tail is
found ou the left side of the peak (negative skew). We argue that the distribution that
hest matches the data should be used in the segmentation approach. Later we will derive

variational flows for region-based scgmentation based on these three distributions.

An issue for consideration is the sample size needed to estimate the distributions. Inti-
itively. once would expect that when the sample size is small. the cstimared paramcter
ol the distribution is less reliable than when the sample size is large. 'I'he phenomenon
can be studied by deterinining confidence intervals of the estimator as a function of sain-
ple size, as shown in Figure 5 for the Rayleigh estimator using the method described
in Johmson ct al (1995). This plot shows the estimated parameter (solid curve) as well
as 95% confidence intervals (dashed curves) as a function of samples for samples taken
from a window of the carotid image in Figure 4 (g), averaged over ten realizations (scts
ol samples [rom the window) Lo characterize the trends that generalize independent re-
alizations of the experimment. 'I'he figure shows that when the number of samples is very
few (e.g., one to three samples). there is little confidence in the estimated parameter, as
the dashed curves are far from the solid curve. ITowever, the confidence interval hecomes
significantly tighter as more samples are used to estimate the distribution. Asymptoti-
cally, as the number of samples becomes infinite, the confidence interval shrinks to zero.
We expect similar results lor the other distributions. As an empirical rule ol thumb, at

least five pixels should be used to provide a reasonable estimmation of the distribution.



However, more pixels provide a better statistical estimation.

Finally. we should note rhat non-Raylcigh scattering can occur in the magnitude im-
age when the number ol scatlerers is low, their spatial locations are not independent,
or the scattering is not dilluse. In these cases, numerous distributions for modeling the
ultrasound image intensities have been proposed, including the Homodyned K, Rice,
Nakagami. Weibull, Generalized Gaussian, and Rician-Inverse Gaussian (RilG) distribu-
tions Eltoft (2006); Michailovich and Tannenbaum (2006). It is beyond the scope of this
papcr to consider all these cases, and how these distributions transform upon taking the
log ol the image. Indeed, many ol these distribulions are intractable analytically. Fortu-
nately. in Michailovich and Tanmenbaum (2006), the authors argue that the distribution

for fully formed speckle is a reasonable approximation in these other cases.

Spatial Correlation

At this point we have characterized the image intensity distribution, but we have not yet
addressed its spatial correlation, which renders ultrasound as arguably one of the more
challenging medical immaging modalitics with which to work. To understand this spatial
correlation. we assume a standard image formation model where the backscattered signal
and the tissue reflecrivity function obey a simple relationship based on lincar systems
theory. Under the assumption ol linear wave propagation and weak scattering, the 1Q
image is considered (o be the resultl of the convolution ol the point spread [unction (PSI¥)

of the imaging systemn with the tissue reflectivity function. i.e.,

9x.y) = [(x.y)*h(z,y) + u(z.v) ()

where g(r,y). f(r.y), and h(x,y) denote the IQ image. the tissue reflectivity function,
and the PSF. respectively. The additive term (2, y) describes measurement noise and
physical phenomena that are not covered by the convolution model. In the equation above,

the received 1Q) image g(x,y) is considered to be a filtered version of the true reflectivity



[unction [(z.y). The spatial extent ol the PSF is dependent upon the size ol the aperture
as well as the [requency ol the ultrasound imaging. Since the PSI" is essentially a finite
bandwidth low-pass filter, it imparts non-negligible spatial correlation to the 1Q image.
The corrclation can be measured experimentally by calculating the half-bandwidth of the
antocovariance function of the magnitude IQ image, as shown in Figure 6. This function
has a notable bandwidth indicating the sparial correlation of the data: estimated sizes
(computed as twice the hall-bandwidth) arc 4.34 and 2.45 pixcls. respectively. Clearly,
speckle in any real imaging situation has signilicant spatial correlation that should be
addressed by an ultrasound segmentation method. Thus, we can improve upon previous
algorithins that assume that the speckle is a white noise process. To address the spatial
corrcelation, we first transform the IQ image using a whitening filter that decorrelates
the data, resulting in another 1Q image with pixcls that corrclate less than the original

imagc.

Decorrelation

We perform whitening of speckled images Iraca et al (1939) by the use of a decorrclation
procedure proposed in Michailovich and Tannenbaum (2006), which estimates the PSI"
using wavelet metlhods. I'hen, it is possible to suppress the correlation by “undoing” the

effect of the PSFE through deconvolution.

The speckle in the processed image has significantly less spatial corrclation. as depicted
in Tigure 7; the hall-bandwidth size has decreased Lo 2.36 pixels in the lateral dimension
and 1.70 pixels in the range dimension. Visually, this decorrelated iimage appears to have
a higher spatial resolution as finer details become apparent. While there may still exist
somle residual correlation in the image after processing, we use the term “decorrelated

image” to describe the image after the decorrelation filter has been applied.

It is natural to wonder if the decorrelation affects the intensity distributions. T'o check,



we repeated the previous experiment ol [itting Rayleigh and Fisher-Tippett distributions
Lo histograms [ormed over the same solt tissue region in the phantom image. As demon-
strated 111 Figure 8, the decorrelation does not significantly affect the distributions, so we

infer that the models still hold.

Maximum Likelihood Region-Based Segmentation

In this section we introduce ultrasound-specific flows for segmentation using region-based
active coutours. For simplicity, we derive the variational flow for Fisher-Tippett distribu-
tions of the display image. For this, we derive the maximum likelihood estimator for this
distribution as well as the maximum likclihood region-bascd (low lor curve cvolution flor
segmentation. Similar derivations (not presented [or conciseness) lor the complex Gaus-
sian and Rayleigh distributions (corresponding to the 1Q and euvelope-detected image)
arc performed, and the resultant estimators and flows are presented. We show that the
Rayleigh flow of Chesnand et al (1999); Sarti et al (2005) is similar to the zero-mean

complex Gaussian Hlow for the IQ image.

In a spirit similar to Chan and Vese (2001), we will evolve a contour embedded as the
zero level set of a higher dimensional function based on statistical measures computed
hoth inside and outside the contour. For this, we will need to estimate a Fisher-Tippett

distribution given a sct of samples from the image.

Mazximum, likelihood Fisher-Tippett estimator

Let [(x,y) denote a pixel intensity in the display imnage at the location («, y). As stated

previously, the Fisher-Tippett PDF for a pixel’s intensity can be written as

I >2 f(.):.y)—]n(?rrg)—62’(”’“‘/)_'"\272) .
piie.g)) — 2emnel ) ©)



where o2 denotes the standard deviation parameter ol the rellectivity samples. For a

region €2 in the image. the log likelihood can then be expressed as

. 1 ra 2 2I(z.y)—1n(202 ,
(= / <1112 + 52 +2I(.y) — In(207%) — H @Yl )) dady. (7
Q o?

Next, we find an expression for o that is the maximum likelihood estimator of the [l

distribution, by taking the derivative of £ and sctting the expression equal to zcro,

o/ 1 Ao () —luze?)\ A0 /
— /Q <_ -+ (cm )= ln(2 >> 92) dzdy = 0. (8)

Jdo . g3 207 20

Solving for o= gives

b

a1k (0 — 1) dady

2 Jo dedy ' )

Thus. given a region (! with area given by |, dzdy. we can compute the maximum like-
lihood value of the Fisher-Tippett distribution fromn the image inteusities in the regiomn.
We will do this to estimate the Fisher-Tippett parameter o2 both inside and outside the
active contour. Note that we used this cquation to cstimmate the FT distributions shown

in Figures 3, 4, and 8.

Fisher-Tippell (low

We would like to deform a curve C in order to achieve a maximuin likelihood segmentation
of the data. Since the log function is monotonic, we can equivalently maximize the log
likelihood Chesnaud ct al (1999); Sarti ct al (2005), using the probability inside and
outside the curve. I’; and P,. where I’ and I,. In the display image. we model PP, and D,
with I'isher-Tippett distributions inside and outside the contour, respectively. Specilically,

the data-driven part of the curve evolution is derived as
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where N is the outward-bound normal to the curve. As is typical with curve evolution
mcthods, we add a rcgularization term designed to keep the cvolving contour smooth,

vielding

P 2 2I(zy) _ 2I(zy) _
;; _ (,h,l S L_e Ly u/{) N. (11)

2 2 2
o; 207 20
where & is the curvature, «v is a constant. Performing similar derivations for the complex
Gaussian case (IQ image) and Rayleigh case (Magnitude image). we present [lows [or

these distributions in Table 1. Note that the complex Gaussian and Rayleigh flows and

estimmators have the same form.
Implementation

The curve evolutions presented above are {otlally general in thal they apply to any closed
contour representation. be it a spline. polygon. l'ourier descriptor curve, or other such
representation. The method requires an initial closed contour C, which in this paper is a
small squarce positioned by the uscer. For the region inside C. we compute the maximuin
likclihood paramcter o? to characterize the distribution of intensitics. Similarly, for the
region outside the contour, we compute ¢2. With these parameters estimated, we can
then move the points on the contour in the direction specilied by % along its normal

direction using the corresponding (low.

We choose to imiplement the technique using level set methods, which provide subpixel
resolution and easily accommodate topological changes of the contour. The level set
method models the evolving curve as the zero-level set of a higher-dimensional signed

distance function. ¢(x,%), which is negative inside the contour and positive outside. The

99(z.y)
Al

valucs ol ¢(r,y) arc updated as a [unction of time as = —F |V¢|, using a [orward



Luler munerical scheme, where F— % - N. For further details, please refer to Sethian

(1999).

In Slabaugh et al (2006), we demonstrated that lor log-compressed images, the I'isher-
Tippett flow produces better results. both qualitatively and quantitatively, than the com-
plex Gaussian/Rayleigh flow. Intuitively, this result is expected as one should choose the
flow that best matches the data. For log-compressed images, this suggests that the Fisher-
Tippett flow would be optimal. In our results section, we will compare the Fisher-Tippett
[low to two other popular [lows that have appeared in the literature: the Chan-Vese
flow Chan and Vese (2001) and the non-parametric [low Cremers et al (2007). 'To review
briefly, the Chan-Vese flow is based on the means inside and outside the contour, 1.e..

oC

T ((7—M¢)2—(T—uo)2+%) N, (12)

where p; and u, arc the mcans inside and outside the contour. respectively. The non-

parametric [low is given by

‘?)(f _ (m (;’((g) 4 CYH) N. (13)

where p;(I) and p,(I) are the probabilitics of a pixel with intensity I being inside and
outside the contour, respectively. determined (rom Parzen windowing the histogram ol

pixels inside and outside the contour. respectively.

Results

In Figure 9, we show comparisons between the Chan-Vese, non-parametric, and Fisher-
Tippett flows for synthetic images with decreasing contrast. The images were generated
using a speckle noise gencrator, which multiplics zero-mean complex Gaussian noise to
an imagc and then simulates the PSE by convolving with a Gaussian-weighted lowpass
[ilter. This produced a synthetic 1) image lor subsequent processing. The image in this

example consists of four light gray targets on a dark gray background. By changing



the background color, we produced three images with decreasing contrast. For all three
images. the standard devialion ol intensities in a homogeneous region was approximately
23.2 units, and the coutrast ratio (CR). defined as the ratio between the means of the
bright and dark regions, was 1.77, 1.55, and 1.4, respectively. ach image was decorrelated,
producing a total of six images. GGoing from left to right in Figure 9, the images were the
original image with contrast ratio 1.77. its decorrclated version, the image with contrast
ratio 1.55, its decorrclated version, the image with contrast ratio 1.4, and its decorrclated
version. I'or each image, we applied the Chan-Vese (Lop row ol the ligure), non-parametric
(middle row), and l'isher-Tippett (bottoin row) flows, using au initialization of a small

squarc (11x11 pixels) in the center of the target.

Qualitatively, the results in Figure 9 show some interesting trends. First, for higher con-
trast images (left two columns), all methods perform reasonably well on hoth she original
image and decorrelated image. This is because there is adequate separation between the
cstimated distributions (as measured by the mean, Parzen-windowed density. or FT pa-
rameter) inside and outside ol the evolving contour [or the curve to propagate Lo the
target boundaries. There are a few places in the original iinage (leftmost coluin) where
the methods break apart around large speckles; however, performing a connected com-
ponent analysis on the signed distance function, one could casily remove these. For the
lowered contrast images (middle two columns). the combination of the speckle and re-
duced contrast causes the scgmentatrions on the original images to et stuck in local
minima that do not match the target boundaries; the evolving contours break apart and
follow large speckles, producing a complex irregular shape. However. on the decorrelated
images, the flows achieve a much better result, and the Chan-Vese and Fisher-Tippett
flows achicve the hest segmentations. For she lowest contrast images (right two columns),
nonc of the segmentations arc successtul on the original image, and on the decorrelated
image, only the Fisher-Tippett flow is fully successtul in scementing the target. The
means used in the Chan-Vese llow are no{ sullicient [or this example, as the contrast is

too low. Also, using the histograms in the non-parametric method is not ideal, as the



histograms overlap signilicantly due to the poor contrast. Quantitalive results showing
the areas inside the converged contours are presented in 'l'able 2. 'I'he ground truth area
i1s 12868 units. We see that both qualitatively and quantitatively, the Fisher-Tippett flow

on the decorrelated image produced the best results compared to the other methods.

In Figure 10, we apply the Chan-Vese (top row), non-paramctric (middle row), and Fisher-
Tippett flows (bottom row) to a tumor phantom image and its decorrelated version. This
phantom has targets designed to mimic tumors. which appcar with different levels of
contrast. Fach segmentation was initialized by placing a small contour inside the tar-
gel al exactly the same location and size. 'I'he segmentation ol the brightest target is
shown in the left two columus, for the original and decorrelated images, respectively. As
obscrved with the experiments with synthetic data. when the contrast is very strong,
all methods are successful in delincating the borders of the target. However, when the
contrast decrcasces, the statistical modeling of the dara becomes important. In the sccond
two columns ol the ligure, we show the results lor the lighter target with less contrast.

Here, decorrelation of the data helps achieve better results for all the methods, but only

the Fisher-Tippett low applied to the decorrelated image achieves a successful result.

In Figure 11, we demonstrate our method on an image of the carotid artery. As before,
we show the Chan-Vese (top row), non-paramctric (middle row), and Fisher-Tippett
(bottom row) flows, applied to the original image (left column) and decorrelated image
(right column). We initialized cach scgmentation with a small square located in the left-
most side ol the artery. The objeclive is [or the segmentatlion Lo expand. to propagate the
length of the artery and achieve a good seginentation. When applied to the original immage,
both the Chan-Vese and non-parametric flows get stuck in local minima and fail to evolve
through the entire artery. Ilowever, the Fisher-Tippett flow in this case, with its better
matching statistical modcl of the intensity distribution, is able to propagate the length
of the artery. On the decorrelated image, all scementations improve to various degrees.
Both the Chan-Vese and non-parametric [lows propagale larther: however. they still get

stuck in a local minima. I'he best results for this experiinent occur for the Ifisher-"Tippett



[low on the decorrelated image.

Another example ol a carolid artery segmentation is shown in IYigure 12. As belore, we
initialize the segmentation with a small square in the leftinost side of the artery. On the
original image (left column), nonce of the flows is able to propagate the entire length of the
artery; however, the Fisher-Tippett flow (bottomn row), with its hetter modeling of the
data, goes much farther along the artery than the Chan-Vese (top row) or non-parametric
(middle row) [lows. On the decorrelated image (right column), only the Fisher-Tippett
[low propagales the entire length ol the artery, and achieves a reasonable segmentation

for this data.

We note that all of the flows studied in this paper arce region-based flows. One could
additionally add boundary-based terms Kass et al (1987); Casselles et al (1997), which
would drive the active contours rowards strong cdges in the image. However, since the
[ocus ol this paper is region-based image segmentalion, we leave this subject lor [uture

work.

Discussion and Summary

Onc question that has not yet been addressed is the following: which of the following pro-
duces the best results: the complex Gaussian flow, applied to the IQ image, the Rayleigh
[low. applied (o the envelope detected image, or the I'isher-Tippetl [low, applied to the
display nmage? The answer is that all flows produce the same result. Karlier. we showed
that the complex Gaussian flow applied to the 1Q image is identical to the Rayleigh flow
applicd to the envelope detected image. The Fisher-Tippett flow applied to the display
image, also produces identical results, as we demonstrate in Figure 13. The top row shows
the result of the Rayleigh flow applied to the envelope detected image (lefr) and display
image (right). and the bottom row we show the Iisher-Tippett [low applied envelope de-

tected image (left) and display iimage (right). The Rayleigh flow applied to the envelope



detected image produces the same result as the Fisher-Tippett [low on the display image.
In both these cases. we chose the [low that matches the data. However, the other seg-
mentations are unsuccessful, as the data does not match the model. More specifically, the
result in the upper right part of the figure models Fisher-Tippett distributed data with a
Raylcigh distribution. and the result in the lower left part of the fignre modcels Rayvleigh-
distributed data with a Fisher-Tippett distribution. This experiment emphasizes the fact

that onc should choosc the flow that best models the data.

In this paper we present ultrasound-specific methods for image segmentation. Speckle can
he difficult to handle since it exhibits significant spatial correlation and does not generally
follow a Gaussian distribution. Our method first decorrelates the ultrasound image nsing
a whitening lilter. We then perform maximum likelihood scgmentation using region-bascd
aclive contours and either the complex Gaussian, Rayleigh, or I'isher-"T'ippett distribution
model, depending on from which stage of the inaging pipeline the image comes. We have
derived the complex Gaussian flow and Fisher-Tippett flows, and have shown how the

complex Gaussian flow is cquivalent to the Rayleigh flow.

In this work, our piecewise constant model assumes that the image is bimodal mixiure ol
(complex Gaussian. Rayleigli, or 1'T') distributions. This inodel is effective for a wide class
of image segientation problems, including the ones presented in this paper. Ilowever, the
model can be extended in several ways. First, a multi-phase scgmentation approach Vese
and Chan (2002), using multiple level set functions to model different tissne classes can
be used to produce multi-label seementations. For images with staristics that vary spa-
tially in a piecewise smooth [ashion, one could adapt the Mumlord-Shah model Mumlord
and Shal (1989) for the distributions presented in this paper. However, multi-phase in-
plementations aud piecewise smooth modeling of the image statistics are left for future

work.

We believe our method may impact clinical workllows that utilize automated computa-

tional tools involving segmentation. One class of such tools is computer-aided diagnosis



applications that make measurements ol anatomical structures. For example, one may
be interested in the overall tumor load in a patient’s anatomy. the regression or progres-
sion of lesions 1 follow-up scans so that accurate delineations of tumor boundaries are
kuown, and automated tools rather than manual outlining arc required for efficiency and
repeatability of the analysis. A similar application would be in image-guided therapies
that rely upon ultrasound gunidance, as well as radiation therapics that require accurate
dclincation ol lesion boundarics. The application ol the mcthod in such workllows is lelt
for [uture work. We note thal our method can be extended to 3D image volumes in a
straightforward manner since our implicit framnework generalizes to the 3rd dimension by

adding an cxtra coordinate dimension in the implenentation.

In all our experiments, we observed the best results when when we first decorrelate the
image and then apply the flow that best matches the intensity distribution. We observe
that our ultrasound-specific flows produce hetter results than other generie paramectric
or non-paramectric lows. From these experimental results we conclude that the combined
decorrelation and statistical region-based active contour results in improved scgmenta-
tions. Tor [uture work. we are interested in more comprehensive validation studies on
clinically important cases. I'inally, we believe the theory underlying this paper will be
useful in other applications, such as filtering, tracking, and registration; we plan on in-

vestigating these topics in the future.
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Table 1
Flows
Orig. Dec. Orig Dcc Orig. Dec.
CR=177 | CR=1.7T | CR=1535| CR=155| CR= 141 | CR = 1.4
Chan-Vese 13021 12898 2906 2753 3713 2380
Non-Parametric 13037 13051 0721 12481 1831 9782
Fisher-Tippett 12946 12930 6772 12831 5049 12486
Table 2

Areas of the different segmentations in Figure 9. Ground truth ares is 12868 units. Contrast

ratio (CR) is defined as the ratio between the means of the bright and dark regions
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cut parts of the IQ) image. Lett colummn: real part of the IQ image, middle-left coluinn: iimaginary

part of the IQ image, right column: complex Gaussian distribution fit to histogram. We sclect

regions iu the near-ficld (top row), mid-ficld (iuiddle row) aud far-ficld (bottom row).
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Figure 3. Using Raylcigh and Fisher-Tippett distributions to model ultrasound image intcnsitics
in dillerent parts ol the image. Lelt columu: cnvelope-detected image with region sclected,
middle-left column: Raylcigh distribution [it Lo intensitics in region, middle-right column: display

imagce with region sclected, right column: Fisher-Tippett distribution [it to intensitics in region.

We sclect regions in the near-ficld (top row), mid-ficld (middle row) and far-ficld (bottom row).
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image of a carotid artery. For cach row, left to right: magnitude image, Rayleigh distribution

(it to the histogram, display image, FT distribution fit to the histogram.
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Figurc 5. Coulidcuce iutervals f[or the Rayleigh cstimator as a [unction ol number ol samples
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Figure 6. The aulocovariance function of the sclected region from Figure 3 (a) is shown in the
lateral (horizontal) dimension in (a) and the range (vertical) dircction (b). The corresponding

result for the decorrclated image is shown in (c) and (d).



Figure 7. Decorrelation decreases speckle size. Original image (a) and decorrclated image (b).
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Figure 8. Previous distributions apply Lo the decorrelated image (or the region in the middle of
the image (corresponding to 3 (a) and (c¢). The Raylcigh fit to the magnitude TQ decorrelated

image is shown in (a), and the Fisher-Tippeltl it to the log magnitude decorrclated TQ image

is shown in (b).



Figurc 9. Comparison ol scgmentations ol synthctically gencrated data. Top row: Chan-Vese
flow. Middle row: Non-paramctric flow. Bottom row: Fisher-Tippett fow. Left to right: We
show both the original and the decorrelated image for three decrcasing contrasts. For higher
contrast images, all methods work rcasonably well. For lowered contrast, decorrclating the
image improves the results significantly. For the lowest contrast, the best result occurs for the

Fisher-Tippett Nlow applied Lo the decorrelated image.



Figure 10. Chan-Vesc (lop row). non-parametric (middle row), and Fisher-Tippett Now (bottom
row) applied to a tumor phantom image. Left two columns: segmentation of the brightest target,
on the original (left) and decorrclated (right) image. Right two columns: scgmentation of a target
with less contrast, for the original (left) and decorrclated (right) image. When the contrast
diminishes, it becomes increasingly important to decorrelate the image as well as usc the most

appropriate flow for the intensity distribution.



Tigure 11. Segmentation of a carotid image. Chan-Vese (top row). non-parametric (middle row),
and Fisher-Tippett flow (bottom row). Original (left cohmun) and decorrelated image (right

column). The best results occur for the Fisher-Tippett flow ou the decorrelated image.



Figure 12. Another example carotid artery scgmentation. Chan-Vese (top row), non-parametric
(middle row), and Fisher-Tippell low (bottom row). Original (Ieft column) and decorrclated
image (right column). The best results occur for the Fisher-Tippett flow on the decorrelated

imagc.



Figure 13. Choosing the model that best matches the data. 1n the top row, we show the complex
Gaussian / Rayleigh flow applied to the envelope-detected image (left) and display image (right).
Ilere, the model matches the data for the example on the left but not on the right. Iu the bottom
row, we show the Fisher-Tippett flow applied to the envelope-detected image (left) and display
image (right). llere, the model matches the data for the example on the right but not on the
left. Furthermore, we note that the examples in the upper left and lower right of this figure

produce identical results.



