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Abstract. We present a novel method to track a guidewire in cardiac
x-ray video. Using variational calculus, we derive differential equations
that deform a spline, subject to intrinsic and extrinsic forces, so that
it matches the image data, remains smooth, and preserves an a priori
length. We analytically derive these equations from first principles, and
show how they include tangential terms, which we include in our model.
To address the poor contrast often observed in x-ray video, we propose
using phase congruency as an image-based feature. Experimental results
demonstrate the success of the method in tracking guidewires in low
contrast x-ray video.

1 Introduction

Endovascular interventions are becoming increasingly more common in the treat-
ment of arterial disease like atherosclerosis. In such procedures, a guidewire is
placed in groin and advanced towards the heart. Critical to this process is ac-
curate placement of the guidewire with respect to the vascular anatomy, which
is typically imaged using x-ray fluoroscopy. However, placement is often diffi-
cult due to complexity of the vasculature, patient motion, and the low signal
to noise ratio of the video that results from trying to minimize the radiation
exposure to the patient. In this paper, we present a method to track a guidewire
in cardiac x-ray video. Tracking the guidewire has many applications, including
interventional navigation and adaptive image enhancement of the guidewire.

While there exist numerous papers on the subject of line detection in noisy
images, there is relatively little literature devoted to the more specific topic of
guidewire tracking, which is perhaps unexpected given the clinical importance
of endovascular interventions. Palti-Wasserman et al. [1] were to our knowledge
the first to consider the problem; in their approach the guidewire is modeled
using a second degree polynomial extracted from consecutive frames of a video.
Recent work by Baert et al. [2] models the guidewire using a spline, and then
optimizes the spline position numerically using Powell’s direction set method.
The optimization is designed to deform the spline so that it has minimal length,
remains smooth, and matches the guidewire position in the image.



Several authors have considered evolving a contour subject to various in-
trinsic and image-based forces; snakes [3] [4] being a classic example. When the
contour is represented using a spline interpolated from discrete control points,
the problem then becomes one of evolving the control points, which in turn evolve
the spline. Typically, authors consider closed contours [5] or open contours with
boundary conditions [6], such as forcing the endpoints to be fixed or have mirror
symmetry. However, such boundary conditions are not suitable for guidewire
tracking. When evolving closed contours, tangential forces on the contour are
typically ignored as they do not change the contour geometry. However, these
terms have an effect on an open contour and therefore should be addressed.

1.1 Owur contribution

Our work is inspired by [1] and [2] but has significant differences. We also model
the geometry of the guidewire as a spline, defined as a smooth curve that in-
terpolates control points. We compose our energy functional of three terms, one
designed to force the guidewire to match the edge-detected pixels in the image,
another to keep the spline smooth, and a third designed to retain an a priori
length (as opposed to the minimal length of [2]). Unlike [1] [2], we analytically
derive, using variational calculus, differential equations that describe the flow of
the spline to minimize the energy functional and achieve a locally optimal posi-
tion of the spline on the current frame. By sampling the spline sufficiently, we
obtain an over-determined system of linear equations which can be inverted to
relate the motion of the spline to that of the control points. This then gives us a
simple mechanism to evolve the control points of an open spline without enforc-
ing any unnatural boundary conditions. We derive the differential equations from
an energy formulation, and from this we see tangential terms that are typically
ignored for closed contour evolutions. For the image-based terms used to align
the spline with the guidewire, we propose the use of phase-congruency [7], which
is able to accurately detect guidewire pixels in x-ray images with low contrast.

2 Variational formulation

In this section we derive the evolution of the spline using variational calculus.
We represent the guidewire as an open curve C = [z(s), y(s)] in the image plane,
where s € [0, L] is an arc length parameter and L is the contour length. We begin
by defining the energy E of the curve as

E(C) = wy - data + ws - smoothness + ws - length constraint
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where w1, wy, and w3 are constants used to weigh the terms relative to one an-
other. The data term will require that the spline adhere to the features detected
from the x-ray image and is based on F(z,y), which is a conformal factor com-
puted from a feature map of the x-ray image. The smoothness term will require



the curve to be smooth, and the length constraint term penalizes the curve’s
length from deviating from an a priori length Ly.

2.1 Regularization

Let us consider the second term of Equation 1 first. Taking the partial derivative
with respect to an independent time parameter ¢, and reparameterizing with
p € [0, 1], gives
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where  is the curvature of the curve, T is the tangent, N is the normal, and
<, > denotes an inner product. Thus, to minimize the length of the curve, we
evolve the curve using

oC
ot

where 0 is a delta function. Intuitively, this flow indicates that to minimize the
curve’s length, one can simply move each point in the normal direction weighted
by curvature, and at the endpoints of the curve, move the curve inwards along the
tangent. Note that these tangential terms cancel in closed contour evolutions,
for which p = p — 1. Evolving the contour with this differential equation will
cause it to both shrink and become smoother. Later, our length preserving term
will force the contour to retain an a priori length, so this term will effectively
regularize the contour, keeping it smooth.

= wakN + w2d(p)T — wad(p — 1)T (3)

2.2 Geodesic flow

Now let us consider the first term of Equation 1. Taking the partial derivative
with respect to an independent time parameter ¢, gives
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Thus, to minimize the conformally weighted length of the curve, we get
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This derivation is similar to that of [4] except we now consider the tangential
terms that act on the open contour.

2.3 Length preserving flow

Finally, let us consider the last term of Equation 1. Taking the partial derivative
with respect to an independent time parameter ¢, gives
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Using the result from the first term derivation in Section 2.1, we get the curve
evolution,
oC
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2.4 Complete flow

Combining Equations 3, 5, and 7, we get the final curve evolution,
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2.5 Spline representation

Equation 8 is the contour evolution equation and is independent of the repre-
sentation of the contour. That is, the equation would apply to any open contour
representation, whether it be described as a polyline, implicit curve, using Fourier
descriptors, etc. We choose to model the curve as a spline, with control points
P = [P;...Py]T. Our objective is to derive an equation to evolve the control
points, which then update the contour to track the guidewire. To do this, we
must relate the differential motion of the control points to that of the contour.
This depends on the spline representation.

We model the contour geometry using a uniform rational B-spline [8]. In
this representation, the contour is represented by M segments that interpolate
the N = M + 3 control points. In this paper, we set M = 2 and thus N = 5.
This results in a curve with enough degrees of freedom to bend and follow the
guidewire, but not too many to result in spurious local minima. The jth segment
is a weighted combination of four control points, as C;(p) = E§+3 B;(p)P;,
where j = 1--- M, p € [0,1], and is a parametrization variable used to sample
Bj, which are third order blending functions. We would like to this equation
to express P; as a function of C;(p) and differentiate, to yield a differential
relationship describing how the motion of the curve segment affects the control
points. For example, consider the case when we have spline consisting of M = 2



segments, corresponding to N = 5 control points, where we sample each segment
L = 4 times. This results in the system of equations:

Ci(p1) a(p1) b(p1) c(p1) d(p1) O
Ci(p2) a(p2) b(p2) c(p2) d(p2) 0 p
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and d(p) = p® are the elements in the blending function.

This system of equations takes the form C = BP, where C is a ML x 2
matrix, B is a ML x N matrix, and P is a NV x 2 matrix. As long as the total
number of samples ML > N, the system is (possibly over-) determined and we
can express P as a function of C using the pseudo-inverse, P = (BT B)~1BTC.

Thus, we can write the evolution of the control points simply as %—1;) =
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We note that the matrix B”B has size N x N, which is typically quite
small, so the pseudo-inverse can be computed efficiently. Equation 10 gives us a
differential equation that evolves the control points P in order to reposition the
spline C so that it fits the data, remains smooth, and retains an a priori length.

3 Phase congruency

We base the data term in our technique on a function F' that is computed using
phase-congruency for guidewire detection. As discussed in [7], phase congruency
is a dimensionless measure of feature significance that is less sensitive to contrast
than differential techniques (gradient, Hessian, etc.). At an edge in an image,
phase information is locally congruent, and the degree of this congruency can
serve as an edge detector response. In [7], phase congruency is computed over
multiple scales and orientations via a wavelet technique using log Gabor func-
tions. Through experimentation, we use three scales, 6 orientations, o = 0.7 for
the Gaussian in the log-Gabor function, and k = 7.5 standard deviations for the
noise energy threshold (see [7] for an explanation). In Figure 1, we provide an
comparison of the phase congruency detector vs. the edgemaps produced using
the Mexican-hat operator of [1] and the coherence-enhancing diffusion followed
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Fig. 1. An example image (a) and its corresponding feature map computed using the
technique of [1] (b), [2] (c), and phase congruency (d). Notice the stronger contrast of
the guidewire in the phase congruency result.

by Hessian computations of [2]. We observe that the phase congruency result
has a sharp edge response and is not plagued by clutter.

Let E be the edge response computed by phase congruency. We then form
F= ﬁ We compute VF using a smoothed derivative operator, and then run
a GVF diffusion [9] on VF to increase the capture range of the gradient field.

4 Experimental results

We manually initialize the contour on the first frame of the sequence by clicking
five control points, and the length of this contour is the a priori length Ly. We
then execute Equation 10 using wy; = 1, wy = 1, w3 = 0.1, for a fixed number of
iterations, 300 in our case. In our C++ implementation, 300 iterations typically
takes approximately 175 milliseconds to run. An example is provided in Figure 2.
Note that the spline updates its position to lock on to the guidewire detected
using phase congruency, and also expand its length to match a priori length (105
pixels in this case) while remaining smooth. Upon convergence, we advance to
the next frame, and use the cross-correlation technique of [2] to shift the spline
to a new location, providing the initialization for the next frame. We do this
because when the frame rate is low, the spline can jump from one location to
the next on the image. The method then continues this process for the entire
video.

‘We have tested our technique on 158 images coming from three different video
sequences. We show the results of our tracking algorithm in Figure 3 for three
consecutive frames from each sequence. The tracking is successful, matching the
spline position with the guidewire in each image. The spline remains smooth but
follows in the data, and the a priori length constraint discourages the spline from
shrinking or expanding from known length (100, 105, 95 pixels, respectively, for
these three examples).

Once initialized, the tracking is automatic. However, we have observed a
small number of failures in the tracking, mainly due to motion blur and clutter.



Fig. 2. Spline evolution (zoomed in to a region of interest). Given the initial spline
(a), we evolve the control points, producing an intermediate result (b) and the final
result upon convergence (c). We find it helpful to periodically recompute the control
points from the contour, as shown in (d) using the spline from (c). We show the contour
evolution overlaid on the phase congruency image in this figure. The spline is shown
in green and the control points in red. Some control points have moved off the region
of interest and not visualized in (b) and (c).

In the motion blur case, the guidewire is not distinctly visible, and the phase-
congruency image does not provide sufficient information. In the clutter case,
edges corresponding to anatomic structures or surgical instruments near the
guidewire look like the guidewire, and the tracker starts to follow these false edges
instead. Out of the 158 frames, the tracker failed for 10 frames, for an accuracy of
93%. These results are comparable to [2]; however, a detailed comparison would
require running both algorithms on the same data, a subject left for future work.
In the case of a tracking failure, the user may reinitialize the contour.

5 Conclusion

This paper presented a variational approach to guidewire tracking in cardiac x-
ray video. We derived analytic equations to evolve the control points of a spline
in order for the spline to match the image data, remain smooth, and preserve
its length, and demonstrated the method’s usefulness by tracking guidewires in
several endovascular x-ray videos. While further experimentation is ongoing, our
current experiments demonstrate much promise for this method to accurately
track the guidewire, even in low-contrast videos. Further work on this method
will include investigations into increasing robustness and detailed comparisons
with alternate techniques, as well as modeling the spline as a 3D curve projected
into multiple x-ray images. We believe the theory behind this work is quite
general and applicable to numerous spline optimization problems.
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