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Abstract

This paper addresses the problem of calibrating camerangseas using variational methods. One problem
addressed is the severe lens distortion in low cost cam&@smany computer vision algorithms aiming at
reconstructing reliable representations of 3D scenes,ctmeera distortion effects will lead to inaccurate 3D
reconstructions and geometrical measurements if not ateduor. A second problem is the color calibration
problem caused by variations in camera responses thatt riesdifferent color measurements and affects the
algorithms that depend on these measurements. We alsosadthe extrinsic camera calibration that estimates
relative poses and orientations of multiple cameras in yiséesn, and the intrinsic camera calibration that estimates
focal lengths and the skew parameters of the cameras. Tesltirese calibration problems, we present multi-view
stereo techniques based on variational methods thateugiiztial and ordinary differential equations. Our apphoac
can also be considered as a coordinated refinement of caralipeation parameters. To reduce computational
complexity of such algorithms, we utilize prior knowledge the calibration object, making a piecewise smooth
surface assumption, and evolve the pose, orientation, ealé parameters of such a 3D model object without
requiring a 2D feature extraction from camera views. Wevadtie evolution equations for the distortion coefficients,
the color calibration parameters, the extrinsic and istdrparameters of the cameras, and present experimental

results.
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. INTRODUCTION

The problem of recovering a 3D representation of a scene frarttiple 2D images has been one
of the main research interests in computer vision. Many ef éRisting stereo techniques involve pre-
processing the camera images to extract 2D features sudrr@exg, lines, and contours of objects in the
scene. These features are then used to find correspondestaesb camera views. In practice, searching
for features and establishing correspondences is not gntasls due to noise and local extrema. Early
variational approaches to the 3D reconstruction problemevpéoneered by Faugeras et.al. [1] who also
relied on local feature matching. A more recent variatia@broach by Yezzi and Soatto [2, 3] proposed
a joint region-based image segmentation and simultanedustedeo reconstruction technique. This paper
addresses camera calibration techniques built on this &é#eo reconstruction framework that avoids
searches for local correspondences and is versatile enougbcommodate the new applications to be
shown. A tradeoff is achieved by making a piecewise smoojgboblassumption and a constant background
assumption, however, extraction of 2D features from givemera views are not required.

Camera calibration refers to the problem of finding the mappigtween the 3D world and the camera or
image plane. For most computer vision algorithms aimed @insgtructing reliable digital representations
of 3D scenes, accurate camera calibrations are essentiate Thas been a great deal of research on
camera calibration problem as early as in 70’s [4]. In mosth& previous techniques, some set of
features are extracted from images of a known calibratidtepg and intrinsic camera parameters as
well as camera pose and orientation (extrinsic camera peas) are estimated by a minimization of an
overall cost functional [5-13]. Many calibration techréguuse both nonlinear minimization and closed
form solutions as in [14].

In this paper, we develop a coordinated refinement technfquehe extrinsic camera parameters,

intrinsic camera parameters: lens distortion, focal lbagskew, and also estimation of camera color



calibration parameters in a coupled way within a multiplmesa system. For geometrical measurements,
an intrinsic camera parameter, the camera lens distori@m important issue, and will result in inaccurate
3D reconstructions if not taken into account. Another comrpeoblem in multi-view stereo techniques
is caused by color miscalibrations between cameras dueffieratit sensor characteristics. Extrinsic
parameters of the cameras on the other hand, determine ltiwegeoses and orientations of cameras,

and their correct estimation is one of the first phases of aecarvalibration system.

A. Relation to Previous Work and Contributions

1) Lens Distortion: The ideal pinhole camera model leads to imaging of worldsliae lines on the
image plane, and simplifies many computations and congidesa[6]. However, for most real cameras
with wide-angle or inexpensive lenses this assumption doedold, and nonlinearities introduced by a
well-known phenomenon referred to as a lens distortion Ishibbe taken into account. The corresponding
distortion parameters should be estimated for each camera.

In many existing calibration techniques, good estimateseirinsic and intrinsic camera parameters
are first obtained by a pinhole camera model neglecting lestortdon. Then distortion calibration is
performed while holding the other parameters fixed [17-T8jJs is possible because the mapping from
3D world coordinates to the 2D image plane can be decompogedai perspective projection and a
mapping that models the deviations from the ideal pinholeera.

A popular group of lens distortion calibration methods ie literature, mainly under the category known
as plumb line methods, rely on a first step of extracting edgea the images. Either a user manually
selects the image curves or there must be a way to reliabimast image edges which correspond to
linear 3D segments in the world. An optimization problemas sp by defining a measure of how much
each detected segment is distorted. The curved lines imiaga which do not really correspond to 3D

line segments will constitute outliers in this optimizatiprocedure [17,20-23]. Other techniques such

1An initial version of this work that addresses lens distortion and color i can be found in [15] and [16], and an initial work

addressing extrinsic camera calibration appears in [3].



as [24] rely on point correspondences. Given a set of 3D ppihie associated epipolar and trilinear
constraints are arranged into a tensor, which is computell @gtimated distortion parameters at each
step to minimize a reprojection error in an iterative manireanother group of methods as in [25-27], a
direct solution strategy is employed to find camera calibnaparameters by incorporating lens distortion
as well.

Our contribution is a new distortion calibration technighat does not rely on extraction of edges and
search for point correspondences. The former may not be sntaak due to noise and local extrema.
Instead, we devise an integrated calibration techniquehictwthe distortion parameters of cameras are
computed in a tightly coupled framework. The desired couplof multiple camera views comes from
estimating a common 3D object (in this case the calibratibjeat). In other words, we minimize the
cost between the reprojection of the 3D calibration objext the image measurements by evolving the
distortion parameters of the cameras. In our distortioibcaion algorithm, we use a white bar object,
made from a foam core as shown in Fig.1 on the left. We captargiéws before a dark background
with the multi-view stereo rig system, a desktop multi-caansystem designed for remote multimedia
collaboration, developed by HP Labs [28]. The images of thiéation object captured from three of
the five cameras in the rig are given in Fig.1. Many desktoptinsaimera systems use wide angle and

inexpensive cameras which produce severe distortiontefeccan be observed in the given images.

Fig. 1. Three out of five camera views of the real calibration objéciven on the left.

As we will show, with this technique we can also incorporatieeo parameters of calibration into the
same variational framework and get their locally optimalneates as well.
2) Color Calibration: Another common problem in multi-view stereo techniquesassed by color

miscalibrations between cameras resulting from variatimncamera responses due to different sensor



characteristics, ambient conditions like temperaturejufecturing differences, and so on. These yield dif-
ferent color measurements between cameras, and affedgthrélans that depend on these measurements.
Camera color calibration refers to the problem of estimativgcolor calibration parameters of cameras
to overcome these unwanted effects. A common approach takerd this problem is to calibrate each
camera independently through comparisons with known sabora color calibration object/environment
[28, 29].

The color calibration object we use, shown in Fig.2 is a coldse with patches of known colors whose

Fig. 2. Photograph of the color calibration object.

images are captured from each camera. Demosaicing coefiaee calculated independently for each
camera based upon the absolute colors of the calibratiecbanpd the measured color responses of each
camera. Slight errors and differences that arise from tmifependent calibration procedure sometimes
lead to noticeable seams or discontinuities in the textua@pimg process during the transition of the
texture map between neighboring cameras. Our goal is todwdp out these discrepancies by devising
a relative inter-camera color calibration technique in which the demosaicing paters of cameras are
calculated jointly in a tightly coupled framework ratheathjust one camera at a time.

Similar to our approach to lens distortion calibration, thesired coupling of the multiple camera
views comes from estimating a common 3D shape, and in additioommon radiance function for the
calibration object (in this case, the color cube). We takeaathge of the fact that the object shape is
known up to location and scale to simplify the problem. Hewee estimate the pose parameters of the
cube, the radiance function on the cube, and the color edidor coefficients for each camera.

3) Extrinsic and Intrinsic Calibration: Following the same philosophy as mentioned in the other two
calibration problems above, extrinsic and intrinsic aatlon parameters can be estimated in a variational

framework using the general stereoscopic framework of i¥Bpatto.



It should be noted that due to differential nature of thenestion equations derived, the extrinsic
and intrinsic update equations require rough initial valuehis is a well-known feature of almost all of
the recent state-of-the-art energy functionals used imsegation (e.g., Mumford-Shah energy, geodesic
energy, ...), i.e., the solutions are locally optimal, restarting far away from the real solution may lead
to solutions that get stuck at local extrema far from the réessolution. Nevertheless, the usefulness of
a refinement stage in extrinsic and intrinsic camera parmsetill be demonstrated via the improvement
in the final 3D reconstructions. A nice feature of the methogyp presented in this paper is that it can
integrate several different problems in geometric androoddibration into an overall unified system based
on the joint segmentation framework to evolve pose, colstodion, extrinsics, and intrinsics.

The organization of this paper is as follows. We first presentriant of the Yezzi-Soatto algorithm
in which a 3D object is allowed to move with a semi-affine motimodel in Section Il. We developed
this scheme for our applications in calibration, where tie dbject shape is roughly known (up to 3
scales and rigidity) to obtain more efficient and faster atgms. We then present a novel technique for
lens distortion calibration in Section Il and a novel teicjue for relative inter-camera color calibration
in Section 1V. We apply the same calibration ideas for irsicncamera calibration in Section V, and for

extrinsic camera calibration problem in Section VI. Condas and discussions are given in Section VII.

II. EVOLUTION EQUATIONS OF3D OBJECTMOTION PARAMETERS

The Yezzi-Soatto 3D stereo reconstruction model buildssa @o the discrepancy between the reprojec-
tion of a model surface with a radiange R?* — R, the background (infinitely far away) with radiance
b: R® — R, and the actual measurements from multiple camera viewsy;Ldenote the transformation
from world coordinates to camera coordinatgs: X — X; = (X;,Y;, Z;)T, andr denote the perspective
).

On the image plane, the cost functional for the Yezzi-Saatbdel can be written as a joint segmentation

X
)
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transformation from camera frame to the image planeX; — x; = (z; =

N[

Yi =

problem over regions ot camera image$ with domain(2; = R;UR (R; denotes the foreground region),



and with 3 color channels € (R, G, B):

= > Z/ (mog)™'(x)) — IF(xi)Pdu + ) 2/ (1)
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This energy can be lifted back onto surfage
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where o is the Jacobian of the change of coordinates from the imageepto the surface}; is the
visibility function of a voxel on the surface, ant!l is the area measure of surfae The deformation of
the surfaceS w.r.t. this energy or data fidelity measure is then obtaingdiriing the partial differential
equation (PDE) that is the gradient descent flow of the enErgdy popular class of numerical techniques
known as Level Sets Methods [30], is utilized to evolve thdase S via the evolution of a 3D function
¥ : R* — R. Nevertheless, an update of the level set function is reduafter each iteration of the
associated PDE, and even with more efficient narrowbandnseti¢31], there is a considerable amount
of computation involved. For our intended applicationswimich there is a calibration object whose shape
can be roughly known a priori, rather than deforming theaefof the 3D object, we will evolve its pose
and scale parameters instead. Next, using the energy E i2 g will derive the ordinary differential
equations (ODESs) to update the parameters of the surfademmbdeled by a semi-affine transformation,
which is more general than a similarity but less general thdnlly affine transformation.

Let the original rigid surface be denoted By, thenS = ¢°(S,), or X = ¢°(X,) = R;X,+ T, and let
A denote parameters of the rigid motigh of the surfaceS, with rotation R, and translatioril'y. Then

the gradient of the energly w.r.t. A is given by:

9B\ _ Z/ZFk <—N dA+wdA

a)\ k=R,G,B a)\
- ¥ / Z F*(g 29X p NS da,
4 N
k=R,G,B

a(ngO)
oA\

+2(f (9X,) — If) < Vs > dA, )



where FF = [(f*(X) — IF (70 g;(X)))? — (V% — IF)?] X:(X)o(X;) is the Mumford-Shah term from Eq. 2
(also in [2]). The derivation follows from shape optimizatitools [32] that provide the shape derivatives
in curve and surface evolution framewoiK. denotes the surface normal vector. Note that the visibility
function X;(¢%(X,)), included in the data termi(-) is computed using the original visibility function but
compensated bRR? (C; —T,) ), whereC; is a camera center. The second term in Eq.(3) is the regiom ter
corresponding to the foreground object whereas the firsti®riee boundary term. In our applications,
the background is modeled by a piecewise constant radiginessfore we omit the background region
term in the equation.

For translation parameters:
0(9°X,)

< =57 RN, >=R.N,.
For rotation parameters:
0 o =Y,
a(g°X, )
< (g& ) R.N, >=< R, 7. 0 X, | RN, >=<-R.X,R,N, >, (4)

X,

where we utilize exponential coordinates (see [33] foritketan this representation) for the global rotation
parameters of the surface. We note that a matrix in an inreelyat expression, when operated on a vector,
will incorporate each of its row vectors in the inner prodttresult in a vectork x;,xs, ..., x,,y >= (<
X1,Y >, < X2,Y >y ey < Xp, ¥ ).

For further flexibility in initializing a model surface, wedd three scaling parameters along tkieY,

and Z axes. Then the semi-affine transformation for a pdpton the surface becomeX = ¢°(X,) =

s, 0 O
RSX,+ T, wheres=| o 5 o [.The gradient of the energy w.r.t. the scaling parameXerss; is
0 0 s,

derived similarly to the above:

d(g°X,
> [ S < X v aa,
So 5

k=R,G,B



where

(9°X,) a8

RN, = <R,—X,,R,N, ith e.g.
oan < R > wiheg
1 00 X,.x
9(9°X,) 95
= R,—X,=R, X, =R,
5, 95, 0 0 0 0
0 0 0 0
X, 0 0
9(g°X,
(8/\ ),RSN0> = <Ry 0 Y, 0 , R{N, > . (5)
0 0 Z,
RX

The evolutions for the rigid motion parametersare then given by the gradient descent equations:

? — Z / Z FF(g ) R,N, d4,, (for translation. (6)
t k=R,G,B P
Fh
E - .
? = —g—)\ = — Z / F* < -R,X,,R,N, > dA,, (for rotation). (7)
¢ k=R,G,B Y5
oA\ k X i
==y Z F <R¥ R,N, > dA,, (for scaling. (8)
k=R,G,B

Here note that the visibility functiof;(¢*(X,)) is computed using the original visibility function but
1/se 0 0

compensated by th8 'R (C; — T,) ), wheres-! = o 1/s, o |-Note that we can generalize

0 0 1/s,
this idea in a straightforward fashion by considerfigo be more general than a simple diagonal matrix

in order to accommodate a fully affine motion of the surface.
We will use equations (6-7-8) in updating the pose of theasb to estimate its correct placement

in the 3D space for the calibration applications presente8eactions Ill, and IV.
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[11. LENSDISTORTION CALIBRATION

The lens distortion is usually modeled by a function defimednfthe ideal image plane to the distorted
image plane. One approach is to decompose it into two teradalrand tangential distortion [17]. The
radial distortion is a deformation along the radial direntfrom a center of distortion point to an image
point, and the tangential distortion is a deformation in @edion perpendicular to the radial direction,
and is negligible for many cameras. To model the radial disto effects, a commonly used distortion
function D(r) is given by (1 + k1r* + kor* + ...) wherer is the radius from the center of distortion to a
point on the ideal image plane. The principal pdiag, v,) is often used as the center for radial distortion

[6], which we will also adopt. Belowk; is the distorted image coordinates, alds the distort function:
% = Dx; = (L + ki + kbt 4 )x,, (9)
r* = (z7 +y7), and k! is the j** distortion coefficient for camera In Eq. 9, we assume tha = 1,

which can be changed to an arbitraty value.

A. Calibration of the Lens Distortion Parameters

)Z% =x;
Notation: World XX xi=| Y=y = (w,v) (image coordinates), wherP is the
" ) 1 L, 0 g
0 Ly, o
0 0 1

distort function in Eg. 9, and.,, and L, are the focal lengths. The gradient of the energy (1), assymi

a single image channel over the distorted image plane, @istortion parameters;i is given by

ok} OF %,
s~ — _ | F((D N—lg, ey . 1
ot ok; / ((Demog) X’)<ak§-’n1>d8 (19

whereF; = (f — I;)® — (b— I,)?, subscripti corresponds to each camera view, andienotes the normal

vector to the occluding boundary of region R; on the distorted image plane. We only consider the
boundary term { is the arclength of the contou on the image plane: the distorted or actual image
coordinates) as we assume the foreground and backgroumddoastant radiance. We design the lens

distortion calibration object to satisfy this assumption.
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We want to lift this integral back onto occluding boundary of the surface. Note thﬁz‘—; are given

by
0x; 9 0x; 4 0x; 0
- =1 X;, = =T X, ...—.:’T’JXZ'
k! ok, ok,
hence
oxi y 0 Y )0
< — 0 >ds =<r7(X;),J=—(Dom)X; > ds =< r7(X;),JD" o' —X; > ds (11)
Ok ds 0s
where J denotes the x 2 ninety degree rotation matrix)’ = (1 + kir? + kor* +...), and
, 1 Z; 0 =X
10 Zi Y
is the Jacobian of the perspective projectiariWe can continue to simplify:
. , 0 1 Zi 0 —X; ,
< %,flz > ds = ’I"ZJD/ < [W(Xi)]2><17 % I:aXl:| > ds
ak; Z; s |41
-1 0 0 Z;, -Y;
r2 D X; 1 0 Z; -Y; oX,;
- Z? < zZ { s :|3><1 b
' Y; ~Z; 0 X
0 —Z —7;Y;
,,,2_] Dl Xz 8X1 7‘2le aXz
- Z; 0 s BT ZiXi | gy 78
-Y: X 0
—ZiY; Xi Xi
Noting that| zx, |=Xix| y, | wehave< 2% h,>ds="2 <—| vy, | xX;, 2 >ds, and
0 0 0
O0X; r? D 0X; r2 D
< —1n;,>ds=— < X; x —=, | >ds=— < |1XG] NG, | >ds. (13
Ok 73 os | Vi 7z < Il Yi (13)
0 0
Substituting Eq.(13) into Eq.(10), we get the calibratiQquation
X;
okj 2 D'||X,||
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for the lens distortion parametek;’;f. Note that the distortion calibration method we propose ltamdle

different models of distortion by changing tte function, and related derivatives in Eq.(14).

B. Using Several Poses of the Object

When camera views from multiple poses of the object are adeilave can take advantage of the
existence of variously distorted views in calibrating tleed distortion. In the first phase, we estimate
both pose and distortion coefficients from separate exm@erisn To simplify the explanation, let us assume
that we want to solve for only one distortion coefficigtit for each camera. Once we obtain rough
estimates for the object pose and distortion coefficiéftave can fuse a “common distortior” from

these separate experiments for each camearad then jointly evolvd?;i’s as follows:

X’i,m
Mposes

2JD/ X‘l m
Z / M <Nim, | v,,, |>ds (15)

7 ,m

Gk:l

0

At the same time, we evolve the pose parameters of separsgés pbthe object as described in Section II,
the only difference being the incorporation of the new “coomnalistortion” in the equations. For instance,

we evolve any of them for a given pose as follows:

=-% [ Al < ML RN, > as, (16)

where F; includes computation of;(D - 7 - ¢; (¢°(X,))) with the new common distortion coefficiert$

in the multiplying distortion factoD.

C. Experimental Results

For our calibration algorithm, we initialize a surface mbofkthe real calibration object which is shown
from several vantage points in Fig.3. After initializingetlsurface, the first phase of our algorithm is to
evolve its pose parameters to position the 3D object modeihly in the correct location in 3D space.
For the experiments presented here captured via HP Lalvgostig system, we used three different poses

of the calibration object, but we can increase the numbeoeép used in the process. Example evolutions
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of the pose parameters are shown in Fig.4, for three diftqpese captures of the calibration object in
each column (showing only one camera view for each pose).didtertion coefficients are also evolved
at a slower pace. That is, the time step used in the assodiiidsl is small in the first phase. In the
experiments, the distortion functiab in (9) with one distortion coefficienk; for each camera is used.
After the separate evolutions for each of the poses haveecgad, common initial distortion coefficients
are computed as the average of the results from phase 1. betled phase of the algorithm, we evolve
the distortion coefficients for each camera again sepgraigi summed over different poses. We show
sample views of pose 1, 2, and 3 in row 1 of Fig.s 5-6-7. As tlséodion coefficients converge to true
values, the reprojection of the surfaces onto the distoregs results in a better match to the image data
and continues to minimize the overall energy. Such imagels miprojections are shown on the second
row of Figures 5-6-7. The undistorted views shown as welltmthird row. The straightening effect of

this operation on the curved lines can be clearly observetiase images.

IV. COLOR CALIBRATION

For color calibration, the differences in absolute colomasured in the response of each camera are
modeled by a simple multiplicative factor in each of color RGEannel measurements and an additive
offset parameter.

The first variation of our energy function& using this model leads to gradient descent flows:

o [t ot i~ [ (B, 17)

oform R; R¢

OF k k k k

BT ("= (L 4 Bix)]dU— | [0"— (il 4 Bix)]dS2;. (18)
6i7k R; Rl'-:

for the color calibration parameters; and 3;, for each camera, andk € {R, G, B}, whereIF, f*,
andb® are from one of the three color channélg, G, B}. Note that one can extend this framework to
RGGB images in a straightforward fashion.

In our test calibration experiments, we utilized white eo&lditive offsets and multiplicative scaling

coefficients to perturb the measured images, thereby exatgug the effect of color miscalibrations. On
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a synthetically created example in Fig.8, where the comgecimetry and radiance function are known,
we show such miscalibration effects on the original views] &iews during the evolution of;’s and
G’s in Eq.s (17-18), and views after these parameters haveeoged. In addition, in Fig.9, the curves
depict the truex and 3 values for all nine camera views, and the convergence ofdtimated parameters
towards the real values.

Similarly in Figure 10, the color cube with original colorseashown from some camera views first,
then shown after their color calibration parameters areupeed. Finally, the convergence of the color
parameters results in a corrected set of colors as showreiwidws. Also shown in Figure 11 are the
evolutions of the color calibration parameters for the shewews. We have to note here again that due to
relative calibration framework among cameras, the updptgdmeters may not always result in absolute

values but still provide useful outputs for the multi-cameystems.

V. INTRINSIC PARAMETER CALIBRATION

We show the evolution of three of the main intrinsic camereapeeters: focal lengths, denoted by
and L, for each of the coordinates on the image plane, and the skeamgé#era. Inclusion of the skew

parameter between the two plane coordinates leads to amsing matrix of the form

L, a wug
T = 0 L'u Vo )
0 0 1

then the Jacobian of the perspective transformation besgomnpare to Eq. 12):

N

0 L,/Z —L,Y; )72 0 LZi  —LY,

The derivatives of the image coordinates w.r.t. each of mxenisic parameters are computed from the
overall energy functional as before (similar to our deimas$ of the lens distortion calibration parameters

in Section 1lI):

oF _ ko 7k\2 k 7ky\2 '
oL: Z /L(f I7)" — (b Ii)l<aL',n;>dS.
7 k=RG,BYCi j
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For the focal length parametér,, we have

0% orC; 0
— n;>ds = L Jn'CiYd
<8Lu’n > ds <8L,L’85J7TC> S
b LuXi/Zi + (l}/i/Zi 1 0 L,Z; —L,Y; 0X;
= (= = ds (19)
8Lu Zz 38
0 7LuZZ 7CLZZ‘ LuXZ + (IY;'
0 ~L.Z; 0
1 Xi | ox; 1 X
] < L,Z; —aZ; ’ asz >ds=7g <Ll Zx | 887 > !
3 0 K3
—-L,Y; L.,X;+aY; -Y; X;
0 X;
Noting that| z x, |=Xix| ¢ [, then for the focal length parametéy, we obtain:
~YiX; 0
Xi
ﬁxi 1 aXz
<87Lu,ni>d5 = Zig<7Lv 0 XXi7§>d5
0
X,‘ Xz
L, 6X1 LUHXz‘H
0 0

Due to the skew parameter, the equations for the secondléggh parametek,, will be slightly different.

This time incorporating the derivative w.rk,, in Eq. 19 :

<O psds= 1< ’ i gs=L < OXi . s
oL, ™M T s | W4 ez |0 Z —aZiYi s
i
—L,Y; LuXi+aY; Ly XY + aY}?
—L.YiZ; —ay;
Again noting that —aZ;Y, =X; x| r,v; |, then for the focal length parametéy, we have:
Ly X;Y; + aY? 0
0% [
< a—Lv, i >ds = — 73 < Ny, L,Y; > ds. (21)
2
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Note that when the skew parameteis 0, which is a widely used convention, the above equatidnces

to a symmetric form of the Eq. 20 derived far,.

Finally, we derive similarly the update equations for thewskparametet:

0 —L,Z; 0
OXi s ds = & < i X 1 _p X 4
aaa - Z? Lsz —CLZi ’ s - Zzg v Zz}/z ’ s
_L’I)Yi LuX1 + a)/i _Y;'2
0 Y;
This time noting that| 7y, | =X;x | o |, then for the skew parameter we have:
_yi2 0
Y;
oxi Ly |[Xq]|
< Ba >ds = - 7z <N;, | o > ds. (22)
0

The final evolution equations for the three intrinsic partereefor each camera i are then given by:

Xi
8t’ = Z / Fk 3 < ||X ||N’Lv 0 > ds (23)
k=R,G,B
0
—aY;
8L7;,1’, k
ot Z F 5 <[IXil[Nis | L,y; | >ds (24)
k=R,G,B
0
Y;
8ai k v
ot = Z F* =3 3 < ||X ||N17 0 > ds (25)
k=R,G,B”Ci
0

In Figure 12 a synthetic color cube example is shown. Thensitr parameters, focal lengtlis,, and
L,, are initialized to perturbed values and when the intrigsilcbration update equations have converged,

both the projections of the cube surface onto the imagestanédvolution of the focal lengths are shown.
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VI. EXTRINSIC CAMERA CALIBRATION

We now consider the same energy functional as a function efetktrinsic calibration parameters
A; = (M, ..., \ig) for each camera imagg. Notice that the only term in our energy functiorfalwhich
depends upon,; is the corresponding fidelity term if,;, (due to the dependence of ), assuming a

constant background radiance in the scene :

Buwas(S. f,bA) = 3 / - rw)a s [ 0F- ), (@)

k=R,G,B 5

wherex denotes image coordinates as before (for simplicity ofudismn, distortionD = 1).

A. Initial expression of gradient

If we let ¢; = OR; denote the boundary aR; then we may express the partial derivative ofwith

respect to one of the calibration parametgysas follows.

gf = boundary termt foreground term
0¢
— X)) — IF(x))" — (b — IF (%) ~.on;)ds
2/ ) ( )G
c‘)
bOX 2 () - ) (V) g R ) d (@)
s L_< AN

In the boundary termys denotes the arclength measurecgfandn; denotes its outward unit normal. In

the foreground termy/, denotes the natural gradient operator on the surface

B. Rewriting the boundary term

Ultimately, we will compute all quantities by integratintpag the current estimate of the surface since
that is the actual object represented by our data structlitass, it is more convenient to express the

contour integral around;(s) in the image plane as a contour integral arounds) on the surfaceS
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instead, (wherer;(C;) =¢; and wheres is the arclength parameter 6f). They may be related as follows.

i 0 1
g)\i;,ﬁi>d§ _ <aijm(ci)7it]m(ci)>ds, where.] =

-1 0

? 8)\” ' 73 0s

1 Z,; 0 7X7: ax, 1 0 Zz' *}/i 8X
_ ¢ —\ds
! 0 Z;, Y

-Z; 0 X

0 -7 Y;

1 [ax, X, \
= 73 83’ Zi 0 —Xi a/\” s

=Y, X 0
1 ,0X; 90X, 1 ,0X; 0X;
ZZB< Js ’8)\”- % l> ds Z?<a>\1]7 e ds >d8
_ X ox,
Z3 \ox;’

Ni> ds (sinceX; and % are perpendicular tangent vectorsSp

Thus, the boundary term written as an integral on the surfa¢along the occluding contour;) has

the following form:

O\ij Xl 7 0g;
Ty /Ci((fk—zf)Q—(bk—ff)Q)%@fij,N»ds, (28)

k=R,G,B

which is also the update equations for the extrinsic paranjefor camerai with a piecewise constant

assumption on the foreground and the background radiance.

C. Rewriting the foreground term

The first step in rewriting the foreground/background iné¢g) is to re-express the derivative of the
back-projected 3D poinK = ; !(%,A;) with respect to the calibration parametgs; in terms of the
derivative of the forward projection;(x, A;) = 7(g;(X, A;)), sincen; has an analytic form whiler; *

does not. We begin by fixing a 2D image po#tand note that

X = Uy (X(}A(, Az)> Az) <WhereX(§(7 AZ) - 7-(_1'_1()27 A’L) = gz_l (7-(_1()2)7 Az))
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and thus differentiation with respect #g; yields:

0 om; 0X on;
0:— 7 X,AZ - ! :
o, XA = ok o, T o,
1|4 0 =X | 9g 0X 1 Zi 0 =Xi | 9y
7 X dN,; 22 \ij
A R N I A A
0 7 v 0X O\ 0 7 v ONij

Notice, though, that (29) does not uniquely specily/0)\;; but merely gives a necessary condition. We
must supplement (29) with the additional constraint {#t/0\;; must be orthogonal to the unit normal

N of S at the pointX in order to obtain a unique solution.

0X
8)\15

N=0 (or equivalentlyggé gig -N; = 0) (30)
ij

Now, combining equations (29) and (30), we have

Z; 0 =X Z; 0 =X;
0 Zi —Yiloxan;, | © 4 Yoy,
_ -1 -
ZZ O _XZ Zz 0 _XZ
0X  [(0g\ Dg;
on;  \oX 0 2 ¥ 0 2 =Yilon,
Niz Ny N 0 0 0
ZiNi + YNy — XNy Xiz; Zi 0 =X
-1
0X _ —(5%) Ogi
N = Z:(X; - N;) -Y;N; ZiNi; + XiNiy Yz 0 Z, Y, ONi;
Xi Ny — XiNiz —XiNiy —XiNi.
-1
ox - (& 9y
oN. X(axlzI —YiNig Xi- N; = YiN; —YiNiz | o).
i 7 7 1J
—Z;Nig —ZiNiy X;-N;—Z;iNi,

oxX g\ ! X; @N;\ 9Jg;
N (8X) (I X, -N; ) O\i;’ (31)
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where® is the Kronecker product, andis the 3 x 3 identity matrix.
The second step proceeds in the same manner as outlinesr @amrewriting the data fidelity terms in
E..: by noting that the measure in the image doméh and the area measure on the surfdeeare

related bydQ); = o(x;, N;) dA whereo(X;,N;) = (X; - N;)/Z3. Then the foreground term in Eq.(27) is

given by
0
2 fr— <VS (%)), 7ri_1(§<)>in
k=R.,G,B /( ) ( ) ONij
0X \ X, N,
- - 1) (V0 g ) X aa (32)
K RZG’B /1 ) o/ 7}

Therefore, the following foreground term will be added te thpdate equation of the extrinsic parameter

in Eq.(28) :
B s (e () (ko (2w s

In Figure 13, several photos from a set of 32 images of a toyeskdoll are shown. When the initial
extrinsic parameters are off as observed in the projectbtize foreground object onto the images (shown
by an orange mask), a visual hull created using the uncewesttrinsic camera parameters is significantly
away from the real doll surface. After the extrinsic caliima equations (28) plus (33) are evolved to
convergence, visual hull created using the updated ektrperameters demonstrates the correction and
true refinement provided by the derived equations. In Figdrave depict the extrinsic refinement stability
by showing the uncertainty ellipsoids drawn around eachetancenter. Parameters were perturbed in

x,y, z directions randomly several times, and converged progderlyariations up ta%.

VIlI. RESULTS AND CONCLUSIONS

The toy skater example shown in Figure 15 demonstratesitindtaneous evolution of the extrinsic and
intrinsic parameters for the 32 cameras, along with theegtmns of the foreground surface. The visual
hulls created with again the initial set of camera paramseterd the evolved set of camera parameters

display a correct refinement of the camera parameters.
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For most of the experiments we utilized1a8* volume, and al40 x 150 x 360 volume for the Bust
dataset. With a volumetric signed distance representaticour C++ implementation without any code
optimization on a Pentium 2.40 GHz processor, each singtatibn to compute all calibration gradients
takes on the order of 10 seconds depending on the number adraarews as well, and convergence
minutes. However, a mesh representation on the object maasier to work with since the parameter
update equations we derived are ordinary differential egos.

A common issue for any calibration procedure is that whemetlae shape symmetries or constant
radiance on the object, camera pose parameter estimatioot stable, however, these do not affect the
3D reconstruction (e.g. multiple views on a sphere do nawakstimating camera pose, but they still
allow estimating the shape of the sphere). Regarding themadi assumptions, because our algorithm
integrates information globally on the entire collectidnimages, it is far less sensitive to this accident
than algorithms based on local statistics, such as poitufeaorrespondences. Therefore, symmetries are
not an obstacle since our goal is not to obtain the absolliteraon parameters (ground truth) but to help
refine 3D reconstruction. From this perspective, the oniteigon of concern is the re-projection error.
We experimented with a full turn head sequence using Int&lisg Gogh Bust data for testing the issue of
shape complexity. We utilized only 16 camera views from thalable 330 camera images for ease and
speed of computations. We computed re-projection errofipa Il error (error of omission) and Type
| error (error of commission) by counts of voxels for sevaraiera views used during our experiments
both after perturbation of the camera parameters and aftéuteon of the parameters as shown in Table 1.
After refinement stage, the Type | error droppeddb{s, and Type Il error dropped b$0%. As remarked
above, our goal is not to obtain absolute camera parametér® thelp 3D reconstruction algorithm to
obtain objects correctly, which is achieved.

The Bust data comprises of numerous views, and this faeitlt#tte following experiment to show the

practicality of our calibration correction. For the thresareera views, out of the 16 views, we deliberately
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used wrong camera calibration parameters, which beloniatoadf the neighbor views in the sequence in
Figure 16. This represents a possible perturbation in alifeadcenario, i.e. the cameras are accidentally
moved a little bit after the calibration and the views that eaptured afterwards are a little bit off. The

3D reconstruction of the Bust object on the top right showseatieneous surfaces obtained in this case.
With our coordinated refinement of the extrinsic parametsiag Eq.(28) and (33), the improvements in

the reprojection errors and the 3D reconstruction are @bdein Figure 16.

A real color calibration experiment is carried out using Hkbk stereo rig system. We captured images,
shown in Fig.17, of the color calibration object from five aamas. Notice that the first picture is somewhat
darker than the others, second and third pictures appdaetigand there is a color mismatch. A cube
surface is rigidly registered with the scene, also the radidunction on the cube is estimated as shown in
bottom row of Fig.17. The second row shows views after théutiom of color calibration coefficients are
completed. The third row shows the projections of the modeflase onto the views. It can be visually
assessed that color responses of the cameras have achiéaanaing effect, and helped to obtain a
better texture mapping as well.

Next we demonstrate a calibration experiment using pisttm@m a handheld camera with no camera
calibration information available. In this scenario, thariational calibration techniques we presented
require some rough initial values that we obtained througdelé calibration software currently under
development. We have a 13 set of pictures taken around theeSté Liberty, covering about 220/360
degrees of a circle around the statue, a few of the views sliWigure 18.2 We obtained initial camera
parameters: extrinsics and intrinsics including the skewameter. A rough calibration results in the
projections shown in Figure 18. After evolution of the caasnparameters: extrinsics, intrinsics including
the skew parameter, and color parameters, the comparisdanis with the visual hulls of before and
after evolution camera parameters in Figure 19. One camabslee correction in the Statue of Liberty

surface with a better set of camera parameters obtainedthgtderived update equations throughout the

2\We thank our colleague Irwin Sobel at HP Labs for providing these mistur
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paper. We also show blow-up regions in Figure 20 from soméefcamera views before and after the
evolution of the color camera parameters, and the colorsrardified towards achieving some relative

agreement among the cameras which can however only be subljggudged.

A. Discussions

One may argue that the requirement of some rough initialiresitr and intrinsic camera parameters
limits the usability of this technique. However, the refir@mmor correction of camera parameters from a
perturbed state of a previous calibration is a real worldolenm that constantly presents obstacles to the
usage of multiple camera systems. After a very good initadibcation, the cameras over time may see
small changes in their parameters. For instance, extripsiameters will often be changed particularly
due to unwanted accidental motion. Similarly, the intessand color parameters of the cameras may
go through small variations due to ambient conditions andrvadf. Therefore, the presented camera

calibration framework proves to be a useful tool for mulintera systems.

B. Conclusions

In this paper, we employed the 3D stereo techniques basecawational ideas to various camera
calibration refinement problems. We have presented newi-meW stereo techniques to:

« evolve pose parameters of a 3D model object to take advawifatiee known shape of calibration
object, and to reduce computational complexity,

. evolve distortion parameters of cameras given a 3D modgdesha

« evolve color calibration parameters of cameras given a 3[dahshape,

« evolve intrinsic parameters of cameras,

« evolve extrinsic parameters of cameras.

Pros and cons of this technique are discussed as follows:

« A nice feature of the methodology presented in this papehnas it can integrate several small and
different problems such as distortion calibration, colalitration into an overall unified system based
on the joint segmentation framework, and simultaneousbjvevpose, color, distortion, extrinsic, and

other parameters as well.
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« We make piecewise smooth object assumption and a constaekgroand assumption, which may
be a limitation if the background is to be modeled as well. Ewsy, a background model may be
added to this framework if needed.

« The presented methods eliminate the need for search of iedges, point correspondences from
images, which can be very sensitive to pixel-level noiser@ag our approach being based on image
regions for comparisons, is not as sensitive to noise.

« Another advantage of our framework is that it easily accomates additional data. In the more
classical approaches to stereo, bringing in more data, dinganore images to the algorithm might
not help all the time, that is if something goes wrong in thdejpendent segmentation phase of
even one image, it destroys the whole process of reconstingcand geometry. On the other hand,
adding more data to this joint segmentation framework wilyamprove robustness, providing more
tolerance towards errors.

« For the distortion calibration method, more improvemenésy fine obtained with utilizing more poses,
hence many more camera images of the calibration objectimamed than one distortion coefficient in
the model selected. One can also utilize more general/coatet distortion models than the simple
polynomial D function.

« Currently, we have an implicit representation of the catibraobjects, i.e. the cube or the rectangular
bar. Computing surface normals, visibility functions foetlurface occluding boundary from this
implicit representation is not perfectly exact, and thergiti@s are slightly smeared. A future direction
towards more efficient algorithms, is to use an explicit espntation of the calibration object to more
accurately describe the occluding boundaries. With thgr@gch, 3D grids are not needed for the
data structures, resulting in increased accuracy, spegdiecreased memory requirements.

« Camera calibration is particularly suited to our framewasikce it does not have to be done in
real-time, and also the environmental conditions may bmnaltl to vary to a degree (e.g. our choice

of a constant colored foreground object before a dark backgt).
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Fig. 3. Initialized surface model shown from three different vagetgoints.

T
alalalals]a

Fig. 4. Column 1: Posel. Row 1: one camera image shown, Row2: wifagbion of initialized surface (orange mask), Rows 3-5: during
evolution of the pose parameters of the surface, Row 6: with convergeel parameters. Columns 2-3: same as column 1 for poses 2 and

3, respectively.
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Fig. 5. Pose 1. Row 1: Three out of five captured views. Row 2: Pejesurface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.

Fig. 6. Pose 2. Row 1: Three out of five captured views. Row 2: Pugjesurface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.
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Fig. 7. Pose 3. Row 1: Three out of five captured views. Row 2: Pejesurface after distortion parameters have converged. Row 3:

Undistorted with the obtained distortion coefficients.

Fig. 8. Row 1: Three original views (cameras 1-7-9). Row 2: Theestimee different after deliberate simulated miscalibration of the
greyscales. The same three views while evolving the calibration paramBm@wrs 3-4 intermediate stages, Row 5: The views after evolution

of the calibration parameters has completed.
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Fig. 9. Evolution of the parameter for different camera views. True value is shown as a dotted line.

Fig. 10. Some camera views shown during the evolution of the color cdibralop: original views, Middle: Perturbed views, Bottom:

Final views after convergence. Note the color similarity in top and bottons.row

Fig. 11. Evolution of the parameter for different views for R,G,B channels of the synthetic color cubeetr value is shown as a dotted

line.



29

ﬁ.‘

Fig. 12. Top: Three camera views shown during the evolution of the ifgrperameters of an initial cube with projections from the initial
surface, Middle: Final views after convergence of the intrinsic patarsef the surface. Also shown at the bottom are the evolution of the

two focal length parameters for each shown camera view (red amh graves) along with the true (blue curve) focal lengths.

Fig. 13. Four camera views shown (top) during the evolution of the eidripgrameters of an initial surface of a toy skater, Row 2:
Views shown with projections from the initial surface, Row 3: Final viewsragonvergence of the extrinsic camera parameters. Visual hull
generated using the miscalibrated initial extrinsic parameters (row 2 righht)al hull generated using the converged extrinsic parameters

(row 3 right).
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Fig. 14. Uncertainty ellipsoids drawn around each camera center fotoyhekater data show the extrinsic refinement stability (right:

zoomed into one camera’s perturbations).
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Fig. 15. Row 1: Four camera views during the evolution of the extrinsic pitrfsic parameters of a toy skater with projections of
the initial surface, Row 2: Final views after convergence of the carparameters. Visual hull generated using the miscalibrated initial

parameters (row 1 right); visual hull generated using the convergeghyeters (row 2 right).
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Type Il error Type | error
Camera Initial Final Initial Final
Cam 1 3584 47 5593 4476

Cam 2 13831 7 17762 4807

Cam 55 2841 191 5574 4618

Cam 77 8894 46 14013 | 14700

Cam 105 8339 1344 10032 6724

Cam 166 1005 170 4021 4001

Cam 200 4901 467 7971 6414

Cam 207 7339 97 9764 6783

Cam 239 9251 213 10615 6492

Cam 244 12467 263 16956 3110

Cam 321 1733 65 6501 7365

Table 1. Type | and Type Il errors in counts of voxels for several camaesvs for Bust data (Fig. 16) after perturbation of cameraapuaters (Initial), and

after evolution of parameters (Final).

T T T WET

Fig. 16. Camera views 78,167, and 240 in top row are used deliberatiilycamera calibration parameters of camera views 77, 166, and
239 of the Van Gogh Bust dataset. Top: Three camera views shown reircpons from the initial surface in row 2, here note the resulting

initial mismatch in projected silhouettes. Row 3: Final views after conveger the camera parameters. Visual hull surfaces obtained by
using wrong calibration parameters for views 78, 167, 240 on the rightrow) and surfaces with corrected calibration parameters in bottom

row.
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Fig. 17. Some camera views shown during the evolution of the color cadibrparameters of the HP color calibration object surface.

Top: Five camera views; Row 2: Final views after convergence oexttensic camera parameters; Row 3: Same shown with projections of

the converged cube; Bottom: Color calibration cube with reconstructéidnee on the surface from two different vantage points.
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Fig. 18. Some camera views shown during the evolution of the cameraatalib parameters of the Statue of Liberty surface. Top: Five

camera views shown with projections from the initial surface in Row 2; Rowir3al views after convergence of the camera parameters.
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Fig. 19. Visual hull surfaces with initial rough calibration parameterg(tapd with refined calibration parameters (bottom), also with

radiance texture mapped onto the surfaces.
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20. Some camera views before and after the color calibration fostétae of liberty.
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