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Abstract

This paper addresses the problem of calibrating camera parameters using variational methods. One problem

addressed is the severe lens distortion in low cost cameras.For many computer vision algorithms aiming at

reconstructing reliable representations of 3D scenes, thecamera distortion effects will lead to inaccurate 3D

reconstructions and geometrical measurements if not accounted for. A second problem is the color calibration

problem caused by variations in camera responses that result in different color measurements and affects the

algorithms that depend on these measurements. We also address the extrinsic camera calibration that estimates

relative poses and orientations of multiple cameras in the system, and the intrinsic camera calibration that estimates

focal lengths and the skew parameters of the cameras. To address these calibration problems, we present multi-view

stereo techniques based on variational methods that utilize partial and ordinary differential equations. Our approach

can also be considered as a coordinated refinement of camera calibration parameters. To reduce computational

complexity of such algorithms, we utilize prior knowledge on the calibration object, making a piecewise smooth

surface assumption, and evolve the pose, orientation, and scale parameters of such a 3D model object without

requiring a 2D feature extraction from camera views. We derive the evolution equations for the distortion coefficients,

the color calibration parameters, the extrinsic and intrinsic parameters of the cameras, and present experimental

results.
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I. I NTRODUCTION

The problem of recovering a 3D representation of a scene frommultiple 2D images has been one

of the main research interests in computer vision. Many of the existing stereo techniques involve pre-

processing the camera images to extract 2D features such as corners, lines, and contours of objects in the

scene. These features are then used to find correspondences between camera views. In practice, searching

for features and establishing correspondences is not an easy task due to noise and local extrema. Early

variational approaches to the 3D reconstruction problem were pioneered by Faugeras et.al. [1] who also

relied on local feature matching. A more recent variationalapproach by Yezzi and Soatto [2, 3] proposed

a joint region-based image segmentation and simultaneous 3D stereo reconstruction technique. This paper

addresses camera calibration techniques built on this later stereo reconstruction framework that avoids

searches for local correspondences and is versatile enoughto accommodate the new applications to be

shown. A tradeoff is achieved by making a piecewise smooth object assumption and a constant background

assumption, however, extraction of 2D features from given camera views are not required.

Camera calibration refers to the problem of finding the mapping between the 3D world and the camera or

image plane. For most computer vision algorithms aimed at reconstructing reliable digital representations

of 3D scenes, accurate camera calibrations are essential. There has been a great deal of research on

camera calibration problem as early as in 70’s [4]. In most ofthe previous techniques, some set of

features are extracted from images of a known calibration pattern, and intrinsic camera parameters as

well as camera pose and orientation (extrinsic camera parameters) are estimated by a minimization of an

overall cost functional [5–13]. Many calibration techniques use both nonlinear minimization and closed

form solutions as in [14].

In this paper, we develop a coordinated refinement techniquefor the extrinsic camera parameters,

intrinsic camera parameters: lens distortion, focal lengths, skew, and also estimation of camera color
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calibration parameters in a coupled way within a multiple camera system1. For geometrical measurements,

an intrinsic camera parameter, the camera lens distortion,is an important issue, and will result in inaccurate

3D reconstructions if not taken into account. Another common problem in multi-view stereo techniques

is caused by color miscalibrations between cameras due to different sensor characteristics. Extrinsic

parameters of the cameras on the other hand, determine the relative poses and orientations of cameras,

and their correct estimation is one of the first phases of a camera calibration system.

A. Relation to Previous Work and Contributions

1) Lens Distortion: The ideal pinhole camera model leads to imaging of world lines as lines on the

image plane, and simplifies many computations and considerations [6]. However, for most real cameras

with wide-angle or inexpensive lenses this assumption doesnot hold, and nonlinearities introduced by a

well-known phenomenon referred to as a lens distortion should be taken into account. The corresponding

distortion parameters should be estimated for each camera.

In many existing calibration techniques, good estimates for extrinsic and intrinsic camera parameters

are first obtained by a pinhole camera model neglecting lens distortion. Then distortion calibration is

performed while holding the other parameters fixed [17–19].This is possible because the mapping from

3D world coordinates to the 2D image plane can be decomposed into a perspective projection and a

mapping that models the deviations from the ideal pinhole camera.

A popular group of lens distortion calibration methods in the literature, mainly under the category known

as plumb line methods, rely on a first step of extracting edgesfrom the images. Either a user manually

selects the image curves or there must be a way to reliably estimate image edges which correspond to

linear 3D segments in the world. An optimization problem is set up by defining a measure of how much

each detected segment is distorted. The curved lines in the image which do not really correspond to 3D

line segments will constitute outliers in this optimization procedure [17, 20–23]. Other techniques such

1An initial version of this work that addresses lens distortion and color calibration can be found in [15] and [16], and an initial work

addressing extrinsic camera calibration appears in [3].
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as [24] rely on point correspondences. Given a set of 3D points, the associated epipolar and trilinear

constraints are arranged into a tensor, which is computed with estimated distortion parameters at each

step to minimize a reprojection error in an iterative manner. In another group of methods as in [25–27], a

direct solution strategy is employed to find camera calibration parameters by incorporating lens distortion

as well.

Our contribution is a new distortion calibration techniquethat does not rely on extraction of edges and

search for point correspondences. The former may not be an easy task due to noise and local extrema.

Instead, we devise an integrated calibration technique in which the distortion parameters of cameras are

computed in a tightly coupled framework. The desired coupling of multiple camera views comes from

estimating a common 3D object (in this case the calibration object). In other words, we minimize the

cost between the reprojection of the 3D calibration object and the image measurements by evolving the

distortion parameters of the cameras. In our distortion calibration algorithm, we use a white bar object,

made from a foam core as shown in Fig.1 on the left. We capture its views before a dark background

with the multi-view stereo rig system, a desktop multi-camera system designed for remote multimedia

collaboration, developed by HP Labs [28]. The images of the calibration object captured from three of

the five cameras in the rig are given in Fig.1. Many desktop multi-camera systems use wide angle and

inexpensive cameras which produce severe distortion effects as can be observed in the given images.

Fig. 1. Three out of five camera views of the real calibration object shown on the left.

As we will show, with this technique we can also incorporate other parameters of calibration into the

same variational framework and get their locally optimal estimates as well.

2) Color Calibration: Another common problem in multi-view stereo techniques is caused by color

miscalibrations between cameras resulting from variations in camera responses due to different sensor
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characteristics, ambient conditions like temperature, manufacturing differences, and so on. These yield dif-

ferent color measurements between cameras, and affect the algorithms that depend on these measurements.

Camera color calibration refers to the problem of estimatingthe color calibration parameters of cameras

to overcome these unwanted effects. A common approach takentoward this problem is to calibrate each

camera independently through comparisons with known colors on a color calibration object/environment

[28, 29].

The color calibration object we use, shown in Fig.2 is a colorcube with patches of known colors whose

Fig. 2. Photograph of the color calibration object.

images are captured from each camera. Demosaicing coefficients are calculated independently for each

camera based upon the absolute colors of the calibration object and the measured color responses of each

camera. Slight errors and differences that arise from this independent calibration procedure sometimes

lead to noticeable seams or discontinuities in the texture mapping process during the transition of the

texture map between neighboring cameras. Our goal is to helpeven out these discrepancies by devising

a relative inter-camera color calibration technique in which the demosaicing parameters of cameras are

calculated jointly in a tightly coupled framework rather than just one camera at a time.

Similar to our approach to lens distortion calibration, thedesired coupling of the multiple camera

views comes from estimating a common 3D shape, and in addition a common radiance function for the

calibration object (in this case, the color cube). We take advantage of the fact that the object shape is

known up to location and scale to simplify the problem. Hence, we estimate the pose parameters of the

cube, the radiance function on the cube, and the color calibration coefficients for each camera.

3) Extrinsic and Intrinsic Calibration: Following the same philosophy as mentioned in the other two

calibration problems above, extrinsic and intrinsic calibration parameters can be estimated in a variational

framework using the general stereoscopic framework of Yezzi-Soatto.
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It should be noted that due to differential nature of the estimation equations derived, the extrinsic

and intrinsic update equations require rough initial values. This is a well-known feature of almost all of

the recent state-of-the-art energy functionals used in segmentation (e.g., Mumford-Shah energy, geodesic

energy, ...), i.e., the solutions are locally optimal, hence starting far away from the real solution may lead

to solutions that get stuck at local extrema far from the desired solution. Nevertheless, the usefulness of

a refinement stage in extrinsic and intrinsic camera parameters will be demonstrated via the improvement

in the final 3D reconstructions. A nice feature of the methodology presented in this paper is that it can

integrate several different problems in geometric and color calibration into an overall unified system based

on the joint segmentation framework to evolve pose, color, distortion, extrinsics, and intrinsics.

The organization of this paper is as follows. We first presenta variant of the Yezzi-Soatto algorithm

in which a 3D object is allowed to move with a semi-affine motion model in Section II. We developed

this scheme for our applications in calibration, where the 3D object shape is roughly known (up to 3

scales and rigidity) to obtain more efficient and faster algorithms. We then present a novel technique for

lens distortion calibration in Section III and a novel technique for relative inter-camera color calibration

in Section IV. We apply the same calibration ideas for intrinsic camera calibration in Section V, and for

extrinsic camera calibration problem in Section VI. Conclusions and discussions are given in Section VII.

II. EVOLUTION EQUATIONS OF3D OBJECTMOTION PARAMETERS

The Yezzi-Soatto 3D stereo reconstruction model builds a cost on the discrepancy between the reprojec-

tion of a model surface with a radiancef : R
3 −→ R, the background (infinitely far away) with radiance

b : R
3 −→ R, and the actual measurements from multiple camera views. Let gi denote the transformation

from world coordinates to camera coordinates:gi : X −→ Xi = (Xi, Yi, Zi)
T , andπ denote the perspective

transformation from camera frame to the image plane:π : Xi −→ xi = (xi = Xi

Zi
, yi = Yi

Zi
)T .

On the image plane, the cost functional for the Yezzi-Soattomodel can be written as a joint segmentation

problem over regions ofn camera imagesIi with domainΩi = Ri∪Rc
i (Ri denotes the foreground region),
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and with 3 color channelsk ∈ (R,G,B):

E =
∑

k=R,G,B

n∑

i=1

∫

Ri

[fk((π ◦ gi)
−1(xi)) − Ik

i (xi)]
2dΩi +

∑

k=R,G,B

n∑

i=1

∫

Rc
i

[bk − Ik
i ]2dΩi (1)

This energy can be lifted back onto surfaceS :

E(S) =
∑

k=R,G,B

n∑

i=1

∫

S

[(fk(X) − Ik
i (π ◦ gi(X)))2 − (bk − Ik

i )2] Xi(X)σ(Xi)dA, (2)

where σ is the Jacobian of the change of coordinates from the image plane to the surface,Xi is the

visibility function of a voxel on the surface, anddA is the area measure of surfaceS. The deformation of

the surfaceS w.r.t. this energy or data fidelity measure is then obtained by finding the partial differential

equation (PDE) that is the gradient descent flow of the energyE. A popular class of numerical techniques

known as Level Sets Methods [30], is utilized to evolve the surfaceS via the evolution of a 3D function

Ψ : R
3 −→ R. Nevertheless, an update of the level set function is required after each iteration of the

associated PDE, and even with more efficient narrowband schemes [31], there is a considerable amount

of computation involved. For our intended applications, inwhich there is a calibration object whose shape

can be roughly known a priori, rather than deforming the surface of the 3D object, we will evolve its pose

and scale parameters instead. Next, using the energy E in Eq.2 we will derive the ordinary differential

equations (ODEs) to update the parameters of the surface motion modeled by a semi-affine transformation,

which is more general than a similarity but less general thana fully affine transformation.

Let the original rigid surface be denoted bySo, thenS = gs(So), or X = gs(Xo) = RsXo +Ts, and let

λ denote parameters of the rigid motiongs of the surfaceSo with rotationRs and translationTs. Then

the gradient of the energyE w.r.t. λ is given by:

∂E(λ)

∂λ
=

∑

k=R,G,B

∫

S

∑

i

F k
i (X) <

∂X

∂λ
,N > dA +

∂F k
i (X)

∂λ
dA

=
∑

k=R,G,B

∫

So

∑

i

F k
i (gs(Xo)) <

∂(gs
Xo)

∂λ
,RsNo > dAo

+ 2(fk(gXo) − Ik
i ) <

∂(gs
Xo)

∂λ
,∇fk

S > dAo (3)



8

whereF k
i = [(fk(X)− Ik

i (π ◦ gi(X)))2 − (bk − Ik
i )2] Xi(X)σ(Xi) is the Mumford-Shah term from Eq. 2

(also in [2]). The derivation follows from shape optimization tools [32] that provide the shape derivatives

in curve and surface evolution framework.N denotes the surface normal vector. Note that the visibility

functionXi(g
s(Xo)), included in the data termF k

i (·) is computed using the original visibility function but

compensated byRT
s (Ci−Ts) ), whereCi is a camera center. The second term in Eq.(3) is the region term

corresponding to the foreground object whereas the first oneis the boundary term. In our applications,

the background is modeled by a piecewise constant radiance,therefore we omit the background region

term in the equation.

For translation parameters:

<
∂(gs

Xo)

∂λ
,RsNo >= RsNo.

For rotation parameters:

<
∂(gsXo)

∂λ
,RsNo >=< Rs











0 Zo −Yo

−Zo 0 Xo

Yo −Xo 0











︸ ︷︷ ︸

X̂o

,RsNo >=<−RsX̂o,RsNo >, (4)

where we utilize exponential coordinates (see [33] for details on this representation) for the global rotation

parameters of the surface. We note that a matrix in an inner product expression, when operated on a vector,

will incorporate each of its row vectors in the inner productto result in a vector:< x1,x2, ...,xn,y >= (<

x1,y >,< x2,y >, ..., < xn,y >).

For further flexibility in initializing a model surface, we add three scaling parameters along theX,Y,

andZ axes. Then the semi-affine transformation for a pointXo on the surface becomes:X = gs(Xo) =

RSXo + T, whereS =











sx 0 0

0 sy 0

0 0 sz











. The gradient of the energy w.r.t. the scaling parametersλ = sj is

derived similarly to the above:

∑

k=R,G,B

∫

So

∑

i

F k
i (gs(Xo)) <

∂(gs
Xo)

∂λ
,RsNo > dAo



9

where

<
∂(gsXo)

∂λ
,RsNo > = < Rs

∂S

∂λ
Xo,RsNo > with e.g.

∂(gsXo)

∂s1

= Rs

∂S

∂s1

Xo = Rs











1 0 0

0 0 0

0 0 0











Xo = Rs











Xo.x

0

0











<
∂(gsXo)

∂λ
,RsNo > = < Rs





















Xo

0

0





















0

Yo

0





















0

0

Zo





















︸ ︷︷ ︸

RX
s

, RsNo > . (5)

The evolutions for the rigid motion parametersλ are then given by the gradient descent equations:

∂λ

∂t
= −

∂E

∂λ
= −

∑

k=R,G,B

∫

So

∑

i

F k
i (gs(Xo))

︸ ︷︷ ︸

F k

RsNo dAo, (for translation). (6)

∂λ

∂t
= −

∂E

∂λ
= −

∑

k=R,G,B

∫

So

F k < −RsX̂o,RsNo > dAo, (for rotation). (7)

∂λ

∂t
= −

∂E

∂λ
= −

∑

k=R,G,B

∫

So

F k < R
X
s ,RsNo > dAo, (for scaling). (8)

Here note that the visibility functionXi(g
s(Xo)) is computed using the original visibility function but

compensated by theS−1
R

T
s (Ci − Ts) ), whereS−1 =











1/sx 0 0

0 1/sy 0

0 0 1/sz











. Note that we can generalize

this idea in a straightforward fashion by consideringS to be more general than a simple diagonal matrix

in order to accommodate a fully affine motion of the surface.

We will use equations (6-7-8) in updating the pose of the surfaceS to estimate its correct placement

in the 3D space for the calibration applications presented in Sections III, and IV.
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III. L ENS DISTORTION CALIBRATION

The lens distortion is usually modeled by a function defined from the ideal image plane to the distorted

image plane. One approach is to decompose it into two terms: radial and tangential distortion [17]. The

radial distortion is a deformation along the radial direction from a center of distortion point to an image

point, and the tangential distortion is a deformation in a direction perpendicular to the radial direction,

and is negligible for many cameras. To model the radial distortion effects, a commonly used distortion

function D(r) is given by(1 + k1r
2 + k2r

4 + ...) wherer is the radius from the center of distortion to a

point on the ideal image plane. The principal point(u0, v0) is often used as the center for radial distortion

[6], which we will also adopt. Beloŵxi is the distorted image coordinates, andD is the distort function:

x̂i = Dxi = (1 + ki
1r

2 + ki
2r

4 + ...)xi, (9)

r2 = (x2
i + y2

i ), andki
j is the jth distortion coefficient for camerai. In Eq. 9, we assume thatk0 = 1,

which can be changed to an arbitraryk0 value.

A. Calibration of the Lens Distortion Parameters

Notation: World X−→|{z}
gi

Xi −→|{z}
π

xi =

0BBBBB� Xi

Zi
= xi

Yi

Zi
= yi

1

1CCCCCA −→|{z}
Lu 0 u0

0 Lv v0

0 0 1

(u, v) (image coordinates), whereD is the

distort function in Eq. 9, andLu andLv are the focal lengths. The gradient of the energy (1), assuming

a single image channel over the distorted image plane, w.r.t. distortion parameterski
j is given by

∂ki
j

∂t
= −

∂E

∂ki
j

= −

∫

ĉi

Fi((D ◦ π ◦ gi)
−1

x̂i) <
∂x̂i

∂ki
j

, n̂i > dŝ (10)

whereFi = (f − Ii)
2 − (b− Ii)

2, subscripti corresponds to each camera view, andn̂i denotes the normal

vector to the occluding boundarŷci of region Ri on the distorted image plane. We only consider the

boundary term (̂s is the arclength of the contour̂ci on the image plane: the distorted or actual image

coordinates) as we assume the foreground and background have constant radiance. We design the lens

distortion calibration object to satisfy this assumption.
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We want to lift this integral back onto occluding boundaryCi of the surface. Note that∂x̂i

∂kj
are given

by

∂x̂i

∂ki
1

= r2
xi,

∂x̂i

∂ki
2

= r4
xi, ...

∂x̂i

∂ki
j

= r2j
xi

hence

<
∂x̂i

∂ki
j

, n̂i > dŝ =< r2jπ(Xi), J
∂

∂s
(D ◦ π)Xi > ds =< r2jπ(Xi), JD′ ◦ π′

∂

∂s
Xi > ds (11)

whereJ denotes the2 × 2 ninety degree rotation matrix,D′ = (1 + k1r
2 + k2r

4 + ...), and

π′ =
1

Z2

i







Zi 0 −Xi

0 Zi −Yi







(12)

is the Jacobian of the perspective projectionπ. We can continue to simplify:

<
∂x̂i

∂ki
j

, n̂i > dŝ = r2jD′ < [π(Xi)]2×1,
1

Z2

i







0 1

−1 0













Zi 0 −Xi

0 Zi −Yi







[
∂Xi

∂s

]

3×1

> ds

=
r2jD′

Z2

i

<







Xi

Yi







1

Zi

,







0 Zi −Yi

−Zi 0 Xi







[
∂Xi

∂s

]

3×1

> ds

=
r2jD′

Z3

i

<











0 −Zi

Zi 0

−Yi Xi

















Xi

Yi







,
∂Xi

∂s
> ds =

r2jD′

Z3

i

<











−ZiYi

ZiXi

0











,
∂Xi

∂s
> ds

Noting that











−ZiYi

ZiXi

0











= Xi ×











Xi

Yi

0











, we have< ∂x̂i

∂kj
, n̂i > dŝ = r2jD′

Z3

i

< −











Xi

Yi

0











× Xi,
∂Xi

∂s
> ds, and

<
∂x̂i

∂ki
j

, n̂i > dŝ = −
r2jD′

Z3
i

< Xi ×
∂Xi

∂s
,










Xi

Yi

0










> ds = −
r2jD′

Z3
i

< ||Xi||Ni,










Xi

Yi

0










> ds. (13)

Substituting Eq.(13) into Eq.(10), we get the calibration equation

∂ki
j

∂t
=

∫

Ci

Fi

r2jD′||Xi||

Z3

i

< Ni,











Xi

Yi

0











> ds (14)
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for the lens distortion parameterski
j. Note that the distortion calibration method we propose canhandle

different models of distortion by changing theD function, and related derivatives in Eq.(14).

B. Using Several Poses of the Object

When camera views from multiple poses of the object are available, we can take advantage of the

existence of variously distorted views in calibrating the lens distortion. In the first phase, we estimate

both pose and distortion coefficients from separate experiments. To simplify the explanation, let us assume

that we want to solve for only one distortion coefficientki
1 for each camerai. Once we obtain rough

estimates for the object pose and distortion coefficientski
1, we can fuse a “common distortion”̃ki

1 from

these separate experiments for each camerai and then jointly evolvẽki
1’s as follows:

∂k̃i
1

∂t
=

Mposes
∑

m=1

∫

Ci,m

Fi,m

r2jD′||Xi,m||

Z3

i,m

< Ni,m,











Xi,m

Yi,m

0











> ds. (15)

At the same time, we evolve the pose parameters of separate poses of the object as described in Section II,

the only difference being the incorporation of the new “common distortion” in the equations. For instance,

we evolve any of them for a given pose as follows:

∂λ

∂t
= −

∑

i

∫

So

Fi(g
s(Xo)) <

∂(gs
Xo)

∂λ
,RsNo > dAo (16)

whereFi includes computation ofIi(D · π · gi (gs(Xo))) with the new common distortion coefficientsk̃i
1

in the multiplying distortion factorD.

C. Experimental Results

For our calibration algorithm, we initialize a surface model of the real calibration object which is shown

from several vantage points in Fig.3. After initializing the surface, the first phase of our algorithm is to

evolve its pose parameters to position the 3D object model roughly in the correct location in 3D space.

For the experiments presented here captured via HP Labs’ stereo rig system, we used three different poses

of the calibration object, but we can increase the number of poses used in the process. Example evolutions
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of the pose parameters are shown in Fig.4, for three different pose captures of the calibration object in

each column (showing only one camera view for each pose). Thedistortion coefficients are also evolved

at a slower pace. That is, the time step used in the associatedODE is small in the first phase. In the

experiments, the distortion functionD in (9) with one distortion coefficientk1 for each camera is used.

After the separate evolutions for each of the poses have converged, common initial distortion coefficients

are computed as the average of the results from phase 1. In thesecond phase of the algorithm, we evolve

the distortion coefficients for each camera again separately but summed over different poses. We show

sample views of pose 1, 2, and 3 in row 1 of Fig.s 5-6-7. As the distortion coefficients converge to true

values, the reprojection of the surfaces onto the distortedviews results in a better match to the image data

and continues to minimize the overall energy. Such images with reprojections are shown on the second

row of Figures 5-6-7. The undistorted views shown as well on the third row. The straightening effect of

this operation on the curved lines can be clearly observed inthese images.

IV. COLOR CALIBRATION

For color calibration, the differences in absolute colors measured in the response of each camera are

modeled by a simple multiplicative factor in each of color RGBchannel measurements and an additive

offset parameter.

The first variation of our energy functionalE using this model leads to gradient descent flows:

∂E

∂αi,k

=−

∫

Ri

[fk−(αi,kI
k
i +βi,k)]I

k
idΩi−

∫

Rc
i

[bk−(αi,kI
k
i +βi,k)]I

k
idΩi, (17)

∂E

∂βi,k

=−

∫

Ri

[fk−(αi,kI
k
i +βi,k)]dΩi−

∫

Rc
i

[bk− (αi,kI
k
i +βi,k)]dΩi. (18)

for the color calibration parametersαi,k and βi,k for each camerai, andk ∈ {R,G,B}, whereIk
i , fk,

and bk are from one of the three color channels{R,G,B}. Note that one can extend this framework to

RGGB images in a straightforward fashion.

In our test calibration experiments, we utilized white noise additive offsets and multiplicative scaling

coefficients to perturb the measured images, thereby exaggerating the effect of color miscalibrations. On
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a synthetically created example in Fig.8, where the correctgeometry and radiance function are known,

we show such miscalibration effects on the original views, and views during the evolution ofαi’s and

βi’s in Eq.s (17-18), and views after these parameters have converged. In addition, in Fig.9, the curves

depict the trueα andβ values for all nine camera views, and the convergence of the estimated parameters

towards the real values.

Similarly in Figure 10, the color cube with original colors are shown from some camera views first,

then shown after their color calibration parameters are perturbed. Finally, the convergence of the color

parameters results in a corrected set of colors as shown in the views. Also shown in Figure 11 are the

evolutions of the color calibration parameters for the shown views. We have to note here again that due to

relative calibration framework among cameras, the updatedparameters may not always result in absolute

values but still provide useful outputs for the multi-camera systems.

V. I NTRINSIC PARAMETER CALIBRATION

We show the evolution of three of the main intrinsic camera parameters: focal lengths, denoted byLu

andLv for each of the coordinates on the image plane, and the skew parametera. Inclusion of the skew

parameter between the two plane coordinates leads to an intrinsics matrix of the form

π =










Lu a u0

0 Lv v0

0 0 1










,

then the Jacobian of the perspective transformation becomes (compare to Eq. 12):

π′ =







Lu/Zi a/Zi −LuXi/Z
2
i − aYi/Z

2
i

0 Lv/Zi −LvYi/Z
2
i







=
1

Z2
i







LuZi aZi −LuXi − aYi

0 LvZi −LvYi







.

The derivatives of the image coordinates w.r.t. each of the intrinsic parameters are computed from the

overall energy functional as before (similar to our derivations of the lens distortion calibration parameters

in Section III):

∂E

∂Lj

=
∑

k=R,G,B

∫

Ci

[(fk − Ik
i )2 − (bk − Ik

i )2]
︸ ︷︷ ︸

F k

〈 ∂xi

∂Lj

,ni

〉
ds.
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For the focal length parameterLu, we have

<
∂xi

∂Lu

,ni > ds =

〈
∂πCi

∂Lu

,
∂

∂s
Jπ′Ci

〉

ds

=

〈

∂

∂Lu







LuXi/Zi + aYi/Zi

0







,
1

Zi
2







0 LvZi −LvYi

−LuZi −aZi LuXi + aYi







[
∂Xi

∂s

]〉

ds (19)

=
1

Z3

i

〈











0 −LuZi

LvZi −aZi

−LvYi LuXi + aYi

















Xi

0







,
∂Xi

∂s
> ds =

1

Z3

i

< Lv











0

ZiXi

−YiXi











,
∂Xi

∂s

〉

ds.

Noting that











0

ZiXi

−YiXi











= Xi ×











Xi

0

0











, then for the focal length parameterLu we obtain:

<
∂xi

∂Lu

,ni > ds =
1

Z3

i

< −Lv











Xi

0

0











× Xi,
∂Xi

∂s
> ds

= −
Lv

Z3

i

< Xi ×
∂Xi

∂s
,











Xi

0

0











> ds = −
Lv||Xi||

Z3

i

< Ni,











Xi

0

0











> ds. (20)

Due to the skew parameter, the equations for the second focallength parameterLv will be slightly different.

This time incorporating the derivative w.r.t.Lv in Eq. 19 :

<
∂xi

∂Lv

,ni > ds =
1

Z3

i

<











0 −LuZi

LvZi −aZi

−LvYi LuXi + aYi

















0

Yi







,
∂Xi

∂s
> ds =

1

Z3

i

<











−LuZiYi

−aZiYi

LuXiYi + aY 2

i











,
∂Xi

∂s
> ds

Again noting that











−LuYiZi

−aZiYi

LuXiYi + aY 2

i











= Xi ×











−aYi

LuYi

0











, then for the focal length parameterLv, we have:

<
∂xi

∂Lv

,ni > ds = −
||Xi||

Z3
i

< Ni,










−aYi

LuYi

0










> ds. (21)
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Note that when the skew parametera is 0, which is a widely used convention, the above equation reduces

to a symmetric form of the Eq. 20 derived forLu.

Finally, we derive similarly the update equations for the skew parametera:

<
∂xi

∂a
,ni > ds =

1

Z3

i

<











0 −LuZi

LvZi −aZi

−LvYi LuXi + aYi

















Yi

0







,
∂Xi

∂s
>=

1

Z3

i

< Lv











0

ZiYi

−Y 2

i











,
∂Xi

∂s
> ds.

This time noting that











0

ZiYi

−Y 2

i











= Xi ×











Yi

0

0











, then for the skew parametera, we have:

<
∂xi

∂a
, ~ni > ds = −

Lv||Xi||

Z3

i

< Ni,











Yi

0

0











> ds. (22)

The final evolution equations for the three intrinsic parameters for each camera i are then given by:

∂Lu,i

∂t
= −

∑

k=R,G,B

∫

Ci

F k Lv

Z3

i

< ||Xi||Ni,











Xi

0

0











> ds (23)

∂Lv,i

∂t
= −

∑

k=R,G,B

∫

Ci

F k 1

Z3

i

< ||Xi||Ni,











−aYi

LuYi

0











> ds (24)

∂ai

∂t
= −

∑

k=R,G,B

∫

Ci

F k Lv

Z3

i

< ||Xi||Ni,











Yi

0

0











> ds (25)

In Figure 12 a synthetic color cube example is shown. The intrinsic parameters, focal lengthsLu, and

Lv, are initialized to perturbed values and when the intrinsiccalibration update equations have converged,

both the projections of the cube surface onto the images and the evolution of the focal lengths are shown.
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VI. EXTRINSIC CAMERA CALIBRATION

We now consider the same energy functional as a function of the extrinsic calibration parameters

Λi = (λi1, . . . , λi6) for each camera imageIi. Notice that the only term in our energy functionalE which

depends uponΛi is the corresponding fidelity term inEdata (due to the dependence ofπ−1
i ), assuming a

constant background radiance in the scene :

Edata,i(S, f, b, Λi) =
∑

k=R,G,B

∫

Ri

(
fk(π−1

i (x̂)) − Ik
i (x̂)

)2
dΩi +

∫

Rc
i

(
bk − Ik

i (x̂)
)2

dΩi, (26)

wherex̂ denotes image coordinates as before (for simplicity of discussion, distortionD = 1).

A. Initial expression of gradient

If we let ĉi = ∂Ri denote the boundary ofRi then we may express the partial derivative ofE with

respect to one of the calibration parametersλij as follows.

∂E

∂λij

= boundary term+ foreground term

=
∑

k=R,G,B

∫

ĉi

((
fk(π−1

i (x̂)) − Ik
i (x̂)

)2
−

(
bk − Ik

i (x̂)
)2

)〈 ∂ ĉi

∂λij

, n̂i

〉
dŝ

+
∑

k=R,G,B

2

∫

Ri

(
fk(π−1

i (x̂)) − Ik
i (x̂)

)
〈

∇
S
fk

(
π−1

i (x̂)
)
,

∂

∂λij

π−1
i (x̂)

〉

dΩi (27)

In the boundary term,dŝ denotes the arclength measure ofĉi, andn̂i denotes its outward unit normal. In

the foreground term,∇
S

denotes the natural gradient operator on the surfaceS.

B. Rewriting the boundary term

Ultimately, we will compute all quantities by integrating along the current estimate of the surface since

that is the actual object represented by our data structures. Thus, it is more convenient to express the

contour integral around̂ci(ŝ) in the image plane as a contour integral aroundCi(s) on the surfaceS
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instead, (whereπi(Ci)= ĉi and wheres is the arclength parameter ofCi). They may be related as follows.

〈 ∂ ĉi

∂λij

, n̂i

〉
dŝ =

〈
∂

∂λij

πi(Ci),
∂

∂s
Jπi(Ci)

〉

ds, whereJ =







0 1

−1 0







=

〈

1

Z2

i







Zi 0 −Xi

0 Zi −Yi







∂ xi

∂λij

,
1

Z2

i







0 Zi −Yi

−Zi 0 Xi







∂Xi

∂s

〉

ds

=
1

Z3

i

〈

∂Xi

∂s
,











0 −Zi Yi

Zi 0 −Xi

−Yi Xi 0











∂Xi

∂λij

〉

ds

=
1

Z3

i

〈∂Xi

∂s
,
∂Xi

∂λij

× Xi

〉

ds =
1

Z3

i

〈 ∂Xi

∂λij

,Xi ×
∂Xi

∂s

〉

ds

=
‖Xi‖

Z3

i

〈 ∂Xi

∂λij

,Ni

〉

ds (sinceXi and ∂Xi

∂s
are perpendicular tangent vectors toS)

Thus, the boundary term written as an integral on the surfaceS (along the occluding contourCi) has

the following form:

∂λij

∂t
=

∑

k=R,G,B

∫

Ci

((
fk − Ik

i

)2
−

(
bk − Ik

i

)2
)‖Xi‖

Z3
i

〈 ∂gi

∂λij

,Ni

〉

ds, (28)

which is also the update equations for the extrinsic parameter j for camerai with a piecewise constant

assumption on the foreground and the background radiance.

C. Rewriting the foreground term

The first step in rewriting the foreground/background integrals is to re-express the derivative of the

back-projected 3D pointX = π−1
i (x̂, Λi) with respect to the calibration parameterλij in terms of the

derivative of the forward projectionπi(x, Λi) = π(gi(X, Λi)), sinceπi has an analytic form whileπ−1
i

does not. We begin by fixing a 2D image pointx̂ and note that

x̂ = πi

(
X(x̂, Λi), Λi

) (

whereX(x̂, Λi) = π−1
i (x̂, Λi) = g−1

i

(
π−1(x̂), Λi

))
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and thus differentiation with respect toλij yields:

0 =
∂

∂λij

πi

(
X, Λi

)
=

∂πi

∂X

∂X

∂λij

+
∂πi

∂λij

=
1

Z2
i







Zi 0 −Xi

0 Zi −Yi







∂gi

∂X

∂X

∂λij

+
1

Z2
i







Zi 0 −Xi

0 Zi −Yi







∂gi

∂λij







Zi 0 −Zi

0 Zi −Yi







∂gi

∂X

∂X

∂λij

= −







Zi 0 −Xi

0 Zi −Yi







∂gi

∂λij

(29)

Notice, though, that (29) does not uniquely specify∂X/∂λij but merely gives a necessary condition. We

must supplement (29) with the additional constraint that∂X/∂λij must be orthogonal to the unit normal

N of S at the pointX in order to obtain a unique solution.

∂X

∂λij

· N = 0

(

or equivalently
∂gi

∂X

∂X

∂λij

· Ni = 0

)

(30)

Now, combining equations (29) and (30), we have









Zi 0 −Xi

0 Zi −Yi

Nix Niy Niz










∂gi

∂X

∂X

∂λij

= −










Zi 0 −Xi

0 Zi −Yi

0 0 0










∂gi

∂λij

∂X

∂λij

= −

(
∂gi

∂X

)
−1










Zi 0 −Xi

0 Zi −Yi

Nix Niy Niz










−1 








Zi 0 −Xi

0 Zi −Yi

0 0 0










∂gi

∂λij

∂X

∂λij

=
−

(
∂gi

∂X

)−1

Zi(Xi · Ni)










ZiNiz + YiNiy −XiNiy Xizi

−YiNix ZiNiz + XiNix Yizi

−ZiNix −ZiNiy Zizi



















Zi 0 −Xi

0 Zi −Yi

0 0 0










∂gi

∂λij

∂X

∂λij

=
−

(
∂gi

∂X

)−1

Xi · Ni










Xi · Ni − XiNix −XiNiy −XiNiz

−YiNix Xi · Ni − YiNiy −YiNiz

−ZiNix −ZiNiy Xi · Ni − ZiNiz










∂gi

∂λij

∂X

∂λij

= −

(
∂gi

∂X

)
−1 (

I −
Xi ⊗ Ni

Xi · Ni

)
∂gi

∂λij

, (31)
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where⊗ is the Kronecker product, andI is the3 × 3 identity matrix.

The second step proceeds in the same manner as outlined earlier in rewriting the data fidelity terms in

Edata by noting that the measure in the image domaindΩi and the area measure on the surfacedA are

related bydΩi = σ(xi,Ni) dA whereσ(Xi,Ni) = (Xi ·Ni)/Z
3
i . Then the foreground term in Eq.(27) is

given by

∑

k=R,G,B

2

∫

Ri

(
fk − Ik

i

)
〈

∇
S
fk

(
π−1

i (x̂)
)
,

∂

∂λij

π−1
i (x̂)

〉

dΩi

=
∑

k=R,G,B

2

∫

π−1

i (Ri)

(
fk − Ik

i

)
〈

∇
S
fk(X),

∂X

∂λij

〉
Xi · Ni

Z3
i

dA (32)

Therefore, the following foreground term will be added to the update equation of the extrinsic parameter

in Eq.(28) :

∂λij

∂t
=

∑

k=R,G,B

−2

∫

π−1

i (Ri)

(
fk − Ik

i

)

Z3
i

〈

∇
S
fk(x),

(
∂gi

∂X

)
−1 (

(Xi · Ni)
∂gi

∂λij

−

(
∂gi

∂λij

· Ni

)

Xi

)〉

dA.(33)

In Figure 13, several photos from a set of 32 images of a toy skater doll are shown. When the initial

extrinsic parameters are off as observed in the projectionsof the foreground object onto the images (shown

by an orange mask), a visual hull created using the uncorrected extrinsic camera parameters is significantly

away from the real doll surface. After the extrinsic calibration equations (28) plus (33) are evolved to

convergence, visual hull created using the updated extrinsic parameters demonstrates the correction and

true refinement provided by the derived equations. In Figure14, we depict the extrinsic refinement stability

by showing the uncertainty ellipsoids drawn around each camera center. Parameters were perturbed in

x, y, z directions randomly several times, and converged properlyfor variations up to8%.

VII. R ESULTS AND CONCLUSIONS

The toy skater example shown in Figure 15 demonstrates the simultaneous evolution of the extrinsic and

intrinsic parameters for the 32 cameras, along with the projections of the foreground surface. The visual

hulls created with again the initial set of camera parameters and the evolved set of camera parameters

display a correct refinement of the camera parameters.
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For most of the experiments we utilized a1283 volume, and a140 × 150 × 360 volume for the Bust

dataset. With a volumetric signed distance representationin our C++ implementation without any code

optimization on a Pentium 2.40 GHz processor, each single iteration to compute all calibration gradients

takes on the order of 10 seconds depending on the number of camera views as well, and convergence

takes about 50-400 iterations depending on the initialization, hence a computation time of about 8-60

minutes. However, a mesh representation on the object may beeasier to work with since the parameter

update equations we derived are ordinary differential equations.

A common issue for any calibration procedure is that when there are shape symmetries or constant

radiance on the object, camera pose parameter estimation isnot stable, however, these do not affect the

3D reconstruction (e.g. multiple views on a sphere do not allow estimating camera pose, but they still

allow estimating the shape of the sphere). Regarding the radiance assumptions, because our algorithm

integrates information globally on the entire collection of images, it is far less sensitive to this accident

than algorithms based on local statistics, such as point feature correspondences. Therefore, symmetries are

not an obstacle since our goal is not to obtain the absolute calibration parameters (ground truth) but to help

refine 3D reconstruction. From this perspective, the only criterion of concern is the re-projection error.

We experimented with a full turn head sequence using Intel’sVang Gogh Bust data for testing the issue of

shape complexity. We utilized only 16 camera views from the available 330 camera images for ease and

speed of computations. We computed re-projection errors: aType II error (error of omission) and Type

I error (error of commission) by counts of voxels for severalcamera views used during our experiments

both after perturbation of the camera parameters and after evolution of the parameters as shown in Table 1.

After refinement stage, the Type I error dropped by95%, and Type II error dropped by40%. As remarked

above, our goal is not to obtain absolute camera parameters but to help 3D reconstruction algorithm to

obtain objects correctly, which is achieved.

The Bust data comprises of numerous views, and this facilitated the following experiment to show the

practicality of our calibration correction. For the three camera views, out of the 16 views, we deliberately
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used wrong camera calibration parameters, which belong to that of the neighbor views in the sequence in

Figure 16. This represents a possible perturbation in a reallife scenario, i.e. the cameras are accidentally

moved a little bit after the calibration and the views that are captured afterwards are a little bit off. The

3D reconstruction of the Bust object on the top right shows theerroneous surfaces obtained in this case.

With our coordinated refinement of the extrinsic parametersusing Eq.(28) and (33), the improvements in

the reprojection errors and the 3D reconstruction are observed in Figure 16.

A real color calibration experiment is carried out using HP Labs stereo rig system. We captured images,

shown in Fig.17, of the color calibration object from five cameras. Notice that the first picture is somewhat

darker than the others, second and third pictures appear lighter, and there is a color mismatch. A cube

surface is rigidly registered with the scene, also the radiance function on the cube is estimated as shown in

bottom row of Fig.17. The second row shows views after the evolution of color calibration coefficients are

completed. The third row shows the projections of the model surface onto the views. It can be visually

assessed that color responses of the cameras have achieved abalancing effect, and helped to obtain a

better texture mapping as well.

Next we demonstrate a calibration experiment using pictures from a handheld camera with no camera

calibration information available. In this scenario, the variational calibration techniques we presented

require some rough initial values that we obtained through aself calibration software currently under

development. We have a 13 set of pictures taken around the Statue of Liberty, covering about 220/360

degrees of a circle around the statue, a few of the views shownin Figure 18.2 We obtained initial camera

parameters: extrinsics and intrinsics including the skew parameter. A rough calibration results in the

projections shown in Figure 18. After evolution of the camera parameters: extrinsics, intrinsics including

the skew parameter, and color parameters, the comparison isdone with the visual hulls of before and

after evolution camera parameters in Figure 19. One can observe the correction in the Statue of Liberty

surface with a better set of camera parameters obtained withthe derived update equations throughout the

2We thank our colleague Irwin Sobel at HP Labs for providing these pictures.
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paper. We also show blow-up regions in Figure 20 from some of the camera views before and after the

evolution of the color camera parameters, and the colors aremodified towards achieving some relative

agreement among the cameras which can however only be subjectively judged.

A. Discussions

One may argue that the requirement of some rough initial extrinsic and intrinsic camera parameters

limits the usability of this technique. However, the refinement or correction of camera parameters from a

perturbed state of a previous calibration is a real world problem that constantly presents obstacles to the

usage of multiple camera systems. After a very good initial calibration, the cameras over time may see

small changes in their parameters. For instance, extrinsicparameters will often be changed particularly

due to unwanted accidental motion. Similarly, the intrinsics and color parameters of the cameras may

go through small variations due to ambient conditions and wear-off. Therefore, the presented camera

calibration framework proves to be a useful tool for multi-camera systems.

B. Conclusions

In this paper, we employed the 3D stereo techniques based on variational ideas to various camera

calibration refinement problems. We have presented new multi-view stereo techniques to:

• evolve pose parameters of a 3D model object to take advantageof the known shape of calibration

object, and to reduce computational complexity,

• evolve distortion parameters of cameras given a 3D model shape,

• evolve color calibration parameters of cameras given a 3D model shape,

• evolve intrinsic parameters of cameras,

• evolve extrinsic parameters of cameras.

Pros and cons of this technique are discussed as follows:

• A nice feature of the methodology presented in this paper is that it can integrate several small and

different problems such as distortion calibration, color calibration into an overall unified system based

on the joint segmentation framework, and simultaneously evolve pose, color, distortion, extrinsic, and

other parameters as well.
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• We make piecewise smooth object assumption and a constant background assumption, which may

be a limitation if the background is to be modeled as well. However, a background model may be

added to this framework if needed.

• The presented methods eliminate the need for search of imageedges, point correspondences from

images, which can be very sensitive to pixel-level noise whereas our approach being based on image

regions for comparisons, is not as sensitive to noise.

• Another advantage of our framework is that it easily accommodates additional data. In the more

classical approaches to stereo, bringing in more data, or adding more images to the algorithm might

not help all the time, that is if something goes wrong in the independent segmentation phase of

even one image, it destroys the whole process of reconstructions and geometry. On the other hand,

adding more data to this joint segmentation framework will only improve robustness, providing more

tolerance towards errors.

• For the distortion calibration method, more improvements may be obtained with utilizing more poses,

hence many more camera images of the calibration object, andmore than one distortion coefficient in

the model selected. One can also utilize more general/complicated distortion models than the simple

polynomialD function.

• Currently, we have an implicit representation of the calibration objects, i.e. the cube or the rectangular

bar. Computing surface normals, visibility functions for the surface occluding boundary from this

implicit representation is not perfectly exact, and the quantities are slightly smeared. A future direction

towards more efficient algorithms, is to use an explicit representation of the calibration object to more

accurately describe the occluding boundaries. With this approach, 3D grids are not needed for the

data structures, resulting in increased accuracy, speed and decreased memory requirements.

• Camera calibration is particularly suited to our framework,since it does not have to be done in

real-time, and also the environmental conditions may be allowed to vary to a degree (e.g. our choice

of a constant colored foreground object before a dark background).
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Fig. 3. Initialized surface model shown from three different vantage points.

Fig. 4. Column 1: Pose1. Row 1: one camera image shown, Row2: with projection of initialized surface (orange mask), Rows 3-5: during

evolution of the pose parameters of the surface, Row 6: with convergedpose parameters. Columns 2-3: same as column 1 for poses 2 and

3, respectively.
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Fig. 5. Pose 1. Row 1: Three out of five captured views. Row 2: Projected surface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.

Fig. 6. Pose 2. Row 1: Three out of five captured views. Row 2: Projected surface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.
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Fig. 7. Pose 3. Row 1: Three out of five captured views. Row 2: Projected surface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.

Fig. 8. Row 1: Three original views (cameras 1-7-9). Row 2: The same three different after deliberate simulated miscalibration of the

greyscales. The same three views while evolving the calibration parameters: Rows 3-4 intermediate stages, Row 5: The views after evolution

of the calibration parameters has completed.
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Fig. 9. Evolution of the parameterα for different camera views. Trueα value is shown as a dotted line.

Fig. 10. Some camera views shown during the evolution of the color calibration. Top: original views, Middle: Perturbed views, Bottom:

Final views after convergence. Note the color similarity in top and bottom rows.
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Fig. 11. Evolution of the parameterα for different views for R,G,B channels of the synthetic color cube. Trueα value is shown as a dotted

line.



29

0 50 100 150
350

360

370

380

390

400

410

420

430

iterations

fo
ca

l l
en

gt
h:

  x
 (

−
−

),
 y

(−
.)

Camera 2

0 50 100 150
350

360

370

380

390

400

410

iterations

fo
ca

l l
en

gt
h:

  x
 (

−
−

),
 y

(−
.)

Camera 5

0 50 100 150
360

370

380

390

400

410

420

iterations

fo
ca

l l
en

gt
h:

  x
 (

−
−

),
 y

(−
.)

Camera 7

Fig. 12. Top: Three camera views shown during the evolution of the intrinsic parameters of an initial cube with projections from the initial

surface, Middle: Final views after convergence of the intrinsic parameters of the surface. Also shown at the bottom are the evolution of the

two focal length parameters for each shown camera view (red and green curves) along with the true (blue curve) focal lengths.

Fig. 13. Four camera views shown (top) during the evolution of the extrinsic parameters of an initial surface of a toy skater, Row 2:

Views shown with projections from the initial surface, Row 3: Final views after convergence of the extrinsic camera parameters. Visual hull

generated using the miscalibrated initial extrinsic parameters (row 2 right);visual hull generated using the converged extrinsic parameters

(row 3 right).
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Fig. 14. Uncertainty ellipsoids drawn around each camera center for thetoy skater data show the extrinsic refinement stability (right:

zoomed into one camera’s perturbations).

Fig. 15. Row 1: Four camera views during the evolution of the extrinsic plusintrinsic parameters of a toy skater with projections of

the initial surface, Row 2: Final views after convergence of the cameraparameters. Visual hull generated using the miscalibrated initial

parameters (row 1 right); visual hull generated using the converged parameters (row 2 right).
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Type II error Type I error

Camera Initial Final Initial Final

Cam 1 3584 47 5593 4476

Cam 2 13831 77 17762 4807

Cam 55 2841 191 5574 4618

Cam 77 8894 46 14013 14700

Cam 105 8339 1344 10032 6724

Cam 166 1005 170 4021 4001

Cam 200 4901 467 7971 6414

Cam 207 7339 97 9764 6783

Cam 239 9251 213 10615 6492

Cam 244 12467 263 16956 3110

Cam 321 1733 65 6501 7365

Table 1. Type I and Type II errors in counts of voxels for several cameraviews for Bust data (Fig. 16) after perturbation of camera parameters (Initial), and

after evolution of parameters (Final).

Fig. 16. Camera views 78,167, and 240 in top row are used deliberately with camera calibration parameters of camera views 77, 166, and

239 of the Van Gogh Bust dataset. Top: Three camera views shown with projections from the initial surface in row 2, here note the resulting

initial mismatch in projected silhouettes. Row 3: Final views after convergence of the camera parameters. Visual hull surfaces obtained by

using wrong calibration parameters for views 78, 167, 240 on the right (top row) and surfaces with corrected calibration parameters in bottom

row.
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Fig. 17. Some camera views shown during the evolution of the color calibration parameters of the HP color calibration object surface.

Top: Five camera views; Row 2: Final views after convergence of theextrinsic camera parameters; Row 3: Same shown with projections of

the converged cube; Bottom: Color calibration cube with reconstructed radiance on the surface from two different vantage points.
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Fig. 18. Some camera views shown during the evolution of the camera calibration parameters of the Statue of Liberty surface. Top: Five

camera views shown with projections from the initial surface in Row 2; Row 3: Final views after convergence of the camera parameters.

Fig. 19. Visual hull surfaces with initial rough calibration parameters(top), and with refined calibration parameters (bottom), also with

radiance texture mapped onto the surfaces.
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Fig. 20. Some camera views before and after the color calibration for thestatue of liberty.
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